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Both Nevanlinna theory and zeta-function theory have been studied for
a rather long time. However, to my knowledge, there are no publications
about the general distribution of the value sof the Riemann zeta-function
in the context of Nevanlinna theory. Due to the recent development of
finding analogies between number theory and Nevanlinna theory (e.g., [9,
10, 8]), it is natural to start working on the Riemann zeta-function in the
light of Nevanlinna theory.

In this note, we are going to compute the Nevanlinna characteristic
function, deficiencies, and counting functions of the Riemann zeta-func-
tion. Moreover, we generalize the Riemann—von Mandoldt formula which
plays an important role in zeta-function theory. Since the Riemann zeta-
function is related to the Euler gamma-function, computations of the
Nevanlinna functions and all deficiencies of the Euler gamma-function are
also included in the Appendix of this note. With these in hand, people
could tackle other problems in Nevanlinna theory for the Riemann zeta-
function, for instance, finding a precise structure of the error terms of the
Riemann zeta-function in the sense of the second main theorem in
Nevanlinna theory, as we have done in [5] for other classical functions such
as the Euler gamma-function and the Weierstrass -, -, o-, and J-func-
tion. In fact, Goldberg [1] and Korenkov [3] computed the Nevanlinna
deficiencies of the Weierstrass o-function.

For the convenience of the general reader, we briefly give some defini-
tions and notation of Nevanlinna theory and the Riemann zeta-function.
Standard references for Nevanlinna theory and for the Riemann zeta-func-
tion are [2, 4, and 7], respectively.
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Let f be a meromorphic function in the complex plane C and Dy = {|z|
< r}. Denote the number of poles of f in D, by n(f,,r); and n(f,a,r)
=n(l/f — a,o,r)if a # «. We also let

ru(f,a,t) —n(f,a,0
N(frar) = [2U00 Z (2.0

0 t

dt + n(f,a,0)logr.

This integrated function N(f, a,r) occurs naturally in the main theorems
of Nevanlinna theory. It measures the number of a-values of f in D..
The proximity function in Nevanlinna function is defined as

w —y
m(f.r) = [og* | (re )5,
m(f,a,r) =m(l/f—a,r) foraeC,

where log* x = max{0, log x}. This function measures how close f is to the
value a on the boundary of D,.
The characteristic function of f in Nevanlinna theory is defined by

T(f.r) =N(f,»r) +m(f.r).

However, let T(f, a,r) = N(f,a,r) + m(f, a, r); the first main theorem
([2, Theorem 1.2)) states, for any a € C,

T(f,r)y=N(f,a,r) +m(f,a,r) + O(1).

The quantity

o m(f,a,r)= e N(f,a,r)
5(f'a)_“m|£f—T(f,r) 1 IImSUp—T(f,r)

is called the deficiency of the value a of f. Obviously, §(f, a) is positive
only if there are relatively few roots of the equation f(z) =a in C.
Moreover, the second main theorem ([2, Theorem 2.4]) in Nevanlinna
theory implies the deficiency relation

Y. 8(f.a) <2

acCuU{x}

The Riemann zeta-function ¢(s) can be defined by a Dirichlet series

{(s) = Z_:n_s (s =o0+it); (1)
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or a Euler product
1\t
§(s)=1_[(1——s) (s =o+if), (2)
)4 p

where p runs through all prime numbers. The notation s = o + it (o,¢
real) in the Riemann zeta-function is traditional in this context. It is known
that ¢ can be analytically continued to a meromorphic function in the
whole complex plane. In short, { has only one pole at s = 1, trivial simple
zerosat s = —2n(n =1,2,...), and no zeros in

{seCio<0U{sio>1]\{-2neR:n=1,23,...}.

We also need the functional equation (Theorem 2.1 in [7])
ms
{(s) = 2%7° 1 sin TF(l—s)g(l—s), (3)

and the Riemann-von Mangoldt formula ([7, Theorem 9.4])

R R
N*(R) = 5—log -—O(R), (4)

where R >0 and N*(R) is the number of zeros of ¢/ in the region
0<o<10<t<R

THeoreM 1. (1) T(¢,r) = (r/m)log r + O(r).
(2) 8(¢, ) =1, and 8({,a) =0, for any a + .
(3) There exists a set E C R with finite Lebesgue measure such that, for
any a € C,

N(¢,a,r) =%Iogr+0(r) (r&E).

Remark. We have seen from (4) that the relationship between the
Riemann-von Mangoldt formula and Nevanlinna counting functions is

r
N(Z,0,r) =2N(r) + O(r) = —logr + O(r).
a
Moreover, part (3) of Theorem 1 tells us that

N({,a,r) =N(Z,0,r) =%I0gr+0(r) (r&€E)
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for any a € C\{0}. Thus, broadly speaking, the number of zeros of { — a
is equal to the number of zeros of ¢ up to a term O(r). This generalizes
the Riemann—von Mangoldt formula in the sense of Nevanlinna theory.

Proof of Theorem 1. For r > 0, the number of trivial zeros of { in D, is
O(r). Thus (4) gives

2

n(¢,0,r) =2 2N(Vr* = 1) + O(r) = r—_llog\/rz -1+ 0(r),

T

and
,
n(f,0,r) <2N(r) + O(r) < —logr + O(r).
a
It follows that
-
N(¢,0,r) = —logr + O(r). (5)
a
Let o, > 1 be a fixed real number, s = re'* = o + it, and
vi(r, 09) = {0 € [0,27]: Re(re'?) > 0'0},
y,(r, 09) = {6 € [0,27]: Re(re'”) < 1 — oy},
ys(r,o0) = {0 €[0,27]: 1 — 0y < Re(re’?) < ay}.

In the sequel, we always write s = re’® = o + it.
For any s with o > o, we have from (1)

HOIER =y

1
nzllns| B n I

77

Consequently,

. do
log™*| §(re"’)|z < 0(1),

v4(r, o9)

where O(1) only depends on o,.
For any s with o < 1 — oy, i.e., Re(1 — s) > a,, we have from (3)

log™|{(s)| < log*|T(1 —s)|+ O(r).
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Therefore, (10) in the Appendix of the note implies

lo +|g(rei9)|ﬁ <[ log*|T(1 —nef@)lﬁ +0(r)
g 27 g 2T

y2r, og) yaAr, og)

- de
< / 2y log r cos 6— + O(r)
— /2 2w
’
=—logr+ O(r).
aw

Now consider the case when 1 — g, < o < g,. Since the order of the
entire function (s — 1)£(s) is 1 (see [7, Theorem 2.12 and formula (2.12.6))),
we have

[ £(s)| < Cexp(r¥?) forr> 2,
where C is a positive absolute constant. Noting the Lebesgue measure
lys(r, o)l < O(1) /r, we have
., dé
log* [ ¢(re'")| 5= < O(r'/?).
ya(r, og) 27
It turns out

m(¢,r) = (f + +f(r U))|og+|g(rei0)|j—i

yr, o9) v, o9) Y

IA

’
—logr + O(r).
aa

Hence, we obtain from the definition of T(Z, 0, r), the first main theorem,
and the fact N(Z, =, r) = O(r) that

N(¢.0,r)

IA

T(£,0,r) =N(&,0r) +m(L,r) +0(1)

IA

r
—logr + O(r).
T

Combining this with (5), we prove the first part of the theorem and

N(,o,r
8(5,00) =1- |Im% =1
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From (1), there exists o, > 2 such that, for Re(s) = ¢ > o,

log2 * logn log2
—+ Y —| > =
27 = |72

1{'()| =

Therefore, when Re(s) = 0 > o,

1

2l

yl(r,a*)

1
log m <lsllog2 + O(1) = O(r).

When 1 — o, < Re(s) < o, we write {'(s) = g(s)/(s — 1)* where g
is an entire function with order 1. By ([6, Theorem 8.71)), there is a set E
of finite Lebesgue measure such that |g(s)| > exp(—r%/?) for |s| = r & E.
Therefore,

(Is| + 1)°
lg(s)]

for all large r with |s| = r & E. Thus, noting |y,(r, o)l = O1) /r,

log™|1/¢'(s)| < log™* <r¥?+2logr (6)

1

ol |

'y3(r,(r*

<|ys(r o) [(r*% + O(log r)) < O(r).

log™ !
O <
VO T ()]

When Re(s) < 1 — o, we let
Bi(r) ={0€[m/2,3m/2]: Re(s) <1 — oy, lIms| > 1},
B,(r) = {0 € [m/2,3m/2]: Re(s) <1—o,,lIms| <1}.

Clearly, y,(r, o) = B(r) U B,(r). When s = re'’ with 6 € B, and r ¢ E
and r > ry, (6) yields

1

— log*
2 v/;;z(r)

1
|§,(S)| S| BZ(r)|2r3/2 = O(T(gvr))

since | B,(r)l < O /r.

From [6, p. 151, eq. (2)], we have, for —7 < 6 < ,

I'(s) =|Ogs—i— o[x] —x+1/2

I'(s) 2s fo (x +5)°
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Since rlsin 8] > 1 for s =re’® with 6 € B,(r) and —m/2 < arctan x <
/2, we have

[x]—x+1/2 % dx
_— <
fo (x +5)° ‘fo (rcos 6+ x)* + (rsin 6)°

- 0(1).

< —
rlsin 6|
Thus, for s = re’® with 6 € B,(r),
I'(s)
I'(s)

When s = re’® with 8 € B,(r), Re(1 — s) > o . Therefore, for s = re'’
with 6 € B,(r), taking logarithms and differentiating (2), we get

=log s + O(1). (7)

¢ | logp (17
‘?(l ~9)|= %p“ (1 p“)
=X lo i Cmd—s)
> A(n “ A(n
G C

where A(n) =log p if n is p or a power of p, and otherwise A(n) = 0.
Since (3) is equivalent to (see [7, p. 22, eq. (2.6.4)])

‘Y/ZF( )g(s) =7 @ ”/21*( ) (1 —5), (9)
taking the logarithmic derivative of (9) gives
S (e Ve B S O/ P S Cht)
; 2T((L-9)/2) 2T(s/2) [(1-5)

Plugging (7) and (8) into this equation, we obtain

el
9" e oW
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for s = re’” with 6 € B,(r). Consequently,

Iog*#slow; log |§( ) < log”*
1£'(9)] 1£(5)] RO 12(s)]

Therefore, (3) gives

+0(1).

f Iog*—ﬁ <f Iog+;ﬁ
pin () 2m T g T T —s)| 27
N 1 do
" ﬁl(r)log [sin(s7/2)| 2
1 do
+fﬁl(r)log T2 =9)] 27 + 0(1)
do
<

_f log* ' + O(r).
Bi(r) |F(1 )l 2

The last inequality holds because (see [7, eq. (3.6.5)])

1
|{(1— 9] <Clog'r forse By(r).

It turns out from (10) in the Appendix that

1 de

/2 Tz (z ﬁ
‘fﬁl(r) |§(S)| 27 _'[—w/zlog | éi( )|27T
+m(¢y,r) +m(¢s,r) +m(dy,r) + O(r)
=O0(r) =o(T(¢&,1)),

where ¢,’s are defined in the Appendix. Thus we have proved that there is
a set-E finite Lebesgue measure such that

1 deé

1 /, _ I + N

m( /g V) ('/'yl(r,o )+ '[ 3(r, oy )+ '/Aﬁl(r) '/Bz(r)) % |§'(S)| 2m
= O(r)

for r ¢ E. Note that the set E only depends on ¢’
The logarithmic derivative lemma ([1, Theorem 2.3]) gives

m({'/(¢&—a),r) =0(logr).
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It follows for any a # « and for all large r with r & E that
m({,a,r) <m({'/({—a),r) +m(1/{',r) =0(r).

Therefore, 6(£,a) =0 for any a #+ . So the second statement of the
theorem is proved.
Since, for any a € C,

N(¢va,r)=T(,,r) —m({,a,r)+ 0(1) =%|Ogr+0(r),

the third statement of the theorem follows immediately. Thus Theorem 1
is proved completely.

APPENDIX
THE NEVANLINNA FUNCTIONS OF THE
EULER GAMMA-FUNCTION

The Euler gamma-function T'(z) is given by

o] z -1
I'(z) =z‘1e_72n(1+—) ek,
k=1 k

where y = lim,_, (X{_,k~* — log n) is Euler’s constant. Clearly, I'(z) is a
meromorphic function with simple poles {—k};'>,, and T'(z) = 0 for any
z € C.

THEOREM 2. (1) T(T',r) = (1 + o(D)(r/)log r.
() 8,0 =6, =1; 8(T',a) =0, for a # 0, .

Proof. For any z = re'’, there is an integer n, with ny <r <ny, + 1
such that

o =+lowre- £ 2)) (o)

F(Z) n<2r

2r] z > z
x T1 (1+—) I (1+—)e‘<l/”>
ne

n=ng+1 n [2r]1+1 n

=2¢1(2) $2(2) P3(2) ba( 2).
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Noting that y — X, _,,1/n = —log(2r) + o(1), we obtain
log|z¢p,(z)| = log r + (—log2r + o(1))rcos & = —rlog rcos 6 + O(r).
(10)
Also after a little computation, we have
m(¢y,r) =0(r),  m(dsr)=0(r),  m(d,r)=0(r).
Therefore,

1 2
— log* .
27,-,/0 g IT(re'?)

m(z¢y,r) + m(dy,r) + m(bs,r) + m(¢,,r)

de

m(I',0,r) =

IA

1 (an
= —rlog r—[g "% cos 0do + o(r)

T /2

1
(1+ 0(1));r log r.

The first main theorem and the fact I'(z) # 0 give

T(r',r)=7(I',0,r) + O(1)
=m(I',0,r) + O(1) = (1 + 0(1))%r log r.

Hence, the first part of the theorem is proved. Furthermore,

5(',0) — liminf 720 7)
(I\0) = liminf == =
Since N(T',, r) = o(T(T, r)),
N(T,0,r)

5(F,00) =1- |||;n_)5:]pm

It follows from the deficiency relation that 6(T", @) = 0 for any a # 0, .
Thus the theorem is proved completely. i
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