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Abstract

The aim of this paper is to analyze the fatigue growth of cracks under cyclic loading conditions. The
propagation is modeled by successive linear extensions, which are determined by the stress intensity factors
(SIFs) obtained after a linear elastic analysis. We use a meshless method to perform the successive analyses.
A new contribution of this paper is that we add to the 8xed set of nodes three nodes with a special weight
function at each crack tip. This is done in order to accurately catch the stress singularity at these tips. We
verify on simple problems that the enriched method gives more accurate SIFs than the classic method. Then,
we apply it to a fatigue crack growth problem.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The aim of this paper is to analyze the fatigue growth of cracks under cyclic loading conditions.
The propagation is modeled by successive linear extensions, which are determined by the stress
intensity factors (SIFs) obtained after a linear elastic analysis. More precisely, we use a generalized
Paris’ law to compute the propagation direction and the increment length at each crack tip, knowing
both modes I and II SIFs.

The classic 8nite element method is not appropriate to perform the successive analyses because
it is expensive to remesh the domain after each crack extension. We use a meshless method, which
proved in a number of papers to be e>cient for fracture mechanics problems, see for example [3].
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A new contribution of this paper is that we add to the 8xed set of nodes three nodes at each crack
tip. This is done in order to accurately catch the stress singularity at these tips. These nodes have
special weight functions and they move with the tips. The weight functions of these special nodes
possess the behavior in

√
r near the tip and exhibit an angular variation similar to the exact near-tip

displacement 8eld. They have a local support like the regular weight functions. This enrichment
can easily and naturally be implemented in an existing meshless method program. Moreover, the
computational cost of this enriched method is nearly the same as the classic method.

We 8rst verify on two simple problems that the enriched method gives more accurate SIFs than
the classic method. We then apply it to a fatigue crack growth problem, consisiting of two crack tips
propagating towards each other and stopping when the two cracks overlap. We compare the fatigue
life diagram and the crack paths predicted by this method to results obtained by a boundary element
method [9]. Good agreement is observed. This last presented example shows that our method is able
to model quite complicated extensions.

2. Meshless method

First, we brie)y recall the basis of the meshless method for the resolution of partial diHerential
equations (PDEs). It consists in using the shape functions (2), built without having recourse to a
mesh, as the test functions and the trial functions in the variational principle of the PDEs. In this
paper, the PDEs under consideration are the equilibrium equations of two-dimensional, homogeneous,
isotropic and linear-elastic solids undergoing small displacements. We only mention the equations
that we need in the following and refer to the overview paper [2] for all the details.

Consider a set of N nodes scattered in a domain � and let xi be the coordinates of node i. The
moving least-squares approximation uh(x) of a (multi-dimensional) 8eld u(x) in � is

uh(x) =
N∑
i=1

�i(x)ui ; (1)

where ui is the value of the 8eld u at xi and �i is the shape function of node i, given by

�i(x) = cT(x)p(xi)wi(x); (2)

where p(x) is a set of basis functions, wi(x) is a weight function associated with the node i and

c(x) = A−1(x)p(x) (3)

with

A(x) =
N∑
i=1

wi(x)p(xi)pT(xi): (4)

In practice, the weight functions are positive in order to provide a positive de8nite A matrix which
ensures that the approximation is well-behaved. Moreover, a small domain �i containing xi is asso-
ciated with node i such that wi(x), and as a result �i(x), equal zero outside �i. This choice is made
in order to provide the approximation with a local character and to restrict the sums in Eqs. (1)
and(4) to a few terms. Finally, the common choice in the literature is that wi(x) decreases with the
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distance between xi and x, in such a way that the nearer a node is to a point, the more it in)uences
this point. This choice is revised in Section 3.

In the following, we always use a linear basis: pT = [1; x; y], which proved to be a good trade-oH
between speed and e>ciency. The enriched method that is described hereafter however also works
with other basis. We decide to use the same weight for each regular node (in contrast with the
enriched nodes): a quartic weight function on a circular support

wi(x) = S4(s); (5)

where we use the quartic spline

S4(s) =

{
1 − 6s2 + 8s3 − 3s4 if s6 1;

0 if s¿ 1
(6)

and the normalized distance is

s=
‖x− xi‖
Ri

(7)

with Ri the radius of the in)uence domain of node i. These radii must be large enough to ensure
that each point of the domain is covered by at least 3 supports (3 being the size of the basis).
According to our experience based on simple test cases with a known exact solution, Ri = 1:7 × h
(where h is the characteristic nodal spacing distance) constitutes a good choice.

The distance s in Eq. (5) must be modi8ed if the line segment joining xi and x crosses a crack
line in order to represent the displacement discontinuity across this line. As in [1], s becomes the
total length of the shortest path from xi to x that lies entirely within the domain (divided by the
radius of the support):

s=
‖x− xc‖ + ‖xc − xi‖

Ri
; (8)

where xc are the coordinates of the crack tip near xi.

3. Near-tip �eld enrichment

The meshless method is particularly suitable to simulate crack propagation because no remeshing
is necessary. Special care must, however, be taken in order to precisely model the high gradient of
the displacement near the crack tip. Otherwise, the SIFs are underestimated and consequently the
life of the structure is overestimated. Let us recall that, in the absence of mode III, the near-tip
displacement 8eld is given by:

u(x) = KIQI(x) + KIIQII(x); (9)

QI(x) = 1
2�

√
r

2�

(
cos( �2 )[� − 1 + 2 sin2( �2 )]

sin( �2 )[� + 1 − 2 cos2( �2 )]

)
; (10)
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QII(x) =
1

2�

√
r

2�

(
sin( �2 )[� + 1 + 2 cos2( �2 )]

cos( �2 )[ − � + 1 + 2 sin2( �2 )]

)
; (11)

where KI and KII are the modes I and II SIFs, respectively, r is the distance to the tip, � is the
angle measured from a line ahead of the crack (�∈ [ − �; �]), � is the shear modulus and � is the
Kolosov constant.

Our enriched method consists in adding some nodes with special weight functions at each tip.
The guidelines we follow to choose them are the following: the weight functions must possess the
behavior in

√
r for small r; they must have an angular variation of the same kind as those in

Eqs. (10) and(11); they must be positive and they must equal zero outside a circular support like
the regular weights. We expect the resulting shape functions to be similar to the weight functions as
it is the case for the regular nodes and hence, that the displacement 8eld at the tips can be accurately
represented. According to some experiments, the use of the three following weights appears to be a
good choice:

wc(x) = �
√
r cos

(
�
2

)
S4(s); (12)

wp(x) = �
√
r
[
1 + sin

(
�
2

)]
S4(s); (13)

wm(x) = �
√
r
[
1 − sin

(
�
2

)]
S4(s); (14)

where c, p and m, respectively, stand for “cos”, “plus sin” and “minus sin”. We note that the three
functions cos(�=2), 1 + sin(�=2) and 1 − sin(�=2) cannot exactly represent the angular variations in
Eqs. (10) and(11) but the accuracy of the results in Section 5 will show that this is not necessary.
The presence of the quartic spline (6) ensures the local character of the shape functions. The distance
s is again given by (7) or (8) and we choose the radius of the in)uence domain small enough, such
that it does not contain any crack kink. The � factor controls the amplitude of the enriched weight
compared with the amplitude of the regular nodes; �= 1 constitutes a reasonable choice.

Two diHerent enriched meshless methods are presented in [5].

4. Fatigue crack growth analysis

Once the PDEs are solved and the displacement in the solid is known, the SIFs are calculated by
conservation integrals converted into a domain form [6]. In mixed-mode problems, auxiliary solutions
(10) and (11) are used in two interaction conservation integrals to directly obtain both factors. The
integration domain is a square centered on the tip and the half-side of this square is equal to the
length of a crack increment; the domain thus does not contain any kink. For constant amplitude
cyclic loadings, the range of the SIFs is de8ned as

PK = Kmax − Kmin; (15)

where Kmax and Kmin are the SIFs corresponding to the maximum (�max) and minimum (�min) applied
loads, respectively.
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In general, the crack path is a curved path. In our analysis, crack propagation is simulated by
successive linear increments. We have to determine the direction and the length of these increments.
Several criteria exist for the determination of the direction of crack growth under mixed-mode
loading. The most important are: maximum principal stress criterion, maximum energy release rate
criterion and minimum strain energy density criterion. These criteria predict kink angles of almost
the same size, especially in the case of small or medium mixed-mode ratio KII=KI. In the present
work, the maximum principal stress criterion is used, which postulates that the crack growth occurs
in a direction perpendicular to the maximum principal stress. Thus, at each crack tip, the local
direction of crack growth �c is determined by the condition that the local shear stress is zero, that
is (see for example [4] for details):

KI sin �c + KII(3 cos �c − 1) = 0: (16)

Solving this equation gives

�c = 2 arctan

(
KI −

√
K2

I + 8K2
II

4KII

)
: (17)

According to this criterion, the equivalent mode I SIF is

KIeq = KI cos3 �c
2 − 3KII cos2 �c

2 sin �c
2 : (18)

This equivalent SIF is useful in the unstable fracture criterion below and in the following propagation
law. To model the stable crack propagation, we use the generalized Paris’ law:

da
dN

= C(PKIeq)m; (19)

where C and m are material properties, a is the crack length, N is the number of loading cycles and
PKIeq is obtained by (18) with PKI and PKII instead of KI and KII. The number of loading cycles
required to extend the crack from the initial length to a given length is evaluated by integrating this
law with a trapezoidal rule.

A compromise must be made regarding the value of the linear increment length Pa. If the latter is
too small, the in)uence domain of the enriched nodes and the integration domain of the conservation
integral are small and this leads to inaccurate results. If it is too long, the piecewise linear path
cannot precisely represent the real curved path. For single-cracked bodies, Pa is kept constant. For
multi-cracked bodies, we choose a constant value for the maximum increment length Pamax, and
after each step we select the principal crack tip as the tip where PKIeq is maximum and then at
every crack tip the increment is given by

Pa= Pamax

(
PKIeq

PKIeq;max

)m
; (20)

where PKIeq;max is the range of the equivalent mode I SIF at the principal crack tip and m is the
exponent in Paris’ law. Accordingly, the increment at the principal crack tip is equal to Pamax and
is smaller than this value at other crack tips. We note that the principal tip can change during the
propagation.

Instability of the cracked body occurs when KIeq;max;max¿KIc where KIc is a material property
called the fracture toughness. KIeq;max;max is the equivalent mode I SIF corresponding to �max at
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the principal crack tip. This condition is the stopping criterion in our method: crack increments are
added until this condition is met.

5. Numerical results

5.1. Single centered crack

The 8rst example is a single crack, centered in a square plate under uniform tension. The square
side is 2 units and the crack length 2a varies from 0:2 to 1:4 units. A set of 21 × 21 uniformly
spaced meshless nodes is used. The fatigue crack growth theory is not applied for this problem;
the crack grows by step of 0:1 units at each tip. This is justi8ed because the SIFs are identical at
both tips.

In Table 1, we compare the values of FI =KI=�
√
�a for this range of a for the classic method, and

the new method with the solution in [7]. This table shows the signi8cant improvement of the results
when the enriched method is used. For a = 0:1, the computed SIF is not as good as for a¿ 0:2;
this is probably due to the overlapping of the supports of the 2 enrichments. The extra cost of the
enriched method is weak—only 4% of the CPU cost with respect to the classic method.

5.2. Single centered angled crack

To validate the new method for mixed-mode problems, we consider a static angled crack (18 units
long) in a rectangular plate (90× 180) under uniform tension (�= 160). A set of 19× 37 uniformly
spaced meshless nodes is used and 4 nodes are added on each side of the crack (Fig. 1).

We plot in Fig. 2 modes I and II SIFs for some values of the crack angle. The new method is
better than the classic method for every value of the angle and shows very good agreement with
Ref. [7].

5.3. Two internal non-colinear cracks

A rectangular plate (90 mm × 180 mm) with 2 internal, parallel, non-colinear and non-angled
cracks (length =10 mm for both) is submitted to a cyclic tension (�max = 160 N=mm, �min = 0) at
both ends. The horizontal distance between the two tips close to each other is 15 mm and the vertical

Table 1
Mode I normalized stress intensity factors for the centered crack problem

Half-length of the crack a 0.1 0.2 0.3 0.4 0.5 0.6 0.7

FI—Ref. [7] 1.014 1.055 1.123 1.216 1.334 1.481 1.68
FI—Classic method 0.967 1.010 1.075 1.162 1.272 1.408 1.586
Error—Classic method 4.6% 4.3% 4.3% 4.4% 4.6% 4.9% 5.6%
FI—Enriched method 1.004 1.057 1.125 1.217 1.333 1.477 1.668
Error—Enriched method 0.99% 0.15% 0.14% 0.05% 0.09% 0.26% 0.74%
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Fig. 2. SIFs for the angled crack.
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Fig. 4. Fatigue-life diagram.

distance is 5 mm. We use the same dimensions, the same material properties and the same loading
as in [9] to perform a comparison: E = 74000 N=mm2, � = 0:3, KIc = 1897:36 N=mm3=2, m = 3:32,
C = 2:087136 × 10−13.

We use a regular set of 19 × 37 meshless nodes plus 2 nodes on each side of both initial cracks
and the 3 enriched nodes at each crack tip. When the crack grows, these enriched nodes move with
the crack tip and 1 regular node is added on each side of the crack increment. The maximum crack
increment length Pamax and the radius of the support of the enriched nodes are equal to 2 mm.

The evolution of the SIFs at the most interior crack tips (A) and at the crack tips near the edge
(B) with the crack length is plotted in Fig. 3. The fatigue-life diagram and the crack paths are
presented in Figs. 4 and 5, respectively. In the beginning, it is a pure mode I state and the SIFs at
A and B are about the same. Then, the mode I factor at A increases more rapidly than at B and
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Fig. 5. Crack path for the “two internal cracks” problem.

the mode II factor at A becomes negative so that the crack paths curve towards the other crack.
But, when the crack tips A overlap, the SIFs tend to decrease, while the mode I factor continuously
increases at B. Finally, the equivalent mode I SIF at B exceeds the fracture toughness and unstable
fracture occurs at the crack tips B. This prediction of the fatigue crack growth path is in good
agreement with the experimental results reported in [8]. The life of the structure is evaluated as
6792 cycles, which is in good agreement with [9].
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