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In this paper we consider coupled systems of p-Laplacian differential inclusions and we
prove, under suitable conditions, that a homogenization process occurs when diffusion
parameters become arbitrarily large. In fact we obtain that the attractors are continuous
at infinity on L2(Ω) × L2(Ω) topology, with respect to the diffusion coefficients, and the
limit set is the attractor of an ordinary differential problem.
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1. Introduction

In this work we consider the following problem

(I)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uD1

∂t
− D1�puD1 + ∣∣uD1

∣∣p−2
uD1 ∈ F

(
uD1 , v D2

)
in (0, T ) × Ω,

∂v D2

∂t
− D2�q v D2 + ∣∣v D2

∣∣q−2
v D2 ∈ G

(
uD1 , v D2

)
in (0, T ) × Ω,

∂uD1

∂n
(t, x) = ∂v D2

∂n
(t, x) = 0 in (0, T ) × ∂Ω,

uD1(0, x) = uD1
0 (x), v D2(0, x) = v D2

0 (x) in Ω,

where D1, D2 � 1 are positive constants, p,q > 2, Ω is a bounded domain in R
n , n � 1, with smooth boundary ∂Ω , u0,

v0 ∈ H = L2(Ω) and F , G are bounded, positively sublinear and upper semicontinuous multivalued operators. The pair (F , G)

of operators F , G : H × H → P (H), which maps bounded subsets of H × H into bounded subsets of H , is called positively
sublinear if there exist a > 0, b > 0, c > 0 and m0 > 0 such that for each (u, v) ∈ H × H with ‖u‖ > m0 or ‖v‖ > m0 for
which either there exists f0 ∈ F (u, v) satisfying 〈u, f0〉 > 0 or there exists g0 ∈ G(u, v) with 〈v, g0〉 > 0, we have both

‖ f ‖ � a‖u‖ + b‖v‖ + c

and

‖g‖ � a‖u‖ + b‖v‖ + c

for each f ∈ F (u, v) and each g ∈ G(u, v).
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For each couple (D1, D2), we can associate with (I) a generalized semiflow, G(D1, D2), which has a compact invariant
global B-attractor A(D1,D2) , according to Section 2.3 in [29]. Our final objective is to prove that the family of attractors
{A(D1,D2)}D1,D2�1 behaves continuously as min{D1, D2} goes to infinity.

About twenty years ago there were several authors dealing with large diffusion semilinear problems, among them we
mention [8,10,12,18–20], where is evidenced almost no spatial dependence in the asymptotic behavior. In [12], the precursor
work proving this homogenization process, the principal theorem says that solutions of a certain reaction–diffusion system
exponentially approach their own spatial average as diffusion and time both become arbitrarily large, and this is obtained
as a consequence of the intrinsic linear structure of the considered problem. It is expected that huge diffusion must implies
a quick homogenization of the concentrations and, in Laplacian problems, this is mathematically justified from the fact
that, as the diffusion coefficients become large, there is a gap between the zero eigenvalue of the Neumann Laplacian
and its first positive eigenvalue, which ensures that the space of constant functions is an exponentially attracting invariant
manifold.

Problems involving the degenerate p-Laplacian operator in general presents similar phenomena than the correspondent
Laplacian systems but, in spite of we can frequently enunciate almost the same theorems, their proves are rarely obtained
by the same methods. The first work considering large diffusion for p-Laplacian problems is [30], where it is proved that
there exists a positive time from which the spatial gradients of solutions go to zero as the diffusion goes to infinity and, as a
simple consequence of the Poincaré–Wirtinger inequality, all the relevant elements to describe the asymptotic behavior are
around their own spatial average if the diffusion is large enough. It is also proved that the attractors continuously approach
the attractor of an ordinary equation. The main difference between this work and [30] is that here we consider a coupled
system admitting non-globally Lipschitz perturbations of the p-Laplacian and, because of it, we have to consider multivalued
systems.

The lack of the uniqueness was, as it is known, one of the most important delay factor in the understanding of the
asymptotic properties of quasilinear problems. Today however, we have a very well-structured theory for multivalued dy-
namical systems which allow us to properly deal with problems admitting more than a unique solution for each initial date.
Several authors have been dealing with multivalued problems and some efforts in this direction appeared more than fifty
years ago [2,5–7,25–27,31]. The study of the global attractors for such kind of problems started only in the nineties and,
in the beginning, most of works were concerned about conditions to obtain the existence of attractors [1,9,21,23,24] and it
was still necessary to organize and complete the theory. As an example, to accomplish the results in this present work it
was needed to know that attractors can be characterized as the union of all bounded complet orbits, and this simple fact
can only be found in very recent texts [22,28].

For applied models with the p-Laplacian operator the reader can see, for example, [13–15] and references therein.
In [13], a p-Laplacian differential inclusion is regarded as a climatological model and the authors deal with the sensitivity
of the problem in long time with respect to small changes in the solar constant. In [14], the degenerate p-Laplacian appears
in a climate model. The condition on F to be a bounded an upper semicontinuous multivalued operator also appears there
(see (H5), p. 2067 in [14]). In [15], the one-dimensional p-Laplacian appears in a degenerate parabolic/hyperbolic system in
glaciology.

Taken into account the work [30] we can say that a good candidate for the limit problem when diffusion coefficients in
(I) go to infinity is

(II)

⎧⎪⎨⎪⎩
u̇ + φp(u) ∈ F̃ (u, v),

v̇ + φq(v) ∈ G̃(u, v),

u(0) = u0, v(0) = v0,

where φp(s)
.= |s|p−2s, F̃

.= F |R×R , G̃
.= G|R×R : R × R → P (R).

In the next sections we are going to obtain the uniform estimates, the continuity of the flow and the necessary com-
pactness to prove the upper semicontinuity of the attractors. Once the limit system is given by an ordinary problem whose
solutions are also solutions of (I), we also obtain the lower semicontinuity of the family of the global attractors in a trivial
way since, in this case, the attractor A∞ of the limit problem (II) is contained in each attractor A(D1,D2) associated to
the (I).

2. Uniform estimates

In this section we obtain some estimates for the solutions (uD1 , v D2 ) of the problem (I), uniformly on D1, D2 � 1.

Lemma 2.1. If (uD1 , v D2 ) is a solution of (I), then there are positive constants r0 , t0 such that ‖(uD1 (t), v D2 (t))‖H×H = ‖uD1 (t)‖H +
‖v D2 (t)‖H � r0 , for each t � t0 and D1, D2 � 1.

Proof. Let (uD1 , v D2 ) be a solution of the problem (I). Then, there are f , g ∈ L1(0, T ; H), with

f (t) ∈ F
(
uD1(t), v D2(t)

)
, g(t) ∈ G

(
uD1(t), v D2(t)

)
a.e. in (0, T ),
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and such that (uD1 , v D2 ) is a solution of the system:

(̃I)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂uD1

∂t
− D1�puD1 + ∣∣uD1

∣∣p−2
uD1 = f in (0, T ),

∂v D2

∂t
− D2�q v D2 + ∣∣v D2

∣∣q−2
v D2 = g in (0, T ),

uD1(0) = uD1
0 , v D2(0) = v D2

0 .

Doing the inner product of the first equation of (̃I) with uD1 (t) and the second equation of (̃I) with v D2 (t), with the
same arguments used in Theorem 2.8 in [29] we obtain

1

2

d

dt

(∥∥uD1(t)
∥∥2

H + ∥∥v D2(t)
∥∥2

H

)
� −1

2(Cq)q

(∥∥uD1(t)
∥∥2q/2

H + ∥∥v D2(t)
∥∥2q/2

H

) + C1

� −1

21+q/2(Cq)q

(∥∥uD1(t)
∥∥2

H + ∥∥v D2(t)
∥∥2

H

)q/2 + C1

where Cq > 0 is the immersion constant of W 1,q(Ω) in H and C1 = C1(p,q,Ω) > 0 is a constant which does not depend of
(D1, D2). Thus, using Lemma 5.1 in [32], there exist positive constants r0, t0 such that ‖(uD1 (t), v D2 (t))‖H×H = ‖uD1(t)‖H +
‖v D2 (t)‖H � r0, for each t � t0 and D1, D2 � 1. �
Remark 2.1. The constants r0, t0 in Lemma 2.1 are independent from the initial values and from the couples (D1, D2).

Remark 2.2. For each fixed couple (D1, D2), as an easy consequence of Gronwall–Bellman inequality, there is a positive
constant K such that ‖uD1 (t)‖H + ‖v D2 (t)‖H � K , ∀t ∈ [0, t0], where K = K (uD1

0 , v D2
0 , t0). Furthermore, if the initial values

are in a bounded subset of H × H , then we have K uniform on (D1, D2) and, in this case we can consider t0 = 0 in
Lemma 2.1.

Lemma 2.2. There is a bounded set B0 in H × H such that A(D1,D2) ⊂ B0 , ∀D1, D2 � 1.

Proof. Let (xD1 , yD2) ∈ A(D1,D2) . Since A(D1,D2) = T(D1,D2)(t0)A(D1,D2) , where T(D1,D2) is the multivalued semigroup defined
by G(D1, D2), then by Lemma 2.1, ‖(xD1 , yD2)‖H×H � r0. �

Now, using Lemma 2.1 and the fact that F and G maps bounded sets of H × H in bounded sets of H , we can repeat the
same arguments in the proof of Lemma 2.2 in [17] for each equation in (̃I) and we obtain:

Lemma 2.3. If (uD1 , v D2 ) is a solution of (I), then there exist positive constants r1 > 0 and t1 > t0 such that∥∥(
uD1(t), v D2(t)

)∥∥
W 1,p×W 1,q = ∥∥uD1(t)

∥∥
W 1,p + ∥∥v D2(t)

∥∥
W 1,q � r1,

for each t � t1 and D1, D2 � 1, where t0 is the same as in Lemma 2.1.

As a consequence of Lemma 2.3 we have that
⋃

D1,D2�1 A(D1,D2) is a bounded subset of W 1,p(Ω)× W 1,q(Ω) and so we
can conclude the following:

Lemma 2.4. A .= ⋃
D1,D2�1 A(D1,D2) is a compact subset of H × H.

3. The limit problem and convergence properties

In order to obtain the limit problem we firstly prove

Lemma 3.1. If (uD1 , v D2 ) is a solution of (I), then for each t > t1 , the sequences of real numbers {‖∇uD1 (t)‖H }D1�1 and
{‖∇v D2 (t)‖H }D2�1 possess subsequences, {‖∇uD1� (t)‖H } and {‖∇v D2� (t)‖H } respectively, converging to zero as � → +∞. Here
t1 is the positive constant in Lemma 2.3.

Proof. Let T > 0, t ∈ (t1, T ), and (uD1 , v D2 ) be a solution of problem (I). There are f , g ∈ L1(0, T ; H), with

f (τ ) ∈ F
(
uD1(τ ), v D2(τ )

)
, g(τ ) ∈ G

(
uD1(τ ), v D2(τ )

)
a.e. in (0, T ),

and such that (uD1 , v D2 ) is a solution of the system:
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(̃̃I)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂uD1

∂t
− D1�puD1 + ∣∣uD1

∣∣p−2
uD1 = f in (0, T ),

∂v D2

∂t
− D2�q v D2 + ∣∣v D2

∣∣q−2
v D2 = g in (0, T ),

uD1(0) = uD1
0 , v D2(0) = v D2

0 .

Doing the inner product of the first equation of (̃̃I) with uD1 (τ ), it comes that

1

2

d

dt

∥∥uD1(τ )
∥∥2

H + D1
∥∥∇uD1(τ )

∥∥p
p + ∥∥uD1(τ )

∥∥p
p = 〈

f (τ ), uD1(τ )
〉
. (3.1)

Analogously, we have that

1

2

d

dt

∥∥v D2(τ )
∥∥2

H + D2
∥∥∇v D2(τ )

∥∥q
q + ∥∥v D2(τ )

∥∥q
q = 〈

g(τ ), v D2(τ )
〉
. (3.2)

We consider θ
.= q/2, s

.= q/q′ where 1
q + 1

q′ = 1. Using the positive sublinearity of the couple (F , G) and the Young’s
inequality we prove that

〈
f (τ ), uD1(τ )

〉
�

(
2

q
+ 2

q

)∥∥uD1(τ )
∥∥q

H + 1

s′

(
1

q′ bq′
)s′

+ 1

s

∥∥v D2(τ )
∥∥q

H +
(

1

θ ′ aθ ′ + 1

q′ cq′
)

+ C1m0

and

〈
g(τ ), v D2(τ )

〉
�

(
2

q
+ 2

q

)∥∥v D2(τ )
∥∥q

H + 1

s′

(
1

q′ aq′
)s′

+ 1

s

∥∥uD1(τ )
∥∥q

H +
(

1

θ ′ aθ ′ + 1

q′ cq′
)

+ C1m0,

where C1 > 0 is a constant which does not depend on (D1, D2), and a,b, c and m0 are the constants that appear in the
definition of positive sublinearity of the couple (F , G) (see [29]).

Then, adding Eqs. (3.1) and (3.2), we obtain

1

2

d

dt

(∥∥uD1(τ )
∥∥2

H + ∥∥v D2(τ )
∥∥2

H

) + D1
∥∥∇uD1(τ )

∥∥p
p + D2

∥∥∇v D2(τ ) + ∥∥uD1(τ )
∥∥p

p + ∥∥v D2(τ )
∥∥q

q

∥∥q
q

= 〈
f (τ ), uD1(τ )

〉 + 〈
g(τ ), v D2(τ )

〉
�

(
2

q
+ 2

q
+ 1

s

)(∥∥uD1(τ )
∥∥q

H + ∥∥v D2(τ )
∥∥q

H

) + C2,

where C2 > 0 is a constant which does not depend on (D1, D2). Using Lemma 2.1, there exists a constant C3 > 0 such that

1

2

d

dt

(∥∥uD1(τ )
∥∥2

H + ∥∥v D2(τ )
∥∥2

H

) + D1
∥∥∇uD1(τ )

∥∥p
p + D2

∥∥∇v D2(τ )
∥∥q

q

+ ∥∥uD1(τ )
∥∥p

p + ∥∥v D2(τ )
∥∥q

q � C3, a.e. in (t1, T ).

As ‖uD1 (τ )‖p
p + ‖v D2 (τ )‖q

q � 0, we have in particular that

1

2

d

dt

(∥∥uD1(τ )
∥∥2

H + ∥∥v D2(τ )
∥∥2

H

) + D1
∥∥∇uD1(τ )

∥∥p
p + D2

∥∥∇v D2(τ )
∥∥q

q � C3, (3.3)

a.e. in (t1, T ).
Integrating the inequality (3.3) from t1 to T , we obtain

1

2

(∥∥uD1(T )
∥∥2

H + ∥∥v D2(T )
∥∥2

H

) + D1

T∫
t1

∥∥∇uD1(τ )
∥∥p

p dτ + D2

T∫
t1

∥∥∇v D2(τ )
∥∥q

q dτ

�
T∫

t1

C3 dτ + 1

2

(∥∥uD1(t1)
∥∥2

H + ∥∥v D2(t1)
∥∥2

H

)
� C3T + r2

0
.= k(T ).

In particular
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D1

T∫
t1

∥∥∇uD1(τ )
∥∥p

p dτ + D2

T∫
t1

∥∥∇v D2(τ )
∥∥q

q dτ � k(T ),

which implies

T∫
t1

∥∥∇uD1(τ )
∥∥p

p dτ � 1

D1
k(T ) → 0 as D1 → +∞,

that means,

∥∥∥∥∇uD1(τ )
∥∥p

p

∥∥
L1(t1,T ;R)

=
T∫

t1

∥∥∇uD1(τ )
∥∥p

p dτ → 0 as D1 → +∞.

Therefore there exists a subsequence {‖∇uD1� (τ )‖p
p} such that∥∥∇uD1� (τ )

∥∥p
p → 0 as � → +∞, τ -a.e. in (t1, T ),

and so there exists a subset J ⊂ (t1, T ) with Lebesgue measure m((t1, T )/ J ) = 0 such that∥∥∇uD1� (τ )
∥∥p

p → 0 as � → +∞, ∀τ ∈ J .

Given t ∈ (t1, T ) we claim that there is at least one s ∈ J with s < t , on the contrary we would have (t1, t) ∩ J = ∅, so
m((t1, T )/ J ) > 0 which is a contradiction. Now pick one s ∈ J with t1 < s < t and let h = t − s. Let ε > 0 and �0 = �0(ε) > 0
be such that if � > �0 then∥∥∇uD1� (s)

∥∥p
p <

ε

2
.

Now, we consider

ϕD1� (v)
.=

{
1
p [D1�

∫
Ω

|∇v|p dx + ∫
Ω

|v|p dx], v ∈ W 1,p(Ω),

+∞, otherwise.

We have that ϕD1� is a convex, proper and l.s.c. map, AD1� = ∂ϕD1� is maximal monotone in L2(Ω) and uD1� satisfies the
equation

∂uD1�

∂t
+ AD1�

(
uD1�

) = f

in (0, T ) with f (τ ) ∈ F (uD1� (τ ), v D2� (τ )), a.e. in (0, T ), therefore uD1� (τ ) ∈ D(AD1� ) ⊆ W 1,p(Ω) a.e. in (0, T ).
Using Lemma 2.1 and the hypothesis on F and G it follows that there exists a positive constant K , independent of

(D1, D2), such that ‖ f (ζ )‖2
H � K , ∀ζ � t0.

We have that

d

dτ
ϕD1�

(
uD1� (s + τ )

) = 〈
∂ϕD1�

(
uD1� (s + τ )

)
, uD1�

τ (s + τ )
〉
, a.e. in (0, T ).

Now, repeating the same arguments used in the proof of Lemma 3.1 in [30] we obtain∥∥∇uD1� (t)
∥∥

H → 0 as � → +∞.

Analogously we conclude that∥∥∇v D2� (t)
∥∥

H → 0 as � → +∞. �
Remark 3.1. If (uD1 , v D2 ) is a solution of the problem (I) in (0, t1), then for each t ∈ [0, t1], the sequences of real
numbers {‖∇uD1 (t)‖p

p}D1�1 and {‖∇v D2 (t)‖p
p}D2�1 remain limited as D1, D2 → +∞ if the initial values are in a

bounded subset of W 1,p(Ω) × W 1,q(Ω). If, for all D1, D2 � 1, the initial data are equal to a same constant, that is, if
(uD1 (0), v D2 (0)) = (u0, v0) ∈ R × R, ∀D1, D2 � 1, then for each t ∈ [0, t1], the sequences of real numbers {‖∇uD1 (t)‖p

p}D1�1

and {‖∇v D2 (t)‖p
p}D2�1 converge to zero as D1, D2 → +∞.
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In fact, let (uD1 , v D2 ) be a solution of problem (I) in (0, t1). Therefore, there are

f (D1,D2), g(D1,D2) ∈ L1(0, t1; H),

with

f (D1,D2)(t) ∈ F
(
uD1(t), v D2(t)

)
, g(D1,D2)(t) ∈ G

(
uD1(t), v D2(t)

)
a.e. in (0, t1),

and such that (uD1 , v D2 ) is a solution of the system (I) below:

(I)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂uD1

∂t
− D1�puD1 + ∣∣uD1

∣∣p−2
uD1 = f (D1,D2) in (0, t1),

∂v D2

∂t
− D2�q v D2 + ∣∣v D2

∣∣q−2
v D2 = g(D1,D2) in (0, t1),

uD1(0) = uD1
0 , v D2(0) = v D2

0 .

Doing the inner product of the first equation with ∂uD1

∂t (t), we obtain∥∥∥∥∂uD1

∂t
(t)

∥∥∥∥2

H
+ d

dt
ϕD1

(
uD1(t)

) =
〈

f (D1,D2)(t),
∂uD1

∂t
(t)

〉
�

∥∥ f (D1,D2)(t)
∥∥

H

∥∥∥∥∂uD1

∂t
(t)

∥∥∥∥
H

� 1

2

∥∥ f (D1,D2)(t)
∥∥2

H + 1

2

∥∥∥∥∂uD1

∂t
(t)

∥∥∥∥2

H
. (3.4)

Therefore

1

2

∥∥∥∥∂uD1

∂t
(t)

∥∥∥∥2

H
+ d

dt
ϕD1

(
uD1(t)

)
� 1

2

∥∥ f (D1,D2)(t)
∥∥2

H .

In particular,

d

dt
ϕD1

(
uD1(t)

)
� 1

2

∥∥ f (D1,D2)(t)
∥∥2

H . (3.5)

Using Remark 2.2 and the fact that F and G map bounded sets of H × H in bounded sets of H , it follows that there
exists a positive constant C such that ‖ f (D1,D2)(t)‖2

H � C , ∀t ∈ [0, t1] and ∀D1, D2 � 1. Integrating from 0 to τ , τ ∈ [0, t1]
in (3.5), we obtain

1

p

(
D1

∥∥∇uD1(τ )
∥∥p

p + ∥∥uD1(τ )
∥∥p

p

) = ϕD1
(
uD1(τ )

)
� ϕD1

(
uD1

0

) + 1

2

τ∫
0

∥∥ f (D1,D2)(t)
∥∥2

H dt

� ϕD1
(
uD1

0

) + 1

2

t1∫
0

∥∥ f (D1,D2)(t)
∥∥2

H dt

� ϕD1
(
uD1

0

) + 1

2
Ct1

� 1

p

(
D1

∥∥∇uD1
0

∥∥p
p + ∥∥uD1

0

∥∥p
p

) + 1

2
Ct1, (3.6)

∀τ ∈ [0, t1] and ∀D1 � 1. Therefore,∥∥∇uD1(τ )
∥∥p

p �
∥∥∇uD1

0

∥∥p
p + 1

D1

(∥∥uD1
0

∥∥p
p + p

2
Ct1

)
, ∀τ ∈ [0, t1] and ∀D1 � 1. (3.7)

Analogously we prove that∥∥∇v D2(τ )
∥∥q

q �
∥∥∇v D2

0

∥∥q
q + 1

D2

(∥∥v D2
0

∥∥q
q + q

2
Ct1

)
, ∀τ ∈ [0, t1] and ∀D2 � 1. � (3.8)

Lemma 3.1 confirms that Eq. (II) is a good candidate for the limit problem.

Lemma 3.2. The problem (II) has a global solution.
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Proof. Consider φp : R → R and ψ : R → R given by φp(v)
.= |v|p−2 v and ψ(v)

.= ∫ v
0 |s|p−2s ds, respectively. We have that

φp is the subdifferential of the non-negative, convex, proper and l.s.c. map, ψ , defined on the Hilbert space R with ψ(0) = 0
(see Lemma 3.2 in [30]). Consequently, we conclude that φp : R → R is a maximal monotone operator with D(φp) = R.
Applying Theorem 2.4 in [29] we obtain the existence of a local strong solution for the problem (II).

As the couple (F , G) is positively sublinear in H × H , the couple ( F̃ , G̃) is positively sublinear in R × R, and so we can
prove the existence of global solution by standard arguments, as it is done in [29]. �
Theorem 3.1. The problem (II) defines a generalized semiflow G

∞ which has a global B-attractor A∞ .

Proof. Let D(u0, v0) be the set of the solutions of (II) with initial values (u0, v0) and consider G
∞ .= ⋃

(u0,v0)∈R×R
D(u0, v0).

Note that A = φp , B = φq are univalued operators, which are subdifferentials of non-negatives, convex, proper and l.s.c.
maps, ψA , ψB , respectively, defined in a real Hilbert space H = R, ψA(0) = ψB(0) = 0, with A and B generating compact
semigroups. So, we can apply the abstract results in [29].

The dissipativity can be obtained as it is done in Theorem 2.8 [29]. It follows from Theorem 2.7 in [29] that G
∞ is

asymptotically compact. Then, Theorem 9 in [28] guarantees that G
∞ has a global B-attractor A∞ . �

Now we prove that (II) is in fact the limit problem for (I), as D1, D2 → +∞.

Theorem 3.2. Let (uD1n , v D2n ) be a solution of the problem (I). Suppose that the initial values (uD1n (0), v D2n (0)) = (uD1n
0 , v D2n

0 ) →
(u0, v0) ∈ R×R in H × H as n → +∞. Then there exists a solution (u, v) for (II) satisfying (u(0), v(0)) = (u0, v0) and a subsequence

{(u
D1n j , v

D2n j )} j of {(uD1n , v D2n )}n such that, for each T > 0, u
D1n j → u, v

D2n j → v in C([0, T ]; H) as j → +∞.

Proof. Let T > 0 be arbitrarily large. Let (uD1n , v D2n ) be a solution for (I) with (uD1n (0), v D2n (0)) = (uD1n
0 , v D2n

0 ) → (u0, v0) ∈
R × R in H × H as n → +∞. Therefore, there are fn, gn ∈ L1(0, T ; H), with

fn(t) ∈ F
(
uD1n(t), v D2n (t)

)
, gn(t) ∈ G

(
uD1n(t), v D2n (t)

)
a.e. in (0, T ),

and such that (uD1n , v D2n ) is a solution of system (P 1
n) below:

(
P 1

n

)
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂uD1n

∂t
− D1n�puD1n + ∣∣uD1n

∣∣p−2
uD1n = fn in (0, T ),

∂v D2n

∂t
− D2n�q v D2n + ∣∣v D2n

∣∣q−2
v D2n = gn in (0, T ),

uD1n(0) = uD1n
0 , v D2n(0) = v D2n

0 .

We denote uD1n (·) .= I(uD1n
0 ) fn(·) and v D2n (·) .= I(v D2n

0 )gn(·) and also denote by zD1n (·) .= I(u0) fn(·) and w D2n (·) .=
I(v0)gn(·) the solutions of the problems

(P fn,u0)

⎧⎨⎩
∂zD1n

∂t
− D1n�p zD1n + ∣∣zD1n

∣∣p−2
zD1n = fn,

zD1n (0) = u0

and

(P gn,v0)

⎧⎨⎩
∂ w D2n

∂t
− D2n�q w D2n + ∣∣w D2n

∣∣q−2
w D2n = gn,

w D2n (0) = v0,

respectively.
Doing the inner product of the first equation in (P 1

n) with uD1n and integrating from 0 to t , t � T , we obtain

1

2

∥∥uD1n(t)
∥∥2

H � 1

2

∥∥uD1n
0

∥∥2
H +

t∫
0

〈
fn(s), uD1n (s)

〉
ds.

As {uD1n
0 } is a convergent sequence we have that there exists a positive constant R such that ‖uD1n

0 ‖2
H � R2. Thus,

1

2

∥∥uD1n(t)
∥∥2

H � 1

2
R2 +

t∫ 〈
fn(s), uD1n (s)

〉
ds.
0



532 J. Simsen, C.B. Gentile / J. Math. Anal. Appl. 368 (2010) 525–537
Now we use the positive sublinearity of the pair (F , G). Consider the constants a,b, c,m0 > 0 given in the introduction.
Once

fn(t) ∈ F
(
uD1n(t), v D2n (t)

)
, gn(t) ∈ G

(
uD1n(t), v D2n (t)

)
a.e. in (0, T ),

we can consider the measurable subset D ⊂ [0, T ) defined in the following way: s ∈ D iff∥∥uD1n(s)
∥∥

H � m0 and
∥∥v D2n(s)

∥∥
H � m0

or 〈
uD1n (s), fn(s)

〉
� 0 and

〈
v D2n(s), gn(s)

〉
� 0.

Consider also the following two measurable subsets D̃
.= D ∩ (0, t) and ˜̃D .= DC ∩ (0, t).

So, there is a constant M0 > 0 such that∫
D̃

〈
uD1n(s), fn(s)

〉
ds � M0.

From the positive sublinearity of the pair (F , G) we have that for s ∈ ˜̃D〈
uD1n (s), fn(s)

〉
�

∥∥uD1n(s)
∥∥

H

∥∥ fn(s)
∥∥

H �
∥∥uD1n(s)

∥∥
H

[
a
∥∥uD1n(s)

∥∥
H + b

∥∥v D2n(s)
∥∥

H + c
]
.

Then,∥∥uD1n(t)
∥∥2

H � R2 + 2
∫

D̃∪˜̃D
〈
fn(s), uD1n (s)

〉
ds

� R2 + 2
∫
D̃

〈
fn(s), uD1n (s)

〉
ds + 2

∫
˜̃D

〈
fn(s), uD1n (s)

〉
ds

� R2 + 2M0 + 2
∫
˜̃D

[
a
∥∥uD1n(s)

∥∥
H + b

∥∥v D2n (s)
∥∥

H + c
]∥∥uD1n(s)

∥∥
H ds

� R2 + 2M0 + 2a

∫
˜̃D

∥∥uD1n(s)
∥∥2

ds + 2b

∫
˜̃D

∥∥v D2n(s)
∥∥

H

∥∥uD1n(s)
∥∥

H ds + 2c

∫
˜̃D

∥∥uD1n(s)
∥∥ds

� R2 + 2M0 + 2a

t∫
0

∥∥uD1n(s)
∥∥2

H ds + 2b

t∫
0

∥∥v D2n(s)
∥∥

H

∥∥uD1n(s)
∥∥

H ds + 2c

t∫
0

∥∥uD1n(s)
∥∥

H ds.

So,

1

2

∥∥uD1n(t)
∥∥2

H � 1

2
C2 +

t∫
0

[
a
∥∥uD1n(s)

∥∥
H + b

∥∥v D2n(s)
∥∥

H + c
]∥∥uD1n (s)

∥∥
H ds,

where C is a positive constant.
Using the Gronwall’s inequality we obtain

∥∥uD1n(t)
∥∥

H � C + cT +
t∫

0

[
a
∥∥uD1n(s)

∥∥
H + b

∥∥v D2n(s)
∥∥

H

]
ds.

So, there is a positive constant M independent of t ∈ [0, T ] such that

∥∥uD1n(t)
∥∥

H � M +
t∫ [

a
∥∥uD1n (s)

∥∥
H + b

∥∥v D2n(s)
∥∥

H

]
ds.
0
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Analogously, there exists a positive constant M̃ independent of t ∈ [0, T ] such that

∥∥v D2n(t)
∥∥

H � M̃ +
t∫

0

[
b
∥∥uD1n (s)

∥∥
H + a

∥∥v D2n(s)
∥∥

H

]
ds.

Adding this two inequalities and denoting by N
.= M + M̃ and ρ

.= a + b we have

∥∥uD1n(t)
∥∥

H + ∥∥v D2n(t)
∥∥

H � N + ρ

t∫
0

[∥∥uD1n (s)
∥∥

H + ∥∥v D2n(s)
∥∥

H

]
ds

and so it follows from the Gronwall–Bellman’s inequality that∥∥uD1n(t)
∥∥

H + ∥∥v D2n(t)
∥∥

H � NeρT ,

for all t ∈ [0, T ] and for all n ∈ N.
Therefore there exists L > 0 such that∥∥ fn(t)

∥∥
H � L and

∥∥gn(t)
∥∥

H � L, for all t ∈ [0, T ] and for all n ∈ N.

So, we conclude that there exists a positive constant L̃ such that∥∥ fn
∥∥

L2(0,T ;H)
� L̃ and

∥∥gn
∥∥

L2(0,T ;H)
� L̃, for all n ∈ N.

As L2(0, T ; H) is a reflexive Banach space, there are f , g ∈ L2(0, T ; H) and subsequences { fn j } and {gn j } such that
fn j ⇀ f and gn j ⇀ g in L2(0, T ; H). Consequently fn j ⇀ f and gn j ⇀ g in L1(0, T ; H).

Consider K
.= { fn; n ∈ N}, K̃

.= {gn; n ∈ N}, M(K )
.= {zD1n ; n ∈ N} and M(K̃ )

.= {w D2n ; n ∈ N}. Since K and K̃ are
bounded sets in H , it is easy to see that they are uniformly integrable subsets in L1(0, T ; H).

Given t ∈ (0, T ] and h > 0 such that t − h ∈ (0, T ], we consider the operator Th : M(K )(t) → H defined by Th zD1n (t) =
S D1n (h)zD1n (t − h), where S D1n is the semigroup generated by the operator AD1n in H with AD1n (θ)

.= −D1n�pθ + |θ |p−2θ .
For details about the operator AD1n see [29].

Statement 1. The operator Th : M(K )(t) → H is compact.

The proof is completely analogous to the demonstration of Statement 1, p. 10 in [29].
Then, by Theorem 3.2 in [29], the set M(K ) is relatively compact in C([0, T ]; H) and so there are z ∈ C([0, T ]; H) and a

subsequence {z
D1n j (·)} of {zD1n (·)} such that z

D1n j → z in C([0, T ]; H).
As each z

D1n j is a solution of (P fn j ,u0) in (0, T ), then by Proposition 3.6 in [3], z
D1n j verifies

1

2

∥∥z
D1n j (t) − θ

∥∥2 � 1

2

∥∥z
D1n j (s) − θ

∥∥2 +
t∫

s

〈
fn j (τ ) − y j, z

D1n j (τ ) − θ
〉
dτ (3.9)

for all θ ∈ D(A
D1n j ) ⊂ W 1,p(Ω) ⊂ H , y j = A

D1n j (θ)
.= −D1n j �pθ + |θ |p−2θ and 0 � s � t � T .

Analogously, we can show that there exists w ∈ C([0, T ]; H) and there exists a subsequence {w
D2n j (·)} of {w D2n (·)} such

that w
D2n j → w in C([0, T ]; H), verifying

1

2

∥∥w
D2n j (t) − θ

∥∥2 � 1

2

∥∥w
D2n j (s) − θ

∥∥2 +
t∫

s

〈
gn j (τ ) − y j, w

D2n j (τ ) − θ
〉
dτ (3.10)

for all θ ∈ D(B
D2n j ) ⊂ W 1,q(Ω) ⊂ H , y j = B

D2n j (θ)
.= −D2n j �qθ + |θ |q−2θ and 0 � s � t � T .

Statement 2. u
D1n j → z and v

D2n j → w in C([0, T ]; H) and moreover f (t) ∈ F (z(t), w(t)) and g(t) ∈ G(z(t), w(t)) a.e.
in [0, T ].

In fact, let t ∈ [0, T ]. We have∥∥u
D1n j (t) − z(t)

∥∥ �
∥∥u

D1n j (t) − z
D1n j (t)

∥∥ + ∥∥z
D1n j (t) − z(t)

∥∥ .
H H H
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Then,

sup
t∈[0,T ]

∥∥u
D1n j (t) − z(t)

∥∥
H � sup

t∈[0,T ]
∥∥I

(
u

D1n j

0

)
fn j (t) − I(u0) fn j (t)

∥∥
H + sup

t∈[0,T ]
∥∥z

D1n j (t) − z(t)
∥∥

H

�
∥∥u

D1n j

0 − u0
∥∥

H + sup
t∈[0,T ]

∥∥z
D1n j (t) − z(t)

∥∥
H → 0

as j → +∞.
So u

D1n j → z in C([0, T ]; H) as j → +∞. Analogously we show that v
D2n j → w in C([0, T ]; H) as j → +∞.

Then, by Theorem 3.3 in [16], f (t) ∈ F (z(t), w(t)) and g(t) ∈ G(z(t), w(t)) a.e. in [0, T ].
Now consider θ ∈ R ⊂ H and let h

.= φp(θ) ∈ R ⊂ H . We consider y j
.= A

D1n j (θ). It follows from (3.9) that

1

2

∥∥z
D1n j (t) − θ

∥∥2 � 1

2

∥∥z
D1n j (s) − θ

∥∥2 +
t∫

s

〈
fn j (τ ) − h, z

D1n j (τ ) − θ
〉
dτ .

Taking the limit as j → +∞, we obtain

1

2

∥∥z(t) − θ
∥∥2 � 1

2

∥∥z(s) − θ
∥∥2 +

t∫
s

〈
f (τ ) − h, z(τ ) − θ

〉
dτ (3.11)

for all θ ∈ R, h
.= φp(θ) and for all 0 � s � t � T .

In the same way we can show that

1

2

∥∥w(t) − θ
∥∥2 � 1

2

∥∥w(s) − θ
∥∥2 +

t∫
s

〈
g(τ ) − h, w(τ ) − θ

〉
dτ

for all θ ∈ R, h
.= φq(θ) and for all 0 � s � t � T .

Statement 3. z(t) and w(t) are independents on x, for each t > 0.

In fact, let t > 0. We already know that z
D1n j (t) → z(t) in H . Since zD1n (0) = u0, ∀n ∈ N, then by Remark 3.1 and

Lemma 3.1 we have that ‖∇z
D1n j (t)‖H → 0 as j → +∞. We also have that z

D1n j (t) ∈ D(A
D1n j ) ⊂ W 1,p(Ω) ⊂ W 1,2(Ω).

Then, by the Poincaré–Wirtinger’s inequality (see [4])∥∥z
D1n j (t) − z

D1n j (t)
∥∥

H � C
∥∥∇z

D1n j (t)
∥∥

H → 0 as j → +∞.

Then ∥∥z(t) − z(t)
∥∥

H = ∥∥z(t) − z
D1n j (t) + z

D1n j (t) − z
D1n j (t) + z

D1n j (t) − z(t)
∥∥

H

�
∥∥z(t) − z

D1n j (t)
∥∥

H + ∥∥z
D1n j (t) − z

D1n j (t)
∥∥

H + ∥∥z
D1n j (t) − z(t)

∥∥
H → 0 as j → +∞.

So z(t) = z(t)
.= 1

|Ω|
∫
Ω

z(t)(x)dx.

Analogously, we show that w(t) = w(t).
We already show in Statement 2 that f (t) ∈ F (z(t), w(t)) and g(t) ∈ G(z(t), w(t)) a.e. in (0, T ). Therefore f (t) and g(t)

are independents on x, a.e. in (0, T ).
Thus, from (3.11)

1

2

∣∣z(t) − θ
∣∣2|Ω| � 1

2

∣∣z(s) − θ
∣∣2|Ω| +

t∫
s

∫
Ω

(
f (τ ) − h

)(
z(τ ) − θ

)
dx dτ .

So

1

2

∣∣z(t) − θ
∣∣2 � 1

2

∣∣z(s) − θ
∣∣2 +

t∫
s

(
f (τ ) − h

)(
z(τ ) − θ

)
dτ

for all θ ∈ R, h
.= φp(θ) and for all 0 � s < t � T .
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If t = s = 0, we have z(0) = lim j→+∞ z
D1n j (0) = lim j→+∞ u0 = u0. Therefore 1

2 |z(0) − θ |2 = 1
2 |u0 − θ |2.

So

1

2

∣∣z(t) − θ
∣∣2 � 1

2

∣∣z(s) − θ
∣∣2 +

t∫
s

(
f (τ ) − h

)(
z(τ ) − θ

)
dτ

for all θ ∈ R, h
.= φp(θ) and for all 0 � s � t � T .

In the same way,

1

2

∣∣w(t) − θ
∣∣2 � 1

2

∣∣w(s) − θ
∣∣2 +

t∫
s

(
g(τ ) − h

)(
w(τ ) − θ

)
dτ

for all θ ∈ R, h
.= φq(θ) and for all 0 � s � t � T .

So by Proposition 3.6 in [3], we conclude that (z, w) is a weak solution of problem (II) with (z(0), w(0)) = (u0, v0) (see
Definition 2.10 in [29]), but as f , g ∈ L2(0, T ; H) we have in fact that (z, w) is a strong solution of problem (II). �
Remark 3.2. Theorem 3.2 continues valid without the hypothesis (u0, v0) ∈ R × R, whenever (uD1n

0 , v D2n
0 ) ∈ A(D1n,D2n) ,

∀n ∈ N, because in this case we prove, analogously as was done in Lemma 4.1 in [30], that u0 and v0 are independents
on x.

3.1. Continuity of attractors

In this section we prove that the family of attractors behaves continuously as the diffusion parameter increases to infinity.
We start by proving the upper semicontinuity, and it is done by constructing a complete bounded orbit through the limit
of any sequence of points in the attractors.

Theorem 3.3. The family of attractors {A(D1,D2)}D1,D2�1 associated with problem (I) is upper semicontinuous on infinity, on the
topology of H × H.

Proof. Let {(u
D1 j

0 , v
D2 j

0 )}D1 j ,D2 j�1 be an arbitrary sequence with(
u

D1 j

0 , v
D2 j

0

) ∈ A(D1 j,D2 j), ∀D1 j, D2 j � 1 and D1 j, D2 j → +∞ as j → +∞.

By Lemma 2.4, there exists a subsequence, that we still denote in the same way, such that (u
D1 j

0 , v
D2 j

0 ) → (u0, v0) in H × H
as j → +∞. By [11], it is enough to prove that (u0, v0) ∈ A∞ .

Using the invariance of the attractors, Lemma 3.1 and Poincaré–Wirtinger’s inequality, we can prove analogously to
Lemma 4.1 in [30], that (u0, v0) ∈ R × R.

For each j ∈ N, consider t j > j, t1 < t2 < · · · < t j < · · · . By invariance of the attractors, there are (x j, y j) ∈ A(D1 j ,D2 j)

and solutions ϕ(D1 j ,D2 j) = (ϕ
D1 j

1 ,ϕ
D2 j

2 ) ∈ G(D1 j, D2 j) with ϕ(D1 j ,D2 j)(0) = (x j, y j) such that ϕ(D1 j ,D2 j)(t j) = (u
D1 j

0 , v
D2 j

0 ) →
(u0, v0) in H × H as j → +∞. Note that

ϕ(D1 j,D2 j)(t j) ∈ T(D1 j ,D2 j)(t j)(x j, y j) ∈ A(D1 j,D2 j), ∀ j ∈ N.

Using condition (H2) on the definition of generalized semiflow, for each j ∈ N, the translates (ϕ(D1 j ,D2 j))t j are also
solutions, and we have (ϕ(D1 j ,D2 j))t j (0) → (u0, v0) in H × H as j → +∞.

Using Theorem 3.2, we obtain that there exist a solution g0 of the limit problem (II) with g0(0) = (u0, v0) and a
subsequence of {(ϕ(D1 j ,D2 j))t j } j , that we still denote the same, such that(

ϕ(D1 j,D2 j)
)t j

(t) → g0(t) in H × H as j → +∞, ∀t � 0.

Now we consider the sequence {ϕ(D1 j ,D2 j)(t j − 1)}. Note that

ϕ(D1 j,D2 j)(t j − 1) ∈ T(D1 j ,D2 j)(t j − 1)(x j, y j) ⊂
⋃

D1,D2�1

A(D1,D2)

that is a precompact subset in H × H , then, passing to a subsequence if necessary,(
ϕ(D1 j,D2 j)

)(t j−1)
(0) = ϕ(D1 j,D2 j)(t j − 1) → z1 in H × H as j → +∞.
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As for each j ∈ N, ϕ(D1 j ,D2 j) is a solution beginning on the attractor A(D1 j ,D2 j) , we obtain by the invariance of the
attractors that the sequence of initial values

ϕ(D1 j,D2 j)(t j − 1) ∈ A(D1 j,D2 j), ∀ j ∈ N.

So using Remark 3.2 and Theorem 3.2, we obtain that there exist a solution g1 of the limit problem (II) with g1(0) = z1
and a subsequence of {(ϕ(D1 j ,D2 j))(t j−1)} j , that we still denote in the same way, such that(

ϕ(D1 j,D2 j)
)(t j−1)

(t) → g1(t) in H × H as j → +∞, ∀t � 0.

Now note that g1
1 = g0, since for each t � 0, we have

g1
1(t) = g1(t + 1) = lim

j→+∞
(
ϕ(D1 j,D2 j)

)(t j−1)
(t + 1) = lim

j→+∞
(
ϕ(D1 j,D2 j)

)t j
(t) = g0(t).

Proceeding so inductively, we find for each r = 0,1,2, . . . , a solution gr ∈ G∞ with gr(0) = zr such that g1
r+1 = gr . Given

t ∈ R, we define g(t) as the common value of gr(t + r) for r > −t . Then we have that g is a complete orbit for G∞ with
g(0) = g0(0) = (u0, v0).

Note that for each t � 0, r = 0,1,2, . . . , we have that each

gr(t) = lim
j→+∞

(
ϕ(D1 j,D2 j)

)(t j−r)
(t) and

(
ϕ(D1 j,D2 j)

)(t j−r)
(t) ∈ A(D1 j,D2 j), ∀ j ∈ N.

Working with the coordinated functions and using the invariance of the attractors, Lemma 3.1 and the Poincaré–Wirtinger’s
inequality, we can prove, analogously to Lemma 4.1 in [30], that each gr(t) independents on x. Consequently, we obtain that
g(t) is a constant function on x. As A(D1 j ,D2 j) ⊂ ⋃

D1,D2�1 A(D1,D2) , ∀ j ∈ N, we obtain that there exists a constant C > 0
such that ‖gr(t)‖H×H � C , ∀t � 0, r = 0,1,2, . . . . So, in particular, we have that g(t) is bounded in H × H . Then, there exists
a constant C̃ > 0 such that∣∣g(t)

∣∣
R×R

= 1

|Ω|1/2

∥∥g(t)
∥∥

H×H � C̃ , ∀t ∈ R.

So, we conclude that g : R → R × R is a complete bounded orbit for G∞ through (u0, v0).
Using Theorem 15 in [28], we obtain that (u0, v0) ∈ A∞ . �

Remark 3.3. Note that each complete bounded orbit of the limit problem (II) is a complete bounded orbit of problem (I).
So A∞ ⊂ A(D1,D2) , ∀D1, D2 � 1. Consequently we obtain that the family of attractors {A(D1,D2)}D1,D2�1 associated with
problem (I) is lower semicontinuous on infinity, on the topology of H × H , that means,

sup
x∈A∞

distH×H (x, A(D1,D2)) → 0 as D1, D2 → +∞.

So, using Theorem 3.3 and Remark 3.3, we obtain that the family of attractors {A(D1,D2)}D1,D2�1 associated with the
problem (I) is continuous on infinity, on the topology of H × H .
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