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Deadlocks are a common error in programs with lock-based concurrency and are hard to

avoid or even to detect. Oneway for deadlock prevention is to statically analyze the program

code to spot sources of potential deadlocks. Often static approaches try to confirm that the

lock-taking adheres to a given order, or, better, to infer that such an order exists. Such an

order precludes situations of cyclic waiting for each other’s resources, which constitute a

deadlock.

In contrast, we do not enforce or infer an explicit order on locks. Instead we use a be-

havioral type and effect system that, in a first stage, checks the behavior of each thread or

process against the declared behavior, which captures potential interaction of the thread

with the locks. In a second step on a global level, the state space of the behavior is explored

todetect potential deadlocks.Wedefine anotionof deadlock-sensitive simulation to prove the

soundness of the abstraction inherent in the behavioral description. Soundness of the effect

system is proven by subject reduction, formulated such that it captures deadlock-sensitive

simulation.

To render the state-space finite, we show two further abstractions of the behavior sound,

namely restricting the upper bound on re-entrant lock counters, and similarly by abstracting

the (in general context-free) behavioral effect into a coarser, tail-recursive description. We

prove our analysis sound using a simple, concurrent calculus with re-entrant locks.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Deadlock is awell-knownproblem for concurrent programs,wheremultiple processes share access tomutually exclusive

resources. According to Coffman [9], there are four necessary conditions for a deadlock to occur, namely, mutual exclusion,

no-preemption, wait-for condition, and circular wait. The first three are typically programming language specific; whether

or not a deadlock occurs in one particular run of one particular program depends onwhether the running program reaches a

configuration, inwhich a number of processeswait for resources held by the others in a circular chain.Whenever concurrent

activities attempt to acquire more than one lock, there is a potential for deadlocks. Since the actual occurrence of a deadlock

depends on the actual scheduling at run-time, deadlocks may occur only intermittently, making them difficult to debug.

Preventingdeadlocks at compile timealtogether, on theotherhand,must necessarily over-approximate the actual executions

of the program, as the question of whether a program may deadlock or not is undecidable. The over-approximation may
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report spurious deadlocks, i.e., deadlocks reported on the abstract level do not reflect actual deadlocks on the concrete

execution.

Apart from using run-time monitoring for deadlock detection, a number of static methods to assure deadlock freedom

have been proposed [2,7,16,40]. In this paper, we detect potential deadlocks statically by capturing the lock interaction of

processesbyabehavioral typeand effect system[1,34].While type systemsassureproperuseof values, effect systemscapture

phenomena, which occur during evaluation, such as exceptions, side-effects, resource usage, etc. Expressive effects can deal

with behavior of a program, which is important for concurrent or parallel programs. We, in particular, use a behavioral

effect system to detect potential deadlocks in a setting with re-entrant locks. Locks are commonly used among processes

to ensure mutual access to shared resources in concurrent programming. The effect system characterizes the behavior of a

concurrent program in terms of sequences of lock interactions among parallel threads. By executing the abstraction of the

actual behavior, we detect cycles of processes waiting for shared locks as a symptom of a deadlock.

In this article, we use the well-known characterization of cyclic wait to detect deadlocks on an abstract model of the

program behavior. The effect system focuses on primitives for lock manipulations and primitives for creating threads and

locks. The analysis of the abstract behavior must consider different interleavings of the threads, which quickly leads to an

explosion of the state space. On top of that, typically the number of threads and locks is potentially unbounded, leading to an

infinite state space. To keep the state space finite,we limit ourselves to a finite amount of resources (threads and locks).While

this rules out two major sources of infinity in the behavior, we still need to tackle infinite executions through recursion. We

bound non-tail recursive function calls, and put an upper limit on lock counters, which keep track of how often a re-entrant

thread has locked a resource. This gives an upper limit on the state space size at the cost of further approximation. The

results are formalized for a core calculus supporting functions, multi-threading concurrency, and re-entrant locks.

In Section 2, we present the syntax and semantics of our calculus. A type- and effect system that checks a concrete

program, and produces the finite description of the abstract behavior of the program is presented in Section 3. We show the

correctness of the abstraction into a finite state space in Section 4, and conclude in Section 5.

2. A calculus for lock-based concurrency

Before defining syntax and operational semantics of our calculus, we illustrate deadlocks in a simple example using the

Java language. Concentrating on the core aspects of concurrency and lock handling, the calculus later will not introduce

objects and classes; instead we base our study on a calculus based on threads, functions, and locks. The syntax will be given

in Section 2.1, the operational semantics in Section 2.2, and a characterization of deadlocks as cyclic wait in Section 2.3.

We motivate our analysis with a slightly abridged textbook example from the Java tutorials [24] on concurrency.

Listing 1. Java concurrency example

class Friend {
...
public synchronized void bow (Friend bower) {

System.out.format ("%s: %s has bowed to me!%n",
this.name, bower.getName());

bower.bowBack (this);
}
public synchronized void bowBack (Friend bower) {

System.out.format ("%s: %s has bowed back to me!%n",
this.name, bower.getName ());

}

public static voidmain(String[] args) {
final Friend alphonse = new Friend ("Alphonse");
final Friend gaston = new Friend("Gaston");
new Thread (new Runnable () {

public void run () { alphonse.bow(gaston); }
}).start();
new Thread(new Runnable() {

public void run() { gaston.bow(alphonse); }
}).start();

}
}

At run-time, we may observe the following deadlock: each of the two threads proceeds into its respective synchronized

bow-method, locking one object in one thread each; alphonse will be locked by the first thread, and gaston respectively

locked by the second one. The next instruction, bowBack is then invoked on the partner with the current object locked.

Alphonseholds “his” lock, and attempts to acquire gaston’s lock for thebowBack. Asgastonholds his own lock,alphonse
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Table 1

Abstract syntax.

P ::= ∅ | p〈t〉 | P ‖ P program

t ::= stop stopped thread

| v value

| let x:T = e in t local variables and sequ. composition

e ::= t thread

| v v application

| if v then e else e conditional

| spawn t spawning a thread

| new L lock creation

| v. lock acquiring a lock

| v. unlock releasing a lock

v ::= x variable

| l lock reference

| true | false truth values

| fn x:T .t function abstraction

| fun f :T .x:T .t recursive function abstraction

Table 2

Local steps.

let x:T = v in t −→ t[v/x] R-Red

let x2:T2 = (let x1:T1 = e1 in t1) in t2 −→let x1:T1 = e1 in (let x2:T2 = t1 in t2) R-Let
let x:T = if true then e1 else e2 in t −→let x:T = e1 in t R-If1
let x:T = if false then e1 else e2 in t −→let x:T = e2 in t R-If2

let x:T = (fn x′:T ′.t′) v in t −→let x:T = t′[v/x′] in t R-App1

let x:T = (fun f :T1.x′:T2.t′) v in t −→let x:T = t′[v/x′][fun f :T1.x′:T2.t′/f ] in t R-App2

is suspended until that lock is released. The converse is happening for gaston, who keeps his lock held, and is waiting for

alphonse lock: each one is waiting for a lock that its partner holds, a “deadly embrace”.

2.1. Syntax

In our calculus we focus on the concurrency aspects and locks. The introductory example can be encoded by making the

implicit locking through synchronized explicit, and use a lock per object. In addition, we assume the natural extension of

function declarations to multiple arguments and we elide types for better readability:

let bowBack = fn (this, bower) . this.lock; /∗ skip ∗/ this.unlock in
let bow = fn (this, bower) . this.lock; bowBack (bower, this); this.unlock in
let alphonse = new L in

let gaston = new L in
spawn (bow (alphonse,gaston)); spawn (bow (gaston,alphonse))

2.2. Semantics

The small-step operational semantics given below is straightforward, where we distinguish between local and global

steps (cf. Tables 2 and 3). The local level deals with execution steps of one single thread, where the steps specify reduction

steps in the following form:

t −→ t′ . (1)

Rule R-Red is the basic evaluation step, replacing in the continuation thread t the local variable by the value v (where

[v/x] is understood as capture-avoiding substitution). Rule R-Let restructures a nested let-construct. As the let-construct

generalizes sequential composition, the rule expresses associativity of that construct. Thus it corresponds to transforming

(e1; t1); t2 into e1; (t1; t2). Together with the other rule, which performs a case distinction of the first basic expression in

a let-construct, that assures a deterministic left-to-right evaluation within each thread. The two R-If-rules cover the two

branches of the conditional and the R-App-rules deals with function application (of non-recursive, resp. recursive functions).

The global steps are given in Table 3, formalizing transitions of configurations of the form σ 	 P, i.e., the steps are of the

form

σ 	 P −→ σ ′ 	 P′ , (2)

where P is a program, i.e., the parallel composition of a finite number of threads running in parallel, and σ contains the locks,

i.e., it is a finite mapping from lock identifiers to the status of each lock (which can be either free or taken by a thread where
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Table 3

Global steps.

t1 −→ t2
R-Lift

σ 	 p〈t1〉 −→ σ 	 p〈t2〉
σ 	 P1 −→ σ ′ 	 P′

1
R-Par

σ 	 P1 ‖ P2 −→ σ ′ 	 P′
1 ‖ P2

σ 	 p1〈let x:T = spawn t2 in t1〉 −→ σ 	 p1〈let x:T = p2 in t1〉 ‖ p2〈t2〉 R-Spawn

σ ′ = σ [l 
→ free] l is fresh
R-NewL

σ 	 p〈let x:T =new L in t〉 −→ σ ′ 	 p〈let x:T = l in t〉
σ(l) = free ∨ σ(l) = p(n) σ ′ = σ + lp

R-Lock
σ 	 p〈let x:T = l. lock in t〉 −→ σ ′ 	 p〈let x:T = l in t〉

σ(l) = p(n) σ ′ = σ − lp
R-Unlock

σ 	 p〈let x:T = l. unlock in t〉 −→ σ ′ 	 p〈let x:T = l in t〉

a natural number indicates how often a thread as acquired the lock, modeling re-entrance). A thread-local step is lifted to

the global level by R-Lift. Rule R-Par specifies that the steps of a program consist of the steps of the individual threads,

sharing σ . Executing the spawn-expression creates a new thread with a new identity which runs in parallel with the parent

thread (cf. rule R-Spawn). A new lock is created by new L (cf. rule R-NewL) which allocates a fresh lock reference in the heap.

Initially, the lock is free. A lock l is acquired by executing l. lock. There are two situations where that command does not

block, namely the lock is free or it is already held by the requesting process p. The heap update σ + lp is defined as follows:

If σ(l) = free, then σ + lp = σ [l 
→ p(1)] and if σ(l) = p(n), then σ + lp = σ [l 
→ p(n + 1)]. Dually σ − lp is defined as

follows: if σ(l) = p(n + 1), then σ − lp = σ [l 
→ p(n)], and if σ(l) = p(1), then σ − lp = σ [l 
→ free]. Unlocking works

correspondingly, i.e., it sets the lock as being free resp. decreases the lock count by one (cf. rule R-Unlock). In the premise

of the rules it is checked that the thread performing the unlocking actually holds the lock.

2.3. Deadlocks

We can now characterize formally our deadlock criterion. First, we define what it means for a thread to be waiting for a

lock, and then for a program to be deadlocked. See also [22] for an early discussion of different definitions of deadlock or [31]

for a more recent one. Being deadlocked is a global property of a system in that it concerns more than one process. In our

setting with re-entrant locks, a process cannot deadlock “on itself”, and therefore at least two processes must be involved

in a deadlock.

Later, to relate the operational behaviorwith its abstract behavioral description and to show correctness, it will be helpful

to label the transitions of the operational semantics appropriately. Most importantly, lock-manipulating steps are labeled

indicating which lock is being taken resp. released and by which process. We will discuss the exact nature of the labels in

Section 3. For now, we consider only one specific label characterizing when a process p takes a lock labeled l. The labeled

step in that situation is written as
p〈Ll.lock〉−−−−−→. This particular labeled step is needed in the following definition to characterize

a program where one thread attempts to acquire a lock which is unavailable.

Definition 2.1 (Waiting for a lock). Given a configuration σ 	 P, a process p waits for a lock l in σ 	 P, written as

waits(σ 	 P, p, l), if it is not the case that σ 	 P
p〈Ll.lock〉−−−−−→, and furthermore there exists a σ ′ s.t. σ ′ 	 P

p〈Ll.lock〉−−−−−→ σ ′′ 	 P′.

This indicates that process p is waiting for lock l to become available. Note that this does not yet indicate a deadlock, as

the lock may be released by the process holding it. A configuration σ 	 P is deadlocked if it contains a number of processes

each is holding a lock and trying to acquire the lock of the next process in a cyclic manner.

Definition 2.2 (Deadlock). A configuration σ 	 P is deadlocked if σ(li) = pi(ni) and furthermore waits(σ 	 P, pi, li+k1)
(where k ≥ 2 and for all 0 ≤ i ≤ k − 1). The +k is meant as addition modulo k. A configuration σ 	 P contains a deadlock,

if, starting from σ 	 P, a deadlocked configuration is reachable; otherwise the configuration is deadlock free.

3. Type and effect system

In this section, we present the type and effect system used to capture the behavior of a program. The behavior can then

be executed using the abstract operational semantics. We show that each deadlock in the concrete behavior is preserved in

the abstract behavior.
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Table 4

Types.

T ::= Bool | Int | T
ϕ−→ T | Lr | Thread

Table 5

Effects.

� ::= 0 | p〈ϕ〉 | � ‖ � Effects (global)

ϕ ::= ε | X | ϕ; ϕ | ϕ + ϕ | rec X.ϕ | α Effects (local)

a ::= spawn ϕ | νLr | Lr.lock | Lr.unlock Labels/basic effects

α ::= a | τ Transition labels

3.1. Annotations, effects, and types

The behavioral effects later capture lock interactions of a program. To specifywhich locks aremeant statically,we label the

program points of lock creations appropriately. We use π for program points, and annotations are given as sets of program

points:

r ::= {π} | r ∪ r | ∅ annotations (3)

We use this annotation to augment the syntax of Table 1 to keep track of locks, so all lock creation expressions new L are

augmented to

newπ L . (4)

For a given program, the annotations π are assumed unique. That assumption does not influence the soundness of the

analysis, but the analysis gets more precise by not confusing different program points. The annotation does not influence

the semantics (apart from the fact that we will label the transition relation of the operational semantics later as well).

The grammar for the types is given in Table 4. The underlying types are standard. We assume as basic types booleans

and integers (Bool and Int). As far as the effects are concerned, two points are important. First, in the type system the type

L for a lock must remember the potential places where the lock is created. Therefore, the effect type for lock references is

written Lr . The type of a thread is stated as Thread.
The types of Table 4 carry two kinds of extra annotations on top of the underlying types, namely the annotation r on

the lock types and effects ϕ as annotation on the functional types. Types of an expression describe the domain of values

to which the expression eventually evaluates if it terminates. Effects in contrast are used to describe “phenomena” that

happens during that evaluation. In our case, we capture interaction with locks, and in particular which locks are accessed

during the execution and in which order: This means the effects capture behavioral information related to lock handling.

The type and effect judgments on the local level look as follows


 	 e : T :: ϕ, (5)

meaning that expression ehas type T and effectϕ. 1 The contexts
 contain type information for variables and lock references

and are of the form v1:T1, . . . , vn:Tn, where the values vi are either variables or lock references. We silently assume that

all variables and references in 
 are different, and that the order does not matter. Thus, a context 
 is equivalently also

seen as finite mappings and we use dom(
) to refer to the domain of that mapping and 
(x) and 
(l) to look up the type

remembered in 
 for x resp. for l. Furthermore, 
, v:T is the extension of 
 where we assume that v does not occur in 
.

Note that 
 does not bind an effect to variables resp. references. Effect information, however, is indirectly contained in the

context, as functional types carry behavior information for the latent effect of functions in the type.

The grammar for the effects is given in Table 5. As for processes, we distinguish between a (thread-)local level ϕ and

a global level �. The empty effect is written ε, representing behavior without interaction of locks. Recursive behavior is

captured by rec X.ϕ, where the recursion operator binds variable X in ϕ. Sequential composition of ϕ1 followed by ϕ2 resp.

non-deterministic choice between ϕ1 and ϕ2 are written ϕ1; ϕ2, resp. ϕ1 + ϕ2. Basic effects are captured by labels a, which

can be one of four different forms: The effectspawn ϕ means that a newprocesswith behaviorϕ is created, and νLr indicates
that a new lock is created at one of the program points in r. The effects Lr.lock and Lr.unlock describe the effect of acquiring

a lock and releasing a lock, respectively, where again r denotes the potential places of creation. τ is used later to label silent

transitions.

Example 3.1. Consider the following piece of code:

1 In the abstract syntax, expressions e comprise threads t.
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Listing 2. Deadlock

let x : Lπ1 = newπ1 L in
let y : Lπ2 = newπ2 L in
spawn (y.lock;x.lock;stop); x.lock;y.lock;stop

We use the semicolon as a shorthand for sequential composition as before instead of a let-construct. The example shows
that after two locks have been created at two different locations π1 and π2, a new process is spawned such that both
processes are running in parallel, sharing the two locks. These two processes try to take the two locks in reverse order. The
situation right after spawning the second thread is depicted in Fig. 1: the states correspond to the relevant control locations
of each process, and the transitions indicate the corresponding locking statements.Whenwe consider possible interleavings
of execution steps, we note that a deadlock occurs when both processes reach their respective intermediate state p11/p21:
both will have acquired one lock, and are waiting on the opposite lock (see Fig. 2). Not all interleavings are feasible: p11/p22,
p12/p22 are “shadowed” by the deadlock, and thus not reachable. �

3.2. Type system

The rules for the type and effect system for expressions, i.e., on the thread local level, are given in Table 6. The type of a

variable is looked up from the typing context 
 and its effect is empty (cf. rule TE-Var). Likewise, empty is the effect for lock

references (cf. rule TE-LRef). As a general rule, all values, especially abstractions, have no effect, as they cannot be evaluated

any further. The terminated thread stop has an empty effect (cf. rule TE-Stop). In rule TE-If, the two branches need to

agree on a common type—see also the rule of subsumption—and the effect of a conditional is the non-deterministic choice

between the effects of the two branches. Abstractions are values and consequently their effect is empty (cf. the TE-Abs rules).

The effect of the body of the function, checked in the premise of the rule, is kept as annotation, i.e., as latent effect, on the

arrow type of the abstraction in the conclusion of the rule. In the rule TE-App, the effect of an application consists of the

sequential composition of the effects of the function followed by the effect of the argument, followed by the effect of the

function body, noted as annotation on the arrow of the function type, if one assumes a call-by-value evaluation from left to

right. In our representation where we assume that the function as well are argument in an application are already evaluated

(cf. the syntax of Table 1), it is assured that the effect of both abstraction and argument are empty and the overall effect

consists of the latent effect of the function body only. The effect of the let-construct is expressed in rule TE-Let by sequencing

effects of e and that of the body of the expression. Rule TE-Spawn deals with the generation of a new thread executing the

expression e. The type of this construct is Thread, while the effect is written as spawn ϕ which represents the behavior of

Fig. 1. Deadlock.

Fig. 2. Wait-for graph.
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Table 6

Type and effect checking (local).


(x) = T
TE-Var


 	 x : T :: ε

TE-LRef

 	 lπ : Lπ :: ε

TE-Stop

 	stop : T :: ε


 	 v :Bool 
 	 e1 : T :: ϕ1 
 	 e2 : T :: ϕ2
TE-If


 	 if v then e1 else e2 : T :: (ϕ1 + ϕ2)


, x : T1 	 e : T2 :: ϕ
TE-Abs1


 	 fn x : T1.e : T1 ϕ−→ T2 :: ε


, f :T1 ϕ−→ T2, x:T1 	 t : T2 :: ϕ
TE-Abs2


 	fun f :T1 ϕ−→ T2.x:T1.t : T1 ϕ−→ T2 :: ε


 	 e1 : T2 ϕ−→ T1 :: ε 
 	 e2 : T2 :: ε
TE-App


 	 v1 v2 : T1 :: ϕ


 	 e1 : T1 :: ϕ1 
, x:T1 	 e2 : T2 :: ϕ2
TE-Let


 	 let x : T1 = e1 in e2 : T2 :: ϕ1;ϕ2


 	 e : T :: ϕ
TE-Spawn


 	spawn e :Thread::spawn ϕ

 	newπ L : Lπ :: νLπ TE-NewL


 	 v :Lr :: ϕ
TE-Lock


 	 v. lock: Lr :: ϕ; Lr . lock


 	 v :Lr :: ϕ
TE-Unlock


 	 v. unlock: Lr :: ϕ; Lr.unlock

 	 e : T ′ :: ϕ′ T ′ ≤ T ϕ′ ≤ ϕ

TE-Sub

 	 e : T :: ϕ

the spawned thread. Rule TE-NewL deals with the creation of a new lock, i.e., an “instance” of “class” L. In the annotated

syntax, the creation expression is labeled by a (unique) program point π (cf. Eq. (4)). This point is remembered both in the

type of that expression as well as in its effect. The type of a lock creation is Lπ (which is a short-hand for L{π}). As for the
effects, the expression has exactly one effect, namely the creation of a lock (at the indicated region r), is written as νLr in the

grammar of Table 5. As here we explicitly know the point π of creation, the effect is more precisely νLπ (or νL{π}). Rules
TE-Lock and TE-Unlock for locking and unlocking an existing lock which has created at the indicated potential program

points r. Both constructs are of the same type, namely Lr; whereas the effects are Lr.lock and Lr.unlock, respectively. The
final one is the rule of subsumption. The corresponding sub-typing and sub-effecting relations are defined in Section 3.3.

Typing for the global level is shown in Table 7. An empty program,which does not have any effect, iswell-typed ok defined

by the rule TE-Empty. The rule TE-Thread says a process p is well-typed if the thread t run by the process is also well-typed.

Concurrent programs are well-typed if each one of them is so.

Example 3.2. We show the derivation of the behavior of Example 3.1 with the type and effect system we presented above.

In the derivation, we leave out the typing part except when needed (which is in using TE-Lock) and concentrate on the effect

part. Furthermore and as mentioned, we use t1; t2 as a shorthand for let x:T = t1 in t2, where x does not occur free in t2.

When applying the corresponding typing rule TE-Let in the derivation (and also later), we do not extend the typing context

a binding for with the superfluous variable x. In the derivation, let t abbreviate the code of Listing 2, and t0 be spawn t1; t′1
where t1 � y. lock; x. lock; stop and t′1 � x. lock; y. lock; stop.


0 	newπ1
:Lπ1 :: νLπ1 
0 	newπ2

:Lπ2 :: νLπ2 
1 	 t0 :: ϕ0


0 	 t :: νLπ1; νLπ2; ϕ0

Starting with the empty context 
0, the context 
1 is in the following form:


1 = x: Lπ1 , y: Lπ2

Table 7

Type and effect checking (global).

TE-Empty
	 ∅ : ok :: ε

() 	 t : T :: ϕ
TE-Thread

	 p〈t〉 : ok :: p〈ϕ〉
	 P1 : ok :: �1 	 P2 : ok :: �2

TE-Par
	 P1 ‖ P2 : ok :: �1 ‖ �2
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We abbreviate the effect of t1 as ϕ1 � Lπ2.lock; Lπ1.lock. We capture the effect of t′1 analogously except that the locks

are taken in a reverse order, written as ϕ′
1 � Lπ1.lock; Lπ2.lock:


(y) =Lπ2


1 	 y :Lπ2 :: ε


1 	 y. lock:: Lπ2.lock


(x) =Lπ1


1 	 x :Lπ1 :: ε


1 	 x. lock:: Lπ1.lock


1 	 t1 :: Lπ2.lock; Lπ1.lock 
1 	stop:: ε


1 	spawn t1 ::spawn ϕ1

.

.

.


1 	 t′1 :: ϕ′
1


1 	 t0 :: ϕ0

The following table summarizes the abbreviations used in the derivation:

t = let x: Lπ1=newπ1
L in (let y: Lπ2=newπ2

L in t0)

t0 = spawn (t1); t′1
t1 = y. lock; x. lock; stop
t′1 = x. lock; y. lock; stop

0 = ()


1 = 
0, x: Lπ1 , y: Lπ2

ϕ0 = spawn ϕ1; ϕ′
1

ϕ1 = Lπ2.lock; Lπ1.lock

ϕ′
1 = Lπ1.lock; Lπ2.lock

The overall effect is of Listing 2 is

t :: νLπ1; νLπ2; spawn (Lπ2.lock; Lπ1.lock); Lπ1.lock; Lπ2.lock, (6)

capturing the structure of the control flow in the concrete program. �

3.3. Ordering behavior

The behavior describes possible traces of an expression, over-approximating the actual behavior. There is a notion of

order on such traces, with the usual intention that if an expression is approximated by behavior ϕ1, and ϕ1 ≤ ϕ2, then also

ϕ2 is a safe approximation of the expression. The order is called sub-effecting and is formalized in Table 9. Underlying the

order on effects is an order on types, or, even more basic, the order on the sets r of annotations. For locks, the sets r contain

potential program points where the lock may have been created. Thus, the smaller that set, the more precise the analysis,

and a larger set still remains safe. That induces order ≤ on types (“subtyping”) as given in the rules of Table 8. The order is

reflexive by rule S-Refl. Rule S-Arrow acts, as usual, contra-variant on the left-hand side and co-variant on the right. As far

as the annotation on the arrow is concerned, it is handled co-variantly. Finally, the subset order on annotation sets is lifted to

lock types in rule S-Lock: the larger the set of potential locations, the less information the type carries. It is straightforward

to prove transitivity of subtyping.

Table 9 specifies an ordering on behavior, i.e., sub-effecting. That relation is not intended to capture the deadlock-sensitive

simulation between configurations which we will study later; it is used for the formulation of the type and effect system.

The relation ≤ is reflexive and transitive by rules SE-Refl and SE-Trans. Rules SE-Lock and SE-Unlock indicate that tak-

ing/releasing a lock from a lock-set may be approximated by choosing from a wider set of locks, in a similar manner as for

S-Lock. SE-Choice1 expresses order of a behavior and a choice of that behavior and another behavior. SE-Choice2 allows

us to widen the argument of a choice. Rules SE-Seq , SE-Spawn, and SE-Rec describe the same equivalence for sequencing,

spawning, recursion. EE-Unit and EE-AssocS express unit and associativity of a sequential operator. EE-Choice describes

Table 8

Subtyping.

T ≤ T S-Refl

T ′
1 ≤ T1 T2 ≤ T ′

2 ϕ ≤ ϕ′
S-Arrow

T1
ϕ−→ T2 ≤ T ′

1

ϕ′
−→ T ′

2

r ⊆ r′
S-Lock

Lr≤Lr
′
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Table 9

Subeffecting.

ε;ϕ ≡ ϕ EE-Unit ϕ1; (ϕ2;ϕ3) ≡ (ϕ1;ϕ2);ϕ3 EE-AssocS
ϕ + ϕ ≡ ϕ EE-Choice (ϕ1 + ϕ2);ϕ3 ≡ ϕ1;ϕ3 + ϕ2;ϕ3 EE-Distr
ϕ1 + ϕ2 ≡ ϕ2 + ϕ1 EE-Comm ϕ1 + (ϕ2 + ϕ3) ≡ (ϕ1 + ϕ2) + ϕ3 EE-AssocC

ϕ1 ≡ ϕ2
SE-Refl

ϕ1 ≤ ϕ2

ϕ1 ≤ ϕ2 ϕ2 ≤ ϕ3
SE-Trans

ϕ1 ≤ ϕ3

r1 ⊆ r2
SE-Lock

Lr1.lock ≤ Lr2.lock

r1 ⊆ r2
SE-Unlock

Lr1.unlock ≤ Lr2.unlock

ϕ1 ≤ ϕ1 + ϕ2 SE-Choice1
ϕ1 ≤ ϕ′

1 ϕ2 ≤ ϕ′
2

SE-Choice2
ϕ1 + ϕ2 ≤ ϕ′

1 + ϕ′
2

ϕ1 ≤ ϕ′
1 ϕ2 ≤ ϕ′

2
SE-Seq

ϕ1;ϕ2 ≤ ϕ′
1;ϕ′

2

ϕ1 ≤ ϕ2
SE-Spawn

spawn ϕ1 ≤spawn ϕ2

ϕ1 ≤ ϕ2
SE-Rec

rec X.ϕ1 ≤ rec X.ϕ2

the equivalence of a behavior and the choice between the same behavior itself. The distributivity of sequencing respect to

choice is stated by EE-Distr. EE-Comm and EE-AssocC shows the commutativity and associativity of a choice.

3.4. Semantics of the behavior

Nextwe define the reduction steps of abstract behavior. In contrast to the operational semantics on the concrete level,σ is

now a finite mapping from each lock locationπ to its corresponding status. The corresponding rules are given in Table 10. To

formulate later the connection between the concrete steps of the program and the abstract steps of the effects, we decorate

both the old reduction relation in Tables 2 and 3 and the new one with the relevant lock interaction. This proceeds in the

same manner as we already annotated the reduction for locking, which was needed to formalize a deadlock. This labeling

does not change the operational behavior and is needed only for formulating the correctness result in a clean manner.

Each transition is labeled with one of the labels from Table 5, which capture the four possible visible steps we describe

in the behavior: creating a lock, locking and unlocking, and finally creating a new process with a given behavior. Besides

that, τ represents an internal, invisible step. We introduce additionally
√

as label on a transition to indicate termination.

It is intended as decorations for steps, only, not to be part of a behavior ϕ. As for programs, we distinguish between local

and global behavior. On the global level, the identity p of the process is relevant, and the corresponding transitions are

labeled by p〈a〉 resp. p〈α〉 instead of a, resp. α to indicate which process does the step. In abuse of notation, we use a and

α also to mark global steps, when not interested in the identity of p. The formalization of the labeled operational steps

of behaviors is straightforward. The behavior is determined up to ≡-equivalence and parallel components run in an inter-

leaving manner (rules RE-Mod and RE-Par). Sequential composition is given in rule RE-Seq; note that for ε; ϕ, the empty

effect can be discarded by ε; ϕ ≡ ϕ from EE-Unit. A thread which has terminated does as last action a
√

-step indicating

termination.

A point concerning non-deterministic choice defined by rule RE-Choice deserves mentioning : to take the choice “costs”

a τ -step. Since the effects are meant to over-approximate concrete program behavior especially wrt. deadlocking, it is

important that the +-operator corresponds to an internal choice. The rule RE-Spawn creates a new activity with a fresh

identity and works basically analogously to the thread creation at concrete level. The next five rules deal with effects

concerning lock handling. Rule R-NewL covers lock creation, captured by the effect νLπ . The effect is caused by newπ L on

the concrete level (cf. rule TE-NewL from the type system), which means also on the abstract level, it is always one specific

program point, and not a set r, where a lock is created. Unlike in the semantics on concrete level, not a new or fresh lock

reference is created, but one statically fixed locationπ is used. The premise of RE-NewL requires the locationπ has not been

used previously for allocating a lock.

The effect of taking a lock, Lr.lock, is handled by the two RE-Lock-rules. The abstraction may include uncertainty about

at which location the lock in question comes from originally, i.e., r in general will be a set of candidate locations. Hence

the lock-manipulating steps involve a non-deterministic choice which lock is affected. For the same reason that + was

interpreted as internal choice, the lock manipulation is done in two steps: first the choice of locks is specialized by picking

oneπ from r by a τ -step (cf. RE-Lock1) and only afterwards the lock is taken in a second stepwith RE-Lock2. Thatmeans the

choice which lock is actually attempted to be taken is made independent from the availability of the lock. The alternative

formalization in one rule combining RE-Lock1 and RE-Lock2 into one atomic step would be unsound: a deadlock in the

programmay be missed in the abstract behavior description. Unlocking works dually. The notations σ + πp and σ − πp are

used analogously (with π instead of l) as for the concrete heap. Recursive effects are unrolled by RE-Rec. The definition of

simulation will later relate more concrete and more abstract effects, but also a program with its effect.

As for the semantics on the level of programs: as mentioned shortly earlier when characterizing processes waiting on a

lock (Definition 2.1), the transitions of configurations σ 	 P are labeled, as well. So the steps of Tables 2 and 3 are considered



340 K.I. Pun / Journal of Logic and Algebraic Programming 81 (2012) 331–354

Table 10

Operational semantics for effects.

ϕ1 ≡ ϕ′
1 σ 	 p〈ϕ′

1〉 α−→ σ 	 p〈ϕ2〉
RE-Mod

σ 	 p〈ϕ1〉 α−→ σ 	 p〈ϕ2〉
σ 	 �1

α−→ σ ′ 	 �′
1

RE-Par
σ 	 �1 ‖ �2

α−→ σ ′ 	 �′
1 ‖ �2

σ 	 p〈ϕ1〉 α−→ σ ′ 	 p〈ϕ′
1〉 α �= √

RE-Seq
σ 	 〈ϕ1;ϕ2〉 α−→ σ ′ 	 p〈ϕ′

1;ϕ2〉
σ 	 p〈ε〉 p〈√〉−−−→ σ 	 0 RE-Tick

σ 	 p〈ϕ1 + ϕ2〉 p〈τ 〉−−→ σ 	 p〈ϕ1〉 RE-Choice σ 	 p〈rec X.ϕ〉 p〈τ 〉−−→ σ 	 p〈ϕ[rec X.ϕ/X]〉 RE-Rec

σ 	 p1〈(spawn ϕ);ϕ′〉 p〈spawn ϕ〉−−−−−−−→ σ 	 p1〈ϕ′〉 ‖ p2〈ϕ〉 RE-Spawn

σ(π) = ⊥ σ ′ = σ [π 
→ free]
RE-NewL

σ 	 p〈νLπ 〉 p〈νLπ 〉−−−−→ σ ′ 	 p〈ε〉
π ∈ r

RE-Lock1

σ 	 p〈Lr . lock〉 p〈τ 〉−−→ σ 	 p〈Lπ . lock〉
σ(π) = free ∨ σ(π) = p(n) σ ′ = σ + πp

RE-Lock2

σ 	 p〈Lπ . lock〉 p〈Lπ.lock〉−−−−−−−→ σ ′ 	 p〈ε〉
π ∈ r

RE-Unlock1

σ 	 p〈Lr . unlock〉 p〈τ 〉−−→ σ 	 p〈Lπ . unlock〉
σ(π) = p(n) n > 1 σ ′ = σ − πp

RE-Unlock2

σ 	 p〈Lπ . unlock〉 p〈Lπ.unlock〉−−−−−−−−→ σ ′ 	 p〈ε〉

labeled accordingly in the following. We assume further that the locks l are labeled by the point of creation, i.e., are of the

form lπ . Due to our restriction on lock creation, that labeling is well-defined. So for instance, a lock-taking step of a lock lπ

is of the form σ 	 P
p〈Lπ.lock〉−−−−−→ σ ′ 	 P′, etc.

Example 3.3. To detect potential deadlock in our example, we execute the effect obtained in Eq. (6) of Example 3.2 in a

process starting from the empty heap, using the abstract operational semantics from Table 10. We show the configuration

consisting of the heap and parallel processes for the particular interleaving which ends up in the deadlocked configuration.

[] 	 p1〈νLπ1; νLπ2; spawn (Lπ2.lock; Lπ1.lock); Lπ1.lock; Lπ2.lock〉 p1〈νLπ1 〉−−−−−→
[π1 
→ free] 	 p1〈ε; νLπ2; spawn (Lπ2.lock; Lπ1.lock); Lπ1.lock; Lπ2.lock〉 p1〈νLπ2 〉−−−−−→

[π1 
→ free][π2 
→ free] 	 p1〈ε; spawn (Lπ2.lock; Lπ1.lock); Lπ1.lock; Lπ2.lock〉 p1〈spawn (Lπ2.lock;Lπ1.lock)〉−−−−−−−−−−−−−−−−−−→
[π1 
→ free][π2 
→ free] 	 p2〈Lπ2.lock; Lπ1.lock〉 ‖ p1〈Lπ1.lock; Lπ2.lock〉 p2〈Lπ2.lock〉−−−−−−−→

[π1 
→ free][π2 
→ p2(1)] 	 p2〈Lπ1.lock〉 ‖ p1〈Lπ1.lock; Lπ2.lock〉 p1〈Lπ1.lock〉−−−−−−−→
[π1 
→ p1(1)][π2 
→ p2(1)] 	 p2〈Lπ1.lock〉 ‖ p1〈Lπ2.lock〉

The processes p1 and p2 reach the configuration with σ = [π1 
→ p1(1)][π2 
→ p2(1)], σ 	 p2〈Lπ1.lock〉 ‖ p1〈Lπ2.lock〉,
for which we have waits(σ 	 p1〈Lπ2. lock〉 ‖ . . . , p1, π2) and waits(σ 	 p2〈Lπ1. lock〉 ‖ . . . , p2, π1), satisfying our
condition for a circular wait (cf. Definition 2.2). �

3.5. Deadlock-sensitive simulation

Next we prove that the type and effect systems formalize our intention in that the effect of a well-typed program over-

approximates the actual behavior. Both themeaning of the effects and themeaning of the programare specified operationally.

The proof of correctness relates therefore the operational interpretation on the concrete level of the program with that of

the abstract level of behavior.

To do so we start by defining an appropriate notion of simulation [32], a definition which allows to transfer deadlock

freedom from the simulating processes to the ones being simulated. Thedefinition relates the behavior of two configurations,
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and as part of the definition, the corresponding heaps need to be appropriately related. As we will abstract lock counters,

the heaps containing the lock counter cannot be requested to be identical: they operate on distinct domains (lock references

on the concrete side, and locations on the abstract side). The following definition relates two heaps as equivalent (modulo

renaming the locks involved), if they behave the samewrt. when a threads waits on a lock or not. The definition will be used

in the deadlock-sensitive simulation relation afterwards.

Definition 3.4. Given two heaps σ1 and σ2. A heap-mapping θ is a bijection between dom(σ1) and dom(σ2) such that

σ1(l) = σ2(θ(l)). Two heaps σ1 and σ2 are wait-equivalent, written σ2 ≡ σ1, if dom(σ1) = dom(σ2), and furthermore

σ1(l) = free iff σ2(l) = free, and σ1(l) = p(n1) iff σ2(l) = p(n2). We use σ1 ≡θ σ2 for σ1 ≡ σ ′
2 where the locks of σ ′

2
renamed according to θ . We will later use the definition analogously for locations π instead of lock references l.

The definition of simulation is standard, except that we need to add that the simulating behavior cannot do everything

the partner can do, as well, i.e., to preserve the ability to do labeled steps. In addition, the simulating partner must also be

able to go into awaiting state, if its partner does and furthermore, the same preservation for termination. The latter condition

about termination is not needed to prove preservation of deadlocks via simulation; the additional condition will be relevant

later when using a compositional argument for deadlock preservation, namely when showing preservation of simulation in

the context of sequential composition. As customary, internal steps, when relating two transition systems via simulation, do

not count. To capture that, we start define a “weak” notion of transition, ignoring leading τ -steps (where p〈τ 〉-labels count
as silent). So the weak transition relation

p〈a〉��⇒ is defined as
p〈τ 〉−−→∗ p〈a〉−−→ (the p is meant to be the same). Formalization and

axiomatization of termination has been studied widely in the context of process algebra (see for instance [8]), especially

for ACP. Termination is also relevant when formalizing action refinement since replacing a single action by more than one

requires to consider sequential composition of actions, not just action prefixing. Respective notions of equivalence have

been studied, cf. e.g. [39], collecting a number of results in the context of event structures, a well-known true concurrency

model of concurrency. The paper includes equivalence notions preserved by action refinement/sequential composition such

as history-preserving bisimulation.

Definition 3.5 (Deadlock and termination sensitive simulation �DT / �D). Assume a heap-mapping θ and a corresponding

equivalence ≡θ (for which we simply write ≡ in the following). A binary relation R between configurations is a deadlock

and termination sensitive simulation relation (or just simulation for short) if the following holds. Assume σ1 	 �1 R σ2 	 �2

with σ1 ≡ σ2. Then:

1. If σ1 	 �1

p〈τ 〉−−→ σ1 	 �′
1, then σ2 	 �2

p〈τ 〉−−→ σ2 	 �′
2 or σ2 	 �′

2 = σ2 	 �2 s.t. σ ′
1 	 �′

1R σ2 	 �′
2.

2. If σ1 	 �1

p〈a〉−−→ σ ′
1 	 �′

1, then σ2 	 �2
p〈a〉��⇒ σ ′

2 	 �′
2 for some σ ′

2 	 �′
2 with σ ′

1 ≡ σ ′
2 and σ ′

1 	 �′
1R σ ′

2 	 �′
2.

3. If waits((σ1 	 �1), p, l), then (σ2 	 �2)
p〈τ 〉−−→∗σ ′

2 	 �′
2 for some σ ′

2 	 �′
2 where waits((σ ′

2 	 �′
2), p, θ(l)).

4. If σ1 	 �1

p〈√〉−−→ σ1 	 �′
1, then σ2 	 �2

p〈√〉−−→ σ2 	 �′
2 and σ1 	 �′

1 R σ2 	 �′
2.

The configurationσ1 	 �1 is simulated by configurationσ2 	 �2 (writtenσ1 	 �1 �DT σ2 	 �2), if there exists a deadlock

and termination sensitive simulation s.t. σ1 	 �1 R σ2 	 �2. Without part 4 of the definition, we call it deadlock-sensitive

simulation, and write �D for the corresponding relation.

Fig. 3 illustrates thedefinition,wherepart3of thedefinitionofdeadlocksensitive simulation,where thenegated transition

is a graphical representation of the definition of waiting on a lock (cf. Definition 2.1).

It is straightforward to see that the binary relation �DT is itself a deadlock and termination sensitive simulation, and

furthermore that it is reflexive and transitive.

The simulation relation fromDefinition 3.5 allows straightforwardly to carry over the property of deadlock freedom from

the more abstract behavior to the more concrete. For the preservation result, termination sensitivity is not needed.

Lemma 3.6 (Preservation of deadlock freedom). Assume σ1 	 �1 �D σ2 	 �2. If σ2 	 �2 is deadlock free, then so is

σ1 	 �1.

Proof. For a trace of labels s, let
s�⇒ denote the corresponding sequence of labeled weak transition steps. We prove contra-

positively that ifσ1 	 �1 contains a deadlock, then alsoσ2 	 �2. So assume thatσ1 	 �1
s�⇒ σ ′

1 	 �′
1 such thatσ ′

1 	 �′
1 is

deadlocked. By assumption, there exists a simulation relation s.t.σ1 	 �1 Rσ2 	 �2. This implies thatσ2 	 �2
s�⇒ σ ′

2 	 �′
2

s.t.

σ ′
1 	 �′

1 R σ ′
2 	 �′

2 . (7)
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Fig. 3. DT-Simulation.

Table 11

Pre-congruence properties of �DT .

σ 	 p〈ϕ1〉 �DT σ 	 p〈ϕ2〉
S-Choice

σ 	 p〈ϕ1 + ϕ〉 �DT σ 	 p〈ϕ2 + ϕ〉
σ 	 p〈ϕ1〉 �DT σ 	 p〈ϕ2〉

S-Seq1
σ 	 p〈ϕ;ϕ1〉 �DT σ 	 p〈ϕ;ϕ2〉

σ 	 p〈ϕ1〉 �DT σ 	 p〈ϕ2〉
S-Seq2

σ 	 p〈ϕ1;ϕ〉 �DT σ 	 p〈ϕ2;ϕ〉
σ 	 p′〈ϕ1〉 �DT σ 	 p′〈ϕ2〉

S-Spawn
σ 	 p〈spawn ϕ1〉 �DT σ 	 p〈spawn ϕ2〉

σ 	 p〈ϕ1〉 �DT σ 	 p〈ϕ2〉
S-Par

σ 	 � ‖ p〈ϕ1〉 �DT σ 	 � ‖ p〈ϕ2〉

Being deadlocked means for the configuration σ ′
1 	 �′

1 that σ ′
1(πi) = pi(ni) andwaits(σ ′

1 	 �′
1, pi, πi+k1) for some k ≥ 1.

Being in simulation relation implies with part 3 of Definition 3.5, that also waits(σ ′
2 	 �′

2, pi, πi+k1). Hence, σ
′
2 	 �′

2 is

deadlocked and thus σ2 	 �2 contains a deadlock. �

The next two lemmas are concerned with “compositionality” as far as the simulation relation is concerned. It is crucial to

use the stronger notion �DT of simulation that respects termination, and not �D. In particular, in the presence of sequential

composition, �D is not preserved: given σ 	 p〈ϕ1〉 �D σ 	 p〈ϕ2〉 does not imply σ 	 p〈ϕ1; ϕ〉 �D σ 	 p〈ϕ2; ϕ〉 (see rule

S-Seq2 in Table 11), namely in situations where ϕ1 terminates but ϕ2 does not. A simple example illustrating that point is

ϕ1 = rec X.τ ; X + ε and ϕ2 = rec X.τ ; X .
Lemma 3.7 (Composition). The implications formalized as rules in Table 11 are valid.

Proof. Straightforward. For further details see the accompanying technical report [35]. �

The next lemma is a straightforward consequence, showing that�DT behaves co-variantly ormonotonelywhen replacing

behavior within a context. We ignore the situation when replacing inside a recursion; the reason simply is that later we do

not need to consider that case.

Lemma 3.8 (Context). If σ 	 p〈ϕ1〉 �DT σ 	 p〈ϕ2〉, then σ ′ 	 p〈ϕ[ϕ1]〉 �DT σ ′ 	 p〈ϕ[ϕ2]〉, where the holes [] in ϕ[] do
not occur inside a recursion.

Proof. By straightforward induction on the structure of ϕ[], and with the help of Lemma 3.7. The base case ϕ[] = []
where the context is empty is immediate. For the case of choice, we are given ϕ[] = ϕl[] + ϕr[]. By induction, we get

σ 	 ϕl[ϕ1] �DT σ 	 ϕl[ϕ2] and σ 	 ϕr[ϕ1] �DT σ 	 ϕr[ϕ2]. Thus, the case follows by S-Choice of Lemma 3.7 and

transitivity. The remaining caseswork analogously. Note thatwe do not need to consider the casewhereϕ[] = rec X.ϕ′[]. �
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3.6. Subject reduction as simulation

In the type/effect based formalization, the proof of deadlock-sensitive simulation can be formulated in the form of a

subject reduction result. As the static analysis is conceptually split into a (standard) typing part and the behavioral effect part,

we split the preservation result also into these two aspects. We start with the typing part. The first lemma, preservation of

typing under substitution, is standard.

Lemma 3.9 (Substitution). If 
, x:T1 	 t : T2 and 
 	 v : T1, then 
 	 t[v/x] : T2.
Proof. By straightforward induction on the typing derivation, generalizing the property of the lemma slightly:

If 
1, x:T1, 
2 	 t : T2 and 
1 	 v : T1, then 
1, 
2 	 t[v/x] : T2. �

Lemma 3.10 (Subject reduction, local steps (types)). If 
 	 e : T and e
τ−→ e′, then 
 	 e′ : T.

Lemma 3.11 (Subject reduction, global steps (types)). If 
 	 P : ok and σ 	 P −→ σ ′ 	 P′, then 
 	 P′ : ok (where −→ is

meant as an arbitrary step, independent of the label).

Next we treat subject reduction for the effects. As the behavioral effects describe (an over-approximation of) the future

behavior of a program, we cannot expect that doing a reduction step preserves the effect in general. For instance, if the

behavior is described by a behavior ϕ of the form Lr. lock; ϕ′, then if the program actually does the corresponding lock-

taking step, its behavior should be described by ϕ′ afterwards. Clearly, not all steps the program does “count” in that way

because some of the steps are irrelevant for the behavior dealing with locks. Technically, the behavior of the program and

the behavior of the effects are related by a deadlock-sensitive simulation (see Corollary 3.16 later).

We start again with a simple substitution lemma, this time for effects.

Lemma 3.12 (Substitution (effects)). If 
, x:T 	 t :: ϕ, then 
 	 t[v/x] :: ϕ.

Proof. Straightforward, using the fact that v is a value and therefore has the empty effect (as has the variable x it replaces). �

Lemma 3.13 (Monotonicity).

1. If ϕ1 ≤ ϕ′
1, then ϕ2[ϕ1/X] ≤ ϕ2[ϕ′

1/X].
2. If ϕ2 ≤ ϕ′

2, then ϕ2[ϕ1/X] ≤ ϕ2[ϕ1/X]′.
Proof. Part 1 by straightforward induction on the structure of ϕ2. Part 2 by straightforward induction on the derivation of

ϕ2 ≤ ϕ′
2, and using the fact that ϕ2 ≡ ϕ′

2 implies ϕ2[ϕ1/X] ≡ ϕ′
2[ϕ1/X]. �

Lemma 3.14 (−→ and ≤). Assume ϕ1 ≤ ϕ′
1

1. If σ 	 p〈ϕ1〉 p〈τ 〉−−→ σ 	 p〈ϕ2〉, then σ 	 p〈ϕ′
1〉 p〈τ 〉−−→∗ σ 	 p〈ϕ′

2〉 and ϕ2 ≤ ϕ′
2.

2.

(a) If σ1 	 p〈ϕ1〉 p〈a〉−−→ σ2 	 p〈ϕ2〉 where a �=spawn (ϕ), then σ1 	 p〈ϕ′
1〉 p〈a〉��⇒ σ2 	 p〈ϕ′

2〉 and ϕ2 ≤ ϕ′
2.

(b) If σ 	 p〈ϕ1〉 p〈a〉−−→ σ ′ 	 p〈ϕ2〉 ‖ p1〈ϕ̃2〉 where a =spawn (ϕ̃2), then σ 	 p〈ϕ′
1〉 p〈a′〉��⇒ σ ′ 	 p〈ϕ′

2〉 ‖ p1〈ϕ̃′
2〉,

where a′ =spawn (ϕ̃′
2), ϕ2 ≤ ϕ′

2, and ϕ̃2 ≤ ϕ̃′
2.

3. If waits(σ 	 p〈ϕ1〉, p, π), then σ 	 p〈ϕ′
1〉 p〈τ 〉−−→∗σ 	 p〈ϕ′

2〉 s.t., waits(σ 	 p〈ϕ′
2〉, p, π).

Proof. Assume ϕ1 ≤ ϕ′
1.

In part 1 of the lemma, we are given σ 	 p〈ϕ1〉 p〈τ 〉−−→ σ 	 p〈ϕ2〉. Proceed by induction on the derivation of ϕ1 ≤ ϕ′
1

(see the rules of Table 9).

Case: SE-Refl:

We are given ϕ1 ≡ ϕ2 by the premise of the rule. Hence σ 	 p〈ϕ′
1〉 p〈τ 〉−−→ σ 	 p〈ϕ2〉 directly by rule RE-Mod and the result

follows by ϕ′
2 = ϕ2 and reflexivity.

Case: SE-Trans

By the premises of SE-Trans, ϕ1 ≤ ϕ′′
1 and ϕ′′

1 ≤ ϕ′
1 for some ϕ′′

1 . Induction on the first premise gives σ 	 p〈ϕ′′
1 〉 p〈τ 〉−−→

∗σ 	 p〈ϕ′′
2 〉 for some ϕ′′

2 with ϕ2 ≤ ϕ′′
2 . Using induction again (iterated on the number of

p〈τ 〉−−→∗-steps and with the help of
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transitivity), we get σ 	 p〈ϕ′
1〉 p〈τ 〉−−→∗ σ 	 p〈ϕ′

2〉 and ϕ′′
2 ≤ ϕ′

2. Now ϕ2 ≤ ϕ′′
2 and ϕ′′

2 ≤ ϕ′
2 gives ϕ2 ≤ ϕ′

2 by transitivity,

which concludes the case.

Case: SE-Lock: Lr1.lock≤ Lr2.lock

with r1 ⊆ r2. In this case, σ1 	 p〈Lr1. lock〉 p〈τ 〉−−→ σ1 	 p〈Lπ1. lock〉 for some π1 ∈ r1, by RE-Lock1. (Rule RE-Lock2 does

not apply for
p〈τ 〉−−→). Since π1 ∈ r2, as well, the case is immediate. The case for SE-Unlock works analogously.

Case: SE-Choice1: ϕ1 ≤ ϕ1 + ϕ′

In this case, σ1 	 p〈ϕ1 + ϕ′〉 p〈τ 〉−−→ σ1 	 p〈ϕ1〉 and the case follows by reflexivity of ≤.

Case: SE-Choice2: ϕ1 + ϕ1 ≤ ϕ′
1 + ϕ′

2

where ϕ1 ≤ ϕ′
1 and ϕ2 ≤ ϕ′

2. By RE-Choice, we have σ1 	 p〈ϕ1 + ϕ2〉 p〈τ 〉−−→ σ1 	 p〈ϕ1〉 as well as σ1 	 p〈ϕ′
1 + ϕ′

2〉 p〈τ 〉−−→
σ1 	 p〈ϕ′

1〉, from which the result follows.

Case: SE-Seq: ϕ̃1; ϕ ≤ ϕ̃′
1; ϕ′

with ϕ̃1 ≤ ϕ̃′
1 andϕ ≤ ϕ′ as premises.We are given further σ 	 p〈ϕ̃1; ϕ〉 p〈τ 〉−−→ σ 	 p〈ϕ2〉 for someϕ2. By rule RE-Seq , this

implies ϕ2 = ϕ̃2; ϕ for some ϕ̃2 and furthermore σ 	 p〈ϕ̃1〉 p〈τ 〉−−→ σ 	 p〈ϕ̃2〉. By induction, σ 	 p〈ϕ̃′
1〉 p〈τ 〉−−→∗ σ 	 p〈ϕ̃′

2〉
for some ϕ̃′

2 with ϕ̃2 ≤ ϕ̃′
2. Iterated use of rule RE-Seq gives σ 	 p〈ϕ̃′

1; ϕ′〉 p〈τ 〉−−→∗ σ 	 p〈ϕ̃′
2; ϕ′〉. Finally, ϕ̃2; ϕ ≤ ϕ̃′

2; ϕ′ by
rule SE-Seq .

Case: SE-Rec: rec X.ϕ1 ≤ rec X.ϕ′
1

with ϕ1 ≤ ϕ′
1 as premise. We are given σ 	 rec X.ϕ1

p〈τ 〉−−→ σ 	 p〈ϕ1[rec X.ϕ1/X]〉. Furthermore by the reduction rule

RE-Rec for recursion, σ 	 rec X.ϕ′
1

p〈τ 〉−−→ σ 	 p〈[rec X.ϕ′
1/X]ϕ′

1〉. By Lemma 3.13, ϕ1[rec X.ϕ1/X] ≤ ϕ′
1[rec X.ϕ′

1/X], as
required

The rule SE-Spawn does not apply, since spawn ϕ does not do a τ -step.

In part 2a of the lemma, we are given σ1 	 p〈ϕ1〉 p〈a〉−−→ σ ′
1 	 p〈ϕ2〉 (where the transition is not a spawn-step). As in the

previous part, proceed by induction on the derivation of ϕ1 ≤ ϕ′
1.

Case: SE-Refl

By the premise of the rule, ϕ1 ≡ ϕ′
1. Hence, σ1 	 p〈ϕ′

1〉 p〈a〉−−→ σ ′
1 	 p〈ϕ2〉 by rule RE-Mod and the result follows by ϕ′

2 = ϕ2

and reflexivity.

Case: SE-Trans

By the premises of SE-Trans, ϕ1 ≤ ϕ′′
1 and ϕ′′

1 ≤ ϕ′
1 for some ϕ′′. Induction on the first premise gives σ1 	 p〈ϕ′′

1 〉 p〈a〉��⇒ σ2 	
p〈ϕ′′

2 〉 for some ϕ′′
2 with ϕ2 ≤ ϕ′′

2 . By definition of weak transitions, that means that σ1 	 p〈ϕ′′
1 〉 p〈τ 〉−−→∗ p〈a〉−−→ σ2 	 p〈ϕ′′

2 〉.
Using part 1 of the lemma and induction again, we get σ1 	 p〈ϕ′

1〉 p〈a〉��⇒ σ2 	 p〈ϕ′
2〉 and ϕ′′

2 ≤ ϕ′
2. Now ϕ2 ≤ ϕ′′

2 and

ϕ′′
2 ≤ ϕ′

2 gives ϕ2 ≤ ϕ′
2 by transitivity, which concludes the case.

Case: SE-Choice1: ϕ1 ≤ ϕ1 + ϕ′

Since σ1 	 p〈ϕ1 + ϕ′〉 p〈τ 〉−−→ σ1 	 p〈ϕ1〉 p〈a〉−−→ σ2 	 p〈ϕ′
1〉 by RE-Choice, the case is immediate using reflexivity of ≤.

Case: SE-Seq: ϕ̃1; ϕ ≤ ϕ̃′
1; ϕ′

with ϕ̃1 ≤ ϕ̃′
1 and ϕ ≤ ϕ′ as premises. We are given furthermore σ1 	 p〈ϕ̃1; ϕ〉 p〈a〉−−→ σ2 	 p〈ϕ2〉 for some ϕ2.

By rule RE-Seq , this implies ϕ2 = ϕ̃2; ϕ for some ϕ̃2 and furthermore σ1 	 p〈ϕ̃1〉 p〈a〉−−→ σ2 	 p〈ϕ̃2〉. By induction,

σ1 	 p〈ϕ̃′
1〉 p〈a〉��⇒ σ2 	 p〈ϕ̃′

2〉 for some ϕ̃′
2 with ϕ̃2 ≤ ϕ̃′

2. Using rule RE-Seq gives σ1 	 p〈ϕ̃′
1; ϕ′〉 p〈a〉��⇒ σ2 	 p〈ϕ̃′

2; ϕ′〉.
Finally, ϕ̃2; ϕ ≤ ϕ̃′

2; ϕ′ by rule SE-Seq .

The case of SE-Choice2 does not apply for transitions of the form
p〈a〉−−→, and the case of SE-Spawn is excluded.

In part 2b of the lemma, we are given σ 	 p〈ϕ1〉 p〈a〉−−→ σ 	 p〈ϕ2〉 ‖ p1〈ϕ̃2〉 where a is a spawn-label:

Case: SE-Spawn: spawn ϕ ≤ spawn ϕ′

where ϕ ≤ ϕ′. By rule RE-Spawn, we get σ 	 p〈spawn ϕ〉 p〈spawn ϕ〉−−−−−−→ σ 	 p〈ε〉 ‖ p1〈ϕ〉 for some thread p1. Applying rule

RE-Spawn again gives σ 	 p〈spawn ϕ′〉 p〈spawn ϕ′〉−−−−−−→ σ 	 p〈ε〉 ‖ p1〈ϕ′〉. With ϕ2 = ϕ′
2 = ε, ϕ2 ≤ ϕ′

2 by reflexivity. This

together with ϕ ≤ ϕ′ concludes the case.

For part 3 of the lemma, we are given that waits(σ 	 p〈ϕ1〉, p, π), which means that σ 	 p〈ϕ1〉 � p〈Lπ.lock〉−−−−−→, but

σ ′ 	 p〈ϕ1〉 p〈Lπ.lock〉−−−−−→ for some σ ′ where π is free. Since ϕ1 ≤ ϕ′
1, this implies with part 2a of the lemma that σ ′ 	
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p〈ϕ′
1〉 p〈Lπ.lock〉�����⇒, i.e., σ ′ 	 p〈ϕ′

1〉 p〈τ 〉−−→∗σ ′ 	 p〈ϕ′
2〉 p〈Lπ.lock〉−−−−−→ for some ϕ′

2. As π is taken in σ , σ 	 p〈ϕ′
2〉 � p〈Lπ.lock〉−−−−−→. Thus,

waits(σ 	 p〈ϕ′
2〉, p, π), as required. �

Lemma 3.15 (Subject reduction (effects)). Let the heap mapping θ map concrete locks lπ to their locations π . Note that due to

the restrictions in our setting this mapping is a bijection. Let 
 	 p〈t〉 :: p〈ϕ〉, and furthermore σ1 ≡ σ2.

1. σ1 	 p〈t〉 p〈τ 〉−−→ σ1 	 p〈t′〉, then 
 	 p〈t′〉 :: p〈ϕ〉.
2.

(a) σ1 	 p〈t〉 p〈a〉−−→ σ ′
1 	 p〈t′〉 and a �= spawn ϕ′′, then σ2 	 p〈ϕ〉 p〈a〉��⇒ σ ′

2 	 p〈ϕ′〉 and 
 	 p〈t′〉 :: p〈ϕ′〉.
(b) σ1 	 p〈t〉 p〈a〉−−→ σ1 	 p〈t′′〉 ‖ p′〈t′〉 where a =spawn ϕ′, then σ2 	 p〈ϕ〉 p〈a′〉��⇒ σ ′

2 	 p〈ϕ′′〉 ‖ p′〈ϕ′′′〉 where

a′ =spawn ϕ′′′ and such that 
 	 p〈t′′〉 :: p〈ϕ′′〉 and 
 	 p′〈t′〉 :: p′〈ϕ′′′〉, and ϕ′ ≤ ϕ′′′.
3. If waits(σ1 	 p〈t〉, p, lπ ), then σ2 	 p〈ϕ〉 p〈τ 〉−−→∗σ2 	 p〈ϕ′〉 s.t. waits(σ2 	 p〈ϕ′〉, p, π).

Proof. We are given 
 	 p〈t〉 :: p〈ϕ〉. In part 1, furthermore σ1 	 p〈t〉 p〈τ 〉−−→ σ1 	 p〈t′〉. In case of steps justified by the

rules for local steps of Table 2, σ1 remains unchanged. We proceed by case distinction on the rules for the local transition

steps from Table 2.

Case: R-Red: p〈let x:T = v in t〉 p〈τ 〉−−→ p〈t[v/x]〉
By well-typedness, we are given 
 	 p〈let x:T = v in t〉 :: p〈ϕ〉, so inverting rule TE-Thread, TE-Sub, and TE-Let gives:


 	 v :: ϕ′
1 
, x:T 	 t :: ϕ′

2

TE-Let


 	 let x:T = v in t :: ϕ′
1; ϕ′

2 ϕ′
1; ϕ′

2 ≤ ϕ

TE-Sub


 	 let x:T = v in t :: ϕ

TE-Thread


 	 p〈let x:T = v in t〉 :: p〈ϕ〉
For the effect of a value v, we have ε ≤ ϕ′

1 (cf. the corresponding rules for values TE-Var, TE-LRef, TE-Abs1, and TE-Abs2
from Table 6). Hence, ϕ′

2 ≡ ε; ϕ′
2 ≤ ϕ′

1; ϕ′
2 ≤ ϕ (by EE-Unit, SE-Seq , and reflexivity) and thus by reflexivity and transitivity

ϕ′
2 ≤ ϕ. By preservation of typing under substitution for effects (Lemma 3.12) we get from the second premise of the above

derivation that 
 	 t[v/x] :: ϕ′
2, and thus


 	 t[v/x] :: ϕ′
2 ϕ′

2 ≤ ϕ

TE-Sub


 	 t[v/x] :: ϕ

TE-Thread


 	 p〈t[v/x]〉 :: p〈ϕ〉
as required.

Case: R-Let: p〈let x2:T2 = (let x1:T1 = e1 in t1) in t2〉 p〈τ 〉−−→ p〈let x1:T1 = e1 in (let x2:T2 = t1 in t2)〉
By assumption, we are given
 	 p〈let x2:T2 = (let x1:T1 = e1 in t1) in t2〉 :: p〈ϕ〉. Inverting the type rules TE-Thread,
TE-Sub, and TE-Let gives:


 	 e1 :: ϕ1 
, x1:T1 	 t1 :: ϕ2


 	 let x1:T1 = e1 in t1 :: ϕ1; ϕ2 ϕ1; ϕ2 ≤ ϕ′


 	 let x1:T1 = e1 in t1 :: ϕ′ 
, x2:T2 	 t2 :: ϕ3


 	 let x2:T2 = (let x1:T1 = e1 in t1) in t2 :: ϕ′; ϕ3 ϕ′; ϕ3 ≤ ϕ


 	 let x2:T2 = (let x1:T1 = e1 in t1) in t2 :: ϕ


 	 p〈let x2:T2 = (let x1:T1 = e1 in t1) in t2〉 :: p〈ϕ〉
Weakening the subgoal 
, x2:T2 	 t2 :: ϕ3 yields 
, x1:T1, x2:T2 	 t2 :: ϕ3. Therefore we can conclude by using two times

TE-Let plus one application of subsumption and TE-Thread:


 	 e1 :: ϕ1


, x1:T1 	 t1 :: ϕ2 
, x1:T1, x2:T2 	 t2 :: ϕ3


, x1:T1 	let x2:T2 = t1 in t2 :: ϕ2; ϕ3


 	let x1:T1 = e1 in (let x2:T2 = t1 in t2) :: ϕ1; (ϕ2; ϕ3) ϕ1; (ϕ2; ϕ3) ≤ ϕ

TE-Sub


 	let x1:T1 = e1 in (let x2:T2 = t1 in t2) :: ϕ


 	 p〈let x1:T1 = e1 in (let x2:T2 = t1 in t2)〉 :: p〈ϕ〉



346 K.I. Pun / Journal of Logic and Algebraic Programming 81 (2012) 331–354

using associativity ϕ1; (ϕ2; ϕ3) ≡ (ϕ1; ϕ2); ϕ3, SE-Seq , reflexivity, and transitivity to justify ϕ1; (ϕ2; ϕ3) ≤ ϕ which is

used in the subsumption step.

Case: R-If1: p〈let x:T = if true then e1 else e2 in t〉 p〈τ 〉−−→ p〈let x:T = e1 in t〉
Assuming 
 	 p〈let x:T = if true then e1 else e2 in t〉 :: p〈ϕ〉 and inverting rules TE-Thread, TE-Sub, TE-Let, and

TE-If gives:


 	 e1 :: ϕ1 
 	 e2 :: ϕ2


 	 if true then e1 else e2 :: ϕ1 + ϕ2 ϕ1 + ϕ2 ≤ ϕ′


 	 if true then e1 else e2 :: ϕ′ 
, x:T 	 t :: ϕ3


 	let x:T =if true then e1 else e2 in t :: ϕ′; ϕ3 ϕ′; ϕ3 ≤ ϕ


 	let x:T =if true then e1 else e2 in t :: ϕ


 	 p〈let x:T =if true then e1 else e2 in t〉 :: p〈ϕ〉
For the configuration after the step, we can derive:


 	 e1 :: ϕ1 
, x:T 	 t :: ϕ3
TE-Let


 	let x:T = e1 in t :: ϕ1; ϕ3 ϕ1; ϕ3 ≤ ϕ
TE-Sub


 	let x:T = e1 in t :: ϕ


 	 p〈let x:T = e1 in t〉 :: p〈ϕ〉
The subsumption step is justified by the following chain of (in-)equations

ϕ1; ϕ3 ≤ ϕ1; ϕ3 + ϕ2; ϕ3 ≡ (ϕ1 + ϕ2); ϕ3 ≤ ϕ ,

using SE-Choice1, EE-Distr (and reflexivity and transitivity). The case for R-If2 works symmetrically.

Case: R-App1: p〈let x:T = (fn x′:T ′.t′) v in t〉 p〈τ 〉−−→ p〈let x:T = t′[v/x′] in t〉
We are given 
 	 p〈let x:T = (fn x′:T ′.t′) v in t〉 :: p〈ϕ〉. Hence, inverting rules TE-Thread, TE-Sub, TE-Let, TE-App, and

TE-Abs1 gives:


, x′:T ′ 	 t′ : T :: ϕ1


 	 fn x′:T ′.t′ : T ′ ϕ1−→ T :: ε 
 	 v :: ε


 	 (fn x′:T ′.t′) v :: ϕ1 ϕ1 ≤ ϕ′


 	 (fn x′:T ′.t′) v :: ϕ′ 
, x:T 	 t : ϕ2


 	 let x:T = (fn x′:T ′.t′) v in t :: ϕ′; ϕ2 ϕ′; ϕ2 ≤ ϕ


 	 let x:T = (fn x′:T ′.t′) v in t :: ϕ


 	 p〈let x:T = (fn x′:T ′.t′) v in t〉 :: p〈ϕ〉
By the substitution from Lemma 3.12 on the left-most subgoal, we get 
 	 t′[v/x′] :: ϕ1 and hence we can derive:


 	 t′[v/x′] :: ϕ1 
, x:T 	 t :: ϕ2


 	let x:T = t′[v/x′] in t :: ϕ1; ϕ2 ϕ1; ϕ2 ≤ ϕ

TE-Sub


 	let x:T = t′[v/x′] in t :: ϕ


 	 p〈let x:T = t′[v/x′] in t〉 :: p〈ϕ〉
The inequation in the subsumption rule is justified from the premises ϕ1 ≤ ϕ′ and ϕ′; ϕ2 ≤ ϕ of the given derivation, using

SE-Seq , reflexivity, and transitivity:

ϕ1; ϕ2 ≤ ϕ′; ϕ2 ≤ ϕ

as required.

Case: R-App2: p〈let x:T = (fun f :T ′.x′:T1.t′) v in t〉 p〈τ 〉−−→ p〈let x:T = t′[v/x′][fun f :T ′.x′:T1.t′/f ] in t〉
We are given 
 	 p〈let x:T = (fun f :T ′.x′:T1.t′) v in t〉 :: p〈ϕ〉, so inverting rules TE-Thread, TE-Sub, TE-Let, TE-App,

and TE-Abs2 gives:
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, x′:T1, f :T ′ 	 t′ : T2 :: ϕ1 T ′ = T1
ϕ1−→ T2


 	 fun f :T ′.x′:T1.t′ : T1 ϕ1−→ T2 :: ε 
 	 v :: ε


 	 (fun f :T ′.x′:T1.t′) v :: ϕ1 ϕ1 ≤ ϕ′


 	 (fun f :T ′.x′:T1.t′) v :: ϕ′ 
, x:T 	 t :: ϕ2


 	 let x:T = (fun f :T ′.x′:T1.t′) v in t :: ϕ′;ϕ2 ϕ′;ϕ2 ≤ ϕ


 	 let x:T = (fun f :T ′.x′:T1.t′) v in t :: ϕ


 	 p〈let x:T = (fun f :T ′.x′:T1.t′) v in t〉 :: p〈ϕ〉
Using two times the substitution Lemma 3.12 on the left-most subgoal, we get 
 	 t′[v/x′][fun f :T ′.x′:T1.t′/f ] :: ϕ1 and

therefore by TE-Let, TE-Sub, and TE-Thread, we have


 	 t′[v/x′][fun f :T ′.x′:T1.t′/f ] :: ϕ1 
, x:T 	 t :: ϕ2

TE-Let


 	let x:T = t′[v/x′][fun f :T ′.x′:T1.t′/f ] in t :: ϕ1; ϕ2 ϕ1; ϕ2 ≤ ϕ

TE-Sub


 	let x:T = t′[v/x′][fun f :T ′.x′:T1.t′/f ] in t :: ϕ


 	 p〈let x:T = t′[v/x′][fun f :T ′.x′:T1.t′/f ] in t〉 :: p〈ϕ〉

The inequation in the subsumption step is justified by the premises ϕ1 ≤ ϕ′ and ϕ′; ϕ2 ≤ ϕ by

ϕ1; ϕ2 ≤ ϕ′; ϕ2 ≤ ϕ ,

using SE-Seq , reflexivity and transitivity. Thus, we conclude the case.

For part 2a, we are given σ 	 p〈t〉 p〈a〉−−→ σ ′ 	 p〈t′〉, where a is not a spawn label.

Case: R-NewL: σ1 	 p〈let x:T = newπ L in t〉 p〈νLπ 〉−−−→ σ ′
1 	 p〈let x:T = lπ in t〉

whereσ ′
1 = σ1[lπ 
→ free] for a fresh l. By assumption,
 	 p〈let x:T =newπ L in t〉 :: p〈ϕ〉. By inverting rules TE-Thread,

TE-Sub, and TE-Let, we get:


 	 newπ L :: νLπ νLπ ≤ ϕ1


 	 newπ L :: ϕ1 
, x:T 	 t :: ϕt


 	let x:T = newπ L in t :: ϕ1; ϕt ϕ1; ϕt ≤ ϕ


 	let x:T = newπ L in t :: ϕ

TE-Thread


 	 p〈let x:T = newπ L in t〉 :: p〈ϕ〉
Using rules TE-Let, subsumption, and TE-Thread again gives:


 	 lπ :: ε 
, x:T 	 t :: ϕt

TE-Let


 	let x:T = lπ in t :: ϕt

TE-Thread


 	 p〈let x:T = lπ in t〉 :: p〈ϕt〉

where ε; ϕt ≡ ϕt with rule EE-Unit. By the assumption that σ2(π) is undefined, we get by rule RE-NewL such that

σ2 	 p〈νLπ ; ϕt〉 p〈νLπ 〉−−−→ σ ′
2 	 p〈ϕt〉 , (8)

where σ ′
2 = σ2[π 
→ free]. This together with νLπ ; ϕt ≤ ϕ by SE-Seq and transitivity implies with Lemma 3.14, σ2 	

p〈ϕ〉 p〈νLπ 〉���⇒ σ ′
2 	 p〈ϕ′〉 where ϕt ≤ ϕ′. Thus, by subsumption, 
 	 p〈let x:T = lπ in t〉 :: p〈ϕ′〉, which concludes the

case.

Case: R-Lock: σ1 	 p〈let x:T = lπ . lock in t〉 p〈Lπ.lock〉−−−−−→ σ ′
1 	 p〈let x:T = lπ in t〉

where σ1(l
π ) = free or σ1(l

π ) = p(n), and σ ′
1 = σ1 + lp. Given that 
 	 p〈let x:T = lπ . lock in t〉 :: p〈ϕ〉, inverting

rules TE-Thread, TE-Sub, and TE-Let gives:
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 	 lπ . lock :: L{π}.lock L{π}.lock ≤ ϕ1


 	 lπ . lock :: ϕ1 
, x:T 	 t :: ϕt


 	let x:T = lπ . lock in t :: ϕ1; ϕt ϕ1; ϕt ≤ ϕ


 	let x:T = lπ . lock in t :: ϕ


 	 p〈let x:T = lπ . lock in t〉 :: p〈ϕ〉
For the configuration after the step: by applying TE-Let, subsumption, and TE-Thread, we get:


 	 lπ :: ε 
, x:T 	 t :: ϕt

TE-Let


 	let x:T = lπ in t :: ε; ϕt ε; ϕt ≤ ϕt


 	let x:T = lπ in t :: ϕt

TE-Thread


 	 p〈let x:T = lπ in t〉 :: p〈ϕt〉

where the inequation in the subsumption step is justified by reflexivity and EE-Unit. Since we are given that σ2(l
π ) = free

or σ2(l
π ) = p(n), by RE-Lock1, RE-Lock2 and RE-Seq , we have

σ2 	 p〈L{π}.lock; ϕt〉 p〈τ 〉−−→ σ2 	 p〈Lπ.lock; ϕt〉 p〈Lπ.lock〉−−−−−→ σ ′
2 	 p〈ϕt〉 (9)

with σ ′
2 = σ2 + πp. Also, L{π}. lock; ϕt ≤ ϕ by the premises and the help of SE-Seq and transitivity. These two together

implieswithpart 1 in Lemma3.14 thatσ2 	 p〈ϕ〉 p〈τ 〉−−→∗σ2 	 p〈ϕ′〉 for someϕ′ such thatLπ.lock; ϕt ≤ ϕ′. Then, bypart 3 in
Lemma3.14,wegetσ2 	 p〈ϕ′〉 p〈Lπ.lock〉−−−−−→ σ ′

2 	 p〈ϕ′′〉whereϕt ≤ ϕ′′. By subsumption,
 	 p〈let x:T = lπ in t〉 :: p〈ϕ′′〉,
as required.

The case for R-Unlock works analogously.

Part 2b of the lemma deals with spawn-steps.

Case: R-Spawn: σ1 	 p1〈let x:T =spawn t2 in t1〉 p1〈spawn ϕ2〉−−−−−−−→ σ1 	 p1〈let x:T = p2 in t1〉 ‖ p2〈t2〉
Given the well-typedness assumption 
 	 p1〈let x:T =spawn t2 in t1〉 :: p1〈ϕ〉, inverting rules TE-Thread, TE-Sub,

TE-Let, and TE-Spawn gives:


 	 t2 :: ϕ2


 	spawn t2 ::spawn ϕ2 spawn ϕ2 ≤ ϕ̃2


 	spawn t2 :: ϕ̃2 
, x:T 	 t1 :: ϕ1


 	let x:T =spawn t2 in t1 :: ϕ̃2; ϕ1 ϕ̃2; ϕ1 ≤ ϕ


 	let x:T =spawn t2 in t1 :: ϕ


 	 p1〈let x:T =spawn t2 in t1〉 :: p1〈ϕ〉
Using rules TE-Let, subsumption TE-Thread, and TE-Par, we get:


 	 p2 :: ε 
, x:T 	 t1 :: ϕ1

TE-Let


 	let x:T = p2 in t1 :: ε; ϕ1 ε; ϕ1 ≤ ϕ1

T-Sub


 	let x:T = p2 in t1 :: ϕ1


 	 p1〈let x:T = p2 in t1〉 :: p1〈ϕ1〉


 	 t2 :: ϕ2


 	 p2〈t2〉 :: p2〈ϕ2〉


 	 p1〈let x:T = p2 in t1〉 ‖ p2〈t2〉 :: p1〈ϕ1〉 ‖ p2〈ϕ2〉

We get by RE-Spawn that

σ2 	 p1〈spawn ϕ2; ϕ1〉 p1〈spawn ϕ2〉−−−−−−−→ σ ′
2 	 p1〈ϕ1〉 ‖ p2〈ϕ2〉. (10)

By SE-Seq and transitivity, we have spawn ϕ2; ϕ1 ≤ ϕ. This implies with Lemma 3.14 that σ2 	 p〈ϕ〉 p1〈spawn ϕ′
2〉�������⇒ σ ′

2 	
p1〈ϕ1〉 ‖ p2〈ϕ′

2〉 where ϕ2 ≤ ϕ′
2. Therefore,
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 	let x:T = p2 in t1 :: ϕ1


 	 p1〈let x:T = p2 in t1〉 :: p1〈ϕ1〉


 	 t2 :: ϕ2 ϕ2 ≤ ϕ′
2


 	 t2 :: ϕ′
2


 	 p2〈t2〉 :: p2〈ϕ′
2〉


 	 p1〈let x:T = p2 in t1〉 ‖ p2〈t2〉 :: p1〈ϕ1〉 ‖ p2〈ϕ′
2〉

which concludes the case.

For part 3, we are given waits(σ1 	 p〈t〉, p, lπ ), i.e., by Definition 2.1 it is not the case that σ1 	 p〈t〉 p〈Ll.lock〉−−−−−→ but

σ ′
1 	 p〈t〉 p〈Ll.lock〉−−−−−→ for some heap σ ′

1. This implies that the thread t is of the form let x:T = lπ . lock in t′ and we are

givenmore specifically that σ1 	 p〈let x:T = lπ . lock in t′〉 � p〈Ll.lock〉−−−−−→. Thewell-typedness assumption
 	 p〈let x:T =
lπ . lock in t′〉 :: p〈ϕ〉 gives:


 	 lπ . lock :: L{π}.lock L{π}.lock≤ ϕ1

TE-Sub


 	 lπ . lock :: ϕ1 
, x:T 	 t :: ϕ2


 	let x:T = lπ . lock in t :: ϕ1; ϕ2 ϕ1; ϕ2 ≤ ϕ

TE-Sub


 	let x:T = lπ . lock in t :: ϕ


 	 p〈let x:T = lπ . lock in t〉 :: p〈ϕ〉
Thenσ2 	 p〈L{π}.lock; ϕ2〉 is first reduced toσ2 	 p〈Lπ.lock; ϕ2〉 by rule RE-Lock1 with a τ -step. The execution continues

with RE-Lock2. Since σ1 ≡ σ2, we get σ2 	 p〈L{π}. lock; ϕ2〉 p〈τ 〉−−→ σ2 	 p〈Lπ. lock; ϕ2〉 � p〈Lπ.lock〉−−−−−→. In other words, the

lock π is taken in σ2 (as it is taken in σ1). As for any heap σ ′
2 where the lock π is free, σ ′

2 	 p〈Lπ.lock; ϕ2〉 p〈Lπ .lock〉−−−−−−→, we

have waits(σ2 	 p〈Lπ.lock; ϕ2〉, p, π).

The premises L{π}.lock≤ ϕ1 and ϕ1; ϕ2 ≤ ϕ entail L{π}.lock; ϕ2 ≤ ϕ. Hence by Lemma 3.14 (part 1), σ2 	 p〈ϕ〉 p〈τ 〉−−→
∗σ2 	 p〈ϕ′〉 where Lπ.lock; ϕ2 ≤ ϕ′. This together with waits(σ2 	 p〈Lπ.lock; ϕ2〉, p, π) implies with Lemma 3.14 (part

3) that waits(σ2 	 p〈ϕ′′〉, p, π) for some ϕ′′ where σ2 	 p〈ϕ′〉 p〈τ 〉−−→∗σ2 	 p〈ϕ′′〉, which concludes the case. �

Aneasyconsequence is thatwell-typedness relationbetweenaprogramand its effect is adeadlock-preserving simulation:

Corollary 3.16. Given σ1 ≡ σ2 and 
 	 p〈t〉 :: p〈ϕ〉, then σ1 	 p〈t〉 �D σ2 	 p〈ϕ〉.

4. Two finite abstractions

In this section, we describe finite abstractions on the effects so that we can effectively check for potential deadlocks on

the abstract level. The two sources of infinity we tackle are the unboundedness of the lock counters and the unboundedness

of the “control stack” of recursive behavior descriptions. The reason for the latter is that the syntax of the behaviors includes

sequential composition of behaviors, which allows to capture non-tail-recursive rec X.ϕ. In the next section, we collapse the

lock counters into afinite over-approximation, and in Section4.2,we showhowto transform thebehavior representation into

a tail-recursive one, necessarily losing again precision. For both abstractions, we prove that the abstracted system simulates

the concrete one, via the deadlock-sensitive relation �D, i.e., the abstractions are sound.

4.1. Lock counters abstraction

The unbounded lock counters are the first source of infinity. We over-approximate the behavior by collapsing (for a given

lock) all lock counts over a thresholdM intoone. That abstractionnaturally introducesnon-determinism. The lock-counters in

rulesRE-Lock2 andRE-Unlock2 increases resp. decreases by one.Weused the two functionsσ +πp andσ −πp for that.With

M as upper bound functions are then changed as follows. Letσ ′ = σ +πp. Now, ifσ(π) < M, thenσ ′ = σ [π 
→ σ(π)+1].
Ifσ(π) = M, thenσ ′ = σ . The corresponding decreasing operationσ −πp nowgeneralized to a relation, i.e.,σ −πp is given

as a set as follows: If σ(π) = M, then σ −πp = {σ, σ [π 
→ σ(π)−1]}. If σ(π) < M, then σ −π = {σ [π 
→ σ(π)−1]}.
To reflect the non-determinism, the premise σ ′ = σ − π of rule RE-Unlock2 needs to be generalized to σ ′ ∈ σ − π . The

value of M is from the range {1, . . . , ∞}, where ∞ means that the counter is unbounded. To be able to distinguish a free

lock from a lock which is taken, the lowest value for the upper boundM we consider is 1.

The next lemma expresses an easy fact about the ≡-relation, in particular that changing to an equivalent heap does not

change the fact whether a process is waiting on a lock or not.
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Lemma 4.1. Assume σ1 ≡ σ2 with θ = id .

1. If waits(σ1 	 �, p, π), then waits(σ2 	 �, p, π).

2. If σ1 	 �
p〈τ 〉−−→ σ1 	 �′, then σ2 	 �

p〈τ 〉−−→ σ2 	 �′.

Proof. Immediate. �

Lemma 4.2 (Lock counter abstraction). Given a configuration σ 	 �, and let further denote σ1 	n1 � and σ2 	n2 � the

corresponding configurations under the lock-counter abstraction. If n1 ≥ n2, then σ1 	n1 � �D σ2 	n2 � (where n1 and n2 are∈ {1, . . . , n, . . . , ∞}).
Proof. Weprovemore specifically thatσ1 	n+1 � �D σ1 	n �.Weomit thecasewheren1 = ∞,whichworksanalogously.

The result follows by transitivity and reflexivity.

Define the binary relation R between configurations as follows: σ1 	 �1 R σ2 	 �2 if �1 = �2 and σ1 = σ n+1 and

σ2 = σ n; in abuse of notation, we write σ1 R σ2 also for the heap-part of the definition. Note further that for the heap-part,

σ1 R σ2 implies σ1 ≡ σ2.

Obviously, the start configuration is in that relation.

Case: σ1 	n+1 �
p〈τ 〉−−→ σ1 	n+1 �′

By Lemma 4.1(2), σ2 	n �
p〈τ 〉−−→ σ2 	n �′. Case 3 of Definition 3.5 is covered by Lemma 4.1(1).

Case: If σ1 	n+1 �
p〈a〉−−→ σ ′

1 	n+1 �′
The only interesting cases are the ones for locking and unlocking. In the following we elide mentioning p from the operation

σ + πp.

Subcase: Lπ.lock
In this case σ ′

1 = σ1+π , i.e., σ ′
1(π) = σ ′

1(π)+n+1 1 (where+n+1 is additionmodulo the upper bound n+1). For σ2 	n �,

we have that σ2 	n �
p〈Lπ.lock〉−−−−−→ σ ′

2 	n �′, where σ ′
2(π) = σ2(π) +n 1. Thus σ ′

1 R σ ′
2. Part 3 of Definition 3.5 follows

straightforwardly from the definition of R, in particular since R implies ≡.

Subcase: Lπ.unlock
It is straightforward to check analogously that R satisfies the conditions for a simulation relation also for unlocking. For an

unlocking step, we can distinguish two cases for the post-configurations of σ1 	n+1 �. If σ1(π) < n + 1, then the step is

deterministic, i.e., σ ′
1 ∈ {σ1[π 
→ σ1(π) − 1]}. In this case, there exists a transition σ2 	n �

p〈Lπ.unlock〉−−−−−−−→ σ ′
2 	n �′ where

σ ′
2(π) = σ2(π) − 1, and hence σ ′

1 R σ ′
2. Otherwise, if σ1(π) = n + 1, then σ ′

1 ∈ {σ1, σ1[π 
→ σ1(π) − 1]}. For this case,
we choose σ ′

2 = σ2, thus σ ′
1 R σ ′

2. Note that condition 3 of Definition 3.5 is trivially satisfied as unlocking does not wait for

a lock. �

4.2. Tail-recursive behavior representation

A second source of infinity in the state space is recursion: the behavior contains non-tail-recursive descriptions. We deal

with it in the same way as we did for the lock-counters: we allow a certain recursion depth—the choice of cut-off does not

matter—after which the behavior is over-approximated. Just as with the variable upper limit on the lock count, we use a

similar adjustable limit for the stack depth. Once the recursion limit is reached, the behavior becomes chaotic, i.e., it over-

approximates all behavior. In the following, we make use of the fact that our deadlock analysis is limited to programs that

do not recursively create new resources. For instance, in the definition of the chaotic behavior, we exclude lock creation and

thread creation labels. So � randomly takes and releases locks, does internals steps, or terminates at arbitrary points. Note

that � is tail-recursive.

Definition 4.3 (Chaotic behavior �). Given a set of locations r, we define

�(r) = rec X.ε + X + Lr.lock; X + Lr.unlock; X .

We write �, if r is clear from the context.

Lemma 4.4 (� is maximal wrt. �DT). Assume ϕ over a set of locations r, then σ 	 p〈ϕ〉 �DT σ 	 p〈�〉.
Proof. We define a simulation relation R between σ 	 p〈ϕ〉 and σ 	 p〈�〉 as follows. The states of � are shown schemat-

ically in Fig. 4. The initial one corresponds to the term �. The outgoing τ transition from the initial state comes from the

unrolling of the recursion and the four τ ∗-transitions originating from the unrolling are caused by resolving the choice (cf.

rule RE-Choice). And the states s1 and s2 correspond to the expressions Lr. lock; � and Lr. unlock; �. The labels li and uj
in the picture correspond to lock-manipulating labels p〈Lπi.lock〉 and p〈Lπj.unlock〉. Note that it may take more than one
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Fig. 4. Chaotic process �.

τ step to go from, for example, � to s1. This is due to the fact that resolving a choice costs a τ step and that we consider

behavior up-to ≡. 2

The simulation relation R then couples � and processes p〈ϕ〉 in an obvious manner. A ϕ of the form ε is related to ε of �,

if ϕ = Lr.lock; ϕ′, then ϕ R s1, analogously for unlocking. If ϕ = Lπi.lock; ϕ′, then ϕ is related to the corresponding state

of � in front of the lock-taking step. In all other cases, ϕ is related via R to the initial state �. It is straightforward to see that

R is indeed a deadlock and termination sensitive simulation between p〈ϕ〉 and �. �

We define the depth-k-unrolling of an effect, where we substitute the recursive invocation by � at recursion depth k.

Definition 4.5 (Unrolling). Given an effect ϕ = rec X.ϕ′ with locations r, we define the depth-k-unrolling ϕk inductively as

follows:

ϕ0 = �(r)

ϕn+1 = ϕ′[ϕn/X] .

The definition allows unrolling of a recursive behavior; we use it also to unroll a recursion inside a behavior expression.

We write ϕ1[ϕn
2] for unrolling ϕ2 inside the “context” ϕ1. For simplicity we will assume that the position(s) [] where we do

that replacement in ϕ2[] do not occur inside a further recursion in the context. When later abstracting recursive behavior

by unrolling, we can treat the recursions proceeding from the outer recursion to the inner ones.

Note further that unrolling to � is quite coarse and can easily be refined. A straightforward improvement in terms of

precision while preserving soundness would be to split the set of locks into two sets, one for those that are used in locking

effects, and one for those that are used in unlocking. These two sets can easily be derived from the effect being unrolled.

Lemma 4.6 (Behavior abstraction). Given a configuration σ 	 �. Let �m denote the m-unrolling of a specific occurrence of a

recursion rec X.ϕ in � not occurring inside another recursion. If m1 ≥ m2, then σ 	 �m1 �DT σ 	 �m2 . The lemma holds

identical for configurations based on the lock counter abstraction of Section 4.1.

Proof. We prove specifically that σ 	 �m+1 �DT σ 	 �m (where m is a natural number ≥ 0), and the result follows

by transitivity and reflexivity. The case where m1 = ∞ works similarly. So, � is of the form �[ϕ] = �[rec X. ϕ′], where

ϕ = rec X. ϕ′ is the occurrence of the recursion being unrolled. By definition of unrolling it means that �m = �[ϕm] and
analogously �m+1 = �[ϕm+1]. That further means for the form of �m resp. of �m+1

�m = [�] and �m+1 = [ϕ′[�/X]] (11)

for some []. So the result follows by maximality of � from Lemma 4.4, and using the context Lemma 3.8 and Lemma

3.7 (for parallel composition). It is immediate to see that the required Lemmas 4.4, 3.8, and 3.7 work identically under the

assumption that some lock counters are abstracted. �

Wehave shown already in the first part of the paper that the effect derived from type-checking preserves deadlocks. Next,

we state the final theoremwith regard to our contribution. It shows that we can conclude from the absence of a deadlock in

effect checking with regard to lock-counter abstraction and behavior abstraction that the program is deadlock-free:

Theorem 4.7 (Soundness of the abstraction). Given 
 	 P : ok :: � and two heaps σ1 ≡ σ2. Further, σ
′
2 	 �′ is obtained by

lock-counter resp. behavior abstraction of σ2 	 �. Then if σ ′
2 	 �′ is deadlock free then so is σ1 	 P.

2 The τ+ is slightly imprecise, the maximal number of τ is determined by the number of summands in �, i.e. ultimately, the number of locks in r. Important,

however, is that all transitions originating from � start with one silent step, i.e., the choice is internal.
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Proof. By Corollary 3.16, Lemmas 4.2 and 4.6, and with the help of transitivity of �D. �

Theorem 4.8 (Finite abstractions). The lock counter abstraction and behavior abstraction (when abstracting all locks and

recursions) results in a finite state space.

Proof. Under our restrictions—no lock and thread creations within recursions—the contribution of the heap to the state

space is finite (due to lock counter abstraction). Further, the behavior abstraction renders the behavior � of the program

into a bounded number of tail-recursive processes. Both together result in a finite reachable state space. �

5. Conclusion

We have presented a type and effect system that derives abstract behaviors from a core functional language with lock-

based concurrency. Such an abstract behavior can be executed, and the resulting state space checked for deadlocks. The

potentially infinite state space is abstracted in two ways: we place a user-definable upper bound on the lock-counters,

and a similar limit on the recursion depth for non-tail-recursive function calls; beyond that chosen limit, the behavior is

over-approximated by arbitrary, chaotic behavior where wemust make sure that the over-approximation does not miss any

deadlocks. This abstraction yields a finite state space that can be exhaustively checked for deadlocks.

We show soundness of the abstractions with regard to a deadlock- and termination-sensitive simulation of the original

program, i.e., a program is deadlock free, if the abstraction is deadlock free. Using an over-approximation, the converse does

not hold: a deadlock in the abstraction not necessarily represents a deadlock in the concrete program.

Being based on abstraction and state exploration, a reported deadlock on the abstract level can be mapped back to the

original program by looking at the path labeled with the concurrent actions from the initial state to the deadlocked state.

Thismay provide the userwith intuition aboutwhether he should refine the parameters for the abstraction. For example, the

model could be easily augmented to indicate whether the lock-statement involved in a deadlock is the result of introducing

an �. A natural extension of our work would thus be to counter-example guided abstraction refinement (CEGAR) [10,30].

Another straightforward increase in precision can be obtained through type inference: currently, explicit typing means

that function declarations in our system need to be declared with the most general type. In the case of a parameter of a

lock-type, this means that the corresponding region on the argument has to be declared as the union of the regions at the

call-sites, leading to a loss of precision. As usual, with type inference and polymorphism, each invocation could be checked

separately in the context of its caller. Obviously, effect inference would be welcome from a practical point of view that the

effects could be automatically inferred.

For a practical application, not every program will fit our restriction of no recursive resource creation (threads/locks).

Especially for programming languages that facilitate light-weight/“disposable” thread creation, such as Erlang or Concurrent

Haskell, our analysis would be of limited use. In such cases, we may still be able to use our analysis to partition the problem

into a part that can be statically tackled with our approach, and subject the remainder to a dynamic monitoring regime that

will report locking-violations or warnings (see e.g. [37] below).

Weplan to investigate how further static analysis techniques canhelp to eliminate doubts in such amore dynamic setting:

if from our effect systemwe can tell that dynamically generated threads never share more than one lock, then we should be

easily able to extend the range of acceptable input to our analysis.

5.1. Related work

Deadlocks are a commonproblem in concurrent programming. Cyclicwaiting has been identified early as one of four nec-

essary conditions for a deadlock [9]. To tackle the problem of deadlocks, one traditionally distinguishes different approaches

[15]: deadlock prevention, avoidance, detection, and recovery. A static type system like the one presented here would classify

as deadlock prevention; avoidance, in contrast, refers to techniques that “dodge” looming deadlocks at run-time.

As said, a necessary condition for a deadlock to occur is the cyclic wait on (non-preemptive) resources, such as locks

as in our case, but also waiting for channel communication (“communication deadlock”) and other resources may lead to

deadlock. Therefore the most common way to prevent deadlocks is to statically make sure that such cycles on locks or

resources in general can never occur. This can be done by arranging (classes of) locks in some partial order and enforcing

that the locks are taken in accordance with that order. That old and straightforward idea has, for instance, be formalized

in a type-theoretic setting in the form of deadlock types [7]. The static system presented in [7] supports also type inference

(and besides deadlocks, prevents race conditions, as well). Deadlock types are also used in [2], but not for static deadlock

prevention, but for improving the efficiency for deadlock avoidance at run-time.

Static analyses and type systems to prevent especially communication deadlocks have been studied for various process

algebras, in particular for the π-calculus, where the dynamically changing communication structure makes preventing

deadlock situations challenging [26–29]. Also for dynamically changing communication structures, Fähndrich et al. [20]

presents a type-based analysis for the prevention of deadlocks in a setting based on channel communication and message

passing. The cause of deadlocks in the setting there is different, deadlocks are not caused by the attempt to acquire locks, but

by communication over channels whichmay introducewait cycles. One challenge there is that the communication topology



K.I. Pun / Journal of Logic and Algebraic Programming 81 (2012) 331–354 353

may change dynamically. Igarashi and Kobayashi [23] propose a general framework for type system in the context of the π-

calculus, which can be used to check deadlocks, live-locks, or race-freedom. Session types, a type-based abstract behavioral

description of concrete behavior, typically for channel-based communication, have also been used for deadlock detection

[6]. For a (non-concurrent) λ-calculus, Bartoletti et al. [4] develop a behavioral type and effect system to capture the creation

and usage of resource, but in absence of concurrency, not in particular lock creation and handling. Model checking [11],

i.e., the automatic state exploration (of a model) of a program has been used, as well, for deadlock detection. Corbett [13]

presents an empirical study comparing different model checkers and model checking techniques for detecting deadlocks

(for Ada programs). To defuse the danger of cyclic wait, the above approaches rely on enforcing an order on locks/resources,

respectively inferring that such an order exists. Ordering (classes of) locks is not the only way to break (potential) cycles.

For the process algebra CSP, Roscoe and Dathi [36] propose to come up with a well-founded order attached to the states of

the interacting processes in such a way, that if a process is waiting for another process, the value of the state of the waiting

process is larger than the state of the process it waits for. The approach is a generalization (to networks of processes) of the

“variant” proof method for establishing termination for loops.

Another notorious kind of error in shared variable concurrent programming are race conditions, i.e., the unprotected,

simultaneous access to a shared resource. Whereas a deadlock may occur when communicating partners disagree on the

order of lock-taking when simultaneously accessing more than one shared lock, a race results when the partners fail to take

a lock before competing for a shared resource, or rather that the critical resource fails to be protected properly by a lock or

other synchronization mechanism. The concurrency errors of deadlocks and of race conditions can be seen as related also

in the following way: One may consider parts of the programs where lock interaction with conflicting orders may occur as

“critical regions” where a potential “race” may occur. In the same way that, in a lock-based setting, races can be prevented

by protecting the shared data, one can add additional locks (“gate locks”) to protect pairs or sets of locks from potential

deadlocks. Checking for potential race conditions has beenwidely studied, for instance using ownership types [5], fractional

permissions and linear programming [38]. For static techniques assuring race freedom, it mostly amounts to check or infer

that “enough” locks are held by a thread or process before accessing shared data. Such lock sets are used, e.g., in [18,19,21,33].

The type systems of [17,18], using singleton “lock types” as a restricted form of dependent types offer, in an extension, also

protection against deadlocks. Often, the analyses are made more precise by combining them with alias analysis, or taking

“ownership” concepts into account.

In our approach, we avoid the infinite state space caused by recursion, by approximating it by a tail-recursive approxi-

mation. Other approaches use language- or automata-theoretic decidability results to keep the stack-structure but achieve

a finite-state representation nonetheless. For instance, de Boer and Grabe [14] uses a specific class for push-down automata

closed under products and for which reachability is decidable for deadlock checking for call-graph abstractions for multi-

threaded Java programs. Kahlon et al. [25] gives a precise analysis for nested locking of binary locks for push-down systems,

without dynamic lock- or thread creation.

Engler and Ashcraft [16] uses an unsound and incomplete static analysis of C programs to extract lock dependency

constraints. They analyze the dependencies for circularwaiting, and focus on reducing false positives. The tool has discovered

numerous bugs in operating systems source code.

Ourwork puts an upper bound on the number of threads and the number of locks, as we disallow to spawn new activities

resp. create new locks inside recursions. In contrast to our approach, Blieberger et al. [3] use symbolic evaluation to allow an

unbounded number of task for deadlock detection for Ada programs by assigning symbolic task identifiers to each task at

creation, though it is unclear that how dynamic shared resources are handled.

Stolz [37] in the context of run-time verification (or checking) observes lock chains in a (concrete) execution trace by

means of a parametrized LTL formula and issues awarning if different lock-orders are observedwhichmay potentially lead to

a deadlock. Placeholders for e.g. thread and lock identifiers are bound by propositions for locking and unlocking. Christiansen

and Huch [12] speculatively execute Concurrent Haskell programs in the search for deadlocks, where all interleavings of

concurrent threads are evaluated until the execution would have to commit to an I/O action with the environment (user). As

their analysis takes concrete values into accounts, their analysis provides precise results for a particular run (input values),

and only creates a bounded number of resources if the original program creates a bounded number of resources.
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