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Abstract

In this paper we study spectral estimates of the p-Laplace Neumann operator in conformal regular domains Ω ⊂ R2. This study
is based on (weighted) Poincaré–Sobolev inequalities. The main technical tool is the theory of composition operators in relation
with the Brennan’s conjecture. We prove that if the Brennan’s conjecture holds for any p ∈ (4/3, 2) and r ∈ (1, p/(2 − p))
then the weighted (r, p)-Poincare–Sobolev inequality holds with the constant depending on the conformal geometry of Ω . As
a consequence we obtain classical Poincare–Sobolev inequalities and spectral estimates for the first nontrivial eigenvalue of the
p-Laplace Neumann operator for conformal regular domains.
c⃝ 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction and methodology

Let Ω ⊂ R2 be a simply connected planar domain with a smooth boundary ∂Ω . We consider the Neumann
eigenvalue problem for the p-Laplace operator (1 < p < 2):

− div

|∇u|p−2

∇u

= µp|u|

p−2u in Ω
∂u

∂n
= 0 on ∂Ω .

(1.1)

The weak statement of this spectral problem is as follows: a function u solves the previous problem if and only if
u ∈ W 1,p(Ω) and

Ω


|∇u(x, y)|p−2

∇u(x, y)

· ∇v(x, y) dxdy = µp


Ω
|u|p−2u(x, y)v(x, y) dxdy

for all v ∈ W 1,p(Ω).
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The first nontrivial Neumann eigenvalue µp can be characterized as

µp(Ω) = min


Ω |∇u(x, y)|p dxdy
Ω |u(x, y)|p dxdy

: u ∈ W 1,p(Ω) \ {0},


Ω
|u|p−2u dxdy = 0


.

Moreover, µp(Ω)
−

1
p is the best constant Bp,p(Ω) (see, for example, [1,2]) in the following Poincaré–Sobolev

inequality

inf
c∈R
∥ f − c | L p(Ω)∥ ≤ Bp,p(Ω)∥∇ f | L p(Ω)∥, f ∈ W 1,p(Ω).

We prove, that µp(Ω) depends on the conformal geometry of Ω and can be estimated in terms of Sobolev norms
of a conformal mapping of the unit disc D onto Ω (Theorem A).

The main technical tool is existence of universal weighted Poincaré–Sobolev inequalities

inf
c∈R


Ω
| f (x, y)− c|r h(x, y) dxdy

 1
r

≤ Br,p(Ω , h)


Ω
|∇ f (x, y)|p dxdy

 1
p

, f ∈ W 1,p(Ω), (1.2)

in any simply connected planar domain Ω ≠ R2 for conformal weights h(x, y) := Jϕ(x, y) = |ϕ′(x, y)|2 induced by
conformal homeomorphisms ϕ : Ω → D.

Main results of this article can be divided onto two parts. The first part is the technical one and concerns
weighted Poincaré–Sobolev inequalities in arbitrary simply connected planar domains with nonempty bound-
aries (Theorem C and its consequences). Results of the first part will be used for (non weighted) Poincaré–Sobolev
inequalities in so-called conformal regular domains (Theorem B) that lead to lower estimates for the first nontriv-
ial eigenvalue µp (Theorem A). To the best of our knowledge lower estimates were known before for convex domains
only. The class of conformal regular domains is much larger. It includes, for example, bounded domains with Lipschitz
boundaries and quasidiscs, i.e images of discs under quasiconformal homeomorphisms of whole plane.

Brennan’s conjecture [3] is that for a conformal mapping ϕ : Ω → D
Ω
|ϕ′(x, y)|β dxdy < +∞, for all

4
3
< β < 4. (1.3)

For the inverse conformal mapping ψ = ϕ−1
: D→ Ω Brennan’s conjecture [3] states

D
|ψ ′(u, v)|α dudv < +∞, for all − 2 < α <

2
3
. (1.4)

A connection between Brennan’s Conjecture and composition operators on Sobolev spaces was established in [4]:
Equivalence Theorem. Brennan’s Conjecture (1.3) holds for a number β ∈ (4/3; 4) if and only if a conformal

mapping ϕ : Ω → D induces a bounded composition operator

ϕ∗ : L1,p(D)→ L1,q(p,β)(Ω)

for any p ∈ (2;+∞) and q(p, β) = pβ/(p + β − 2).
The inverse Brennan’s Conjecture states that for any conformal mapping ψ : D → Ω , the derivative ψ ′ belongs

to the Lebesgue space Lα(D), for −2 < α < 2/3. The integrability of the derivative in the power greater than 2/3
requires some restrictions on the geometry of Ω . If Ω ⊂ R2 is a simply connected planar domain of finite area, then

D
|ψ ′(u, v)|2 dudv =


D

Jψ (u, v) dudv = |Ω | <∞.

Integrability of the derivative in the power α > 2 is impossible without additional assumptions on the geometry of Ω .
For example, for any α > 2 the domain Ω necessarily has a finite geodesic diameter [5].
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Let Ω ⊂ R2 be a simply connected planar domain. Then Ω is called a conformal α-regular domain if there exists
a conformal mapping ϕ : Ω → D such that

D

(ϕ−1)′(u, v)
α dudv <∞ f or some α > 2. (1.5)

If Ω is a conformal α-regular domain for some α > 2 we call Ω a conformal regular domain.
The property of α-regularity does not depend on choice of a conformal mapping ϕ and depends on the hyperbolic

geometry of Ω only [6]. For connection between conformal mapping and hyperbolic geometry see, for example, [7].
Note that a boundary ∂Ω of a conformal regular domain can have any Hausdorff dimension between one and two,

but cannot be equal two [8].
The next theorem gives lower estimates of the first nontrivial p-Laplace Neumann eigenvalue:

Theorem A. Let ϕ : Ω → D be a conformal homeomorphism from a conformal α-regular domain Ω to the unit disc
D and Brennan’s Conjecture holds. Then for every p ∈ (max{4/3, (α + 2)/α}, 2) the following inequality holds

1
µp(Ω)

≤ inf
q∈[1,2p/(4−p))


∥(ϕ−1)′|Lα(D)∥2


D

ϕ−1
′

(p−2)q
p−q

dudv

 p−q
q

· B p
αp
α−2 ,q

(D)

.

Here Br,q(D) is the best constant in the corresponding (r, q)-Poincare–Sobolev inequality in the unit disc D for
r = αp/(α − 2).

In the limit case α = ∞ and p = q we have

Corollary A. Suppose that Ω is a smooth bounded Jordan domain with a boundary ∂Ω of a class C1 with a Dini
continuous normal. Let ϕ : Ω → D be a conformal homeomorphism from Ω onto the unit disc D. Then for every
p ∈ (1, 2) the following inequality holds

1
µp(Ω)

≤ ∥(ϕ−1)′|L∞(D)∥p 1
µp(D)

.

Remark 1.1. The constant Br,q(D) satisfies [9,10]:

Br,q(D) ≤
2
π δ


1− δ

1/2− δ

1−δ

, δ = 1/q − 1/r.

Remark 1.2. The Brennan’s conjecture was proved for α ∈ [α0, 2/3) when α0 = −1.752 [11].
In the Introduction we formulate main results under the assumptions that the Brennan’s conjecture holds true for

all −2 < α < 2/3. In the main part of the paper we prove main results for α0 = −1.752 < α < 2/3 that was proved
recently.

This difference is related to our belief that the Brennan’s conjecture is correct.

Remark 1.3. The estimates for the µp(Ω) were known before only for convex domains. For example, in [12] it was
proved that

µp(Ω) ≥

πp

d(Ω)

p

where

πp = 2
 (p−1)

1
p

0

dt

(1− t p/(p − 1))
1
p

= 2π
(p − 1)

1
p

p(sin(π/p))
.

Theorem A has a direct connection with the spectral stability problem for the p-Laplace operator. See, the recent
papers, [13–16], where one can found the history of the problem, main results in this area and appropriate references.

Theorem A is a corollary (after simple calculations) of the following version of the Poincaré–Sobolev inequality.
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Theorem B. Suppose that Ω ⊂ R2 is a conformal α-regular domain and Brennan’s Conjecture holds. Then for every
p ∈ (max{4/3, α/(α − 1)}, 2), every s ∈ (1, α−2

α
p

2−p ) and every function f ∈ W 1,p(Ω), the inequality

inf
c∈R


Ω
| f (x, y)− c|s dxdy

 1
s

≤ Bs,p(Ω)


Ω
|∇ f (x, y)|p dxdy

 1
p

(1.6)

holds with the constant

Bs,p(Ω) ≤ ∥(ϕ−1)′|Lα(D)∥
2
s Br,p(Ω , h) ≤ inf

q∈[1,2p/(4−p))


B αs
α−2 ,q

(D) · ∥(ϕ−1)′|Lα(D)∥
2
s K p,q(D)


.

Here Br,p(Ω , h), r = αs/(α − 2), is the best constant of the following weighted Poincaré–Sobolev inequality:

Theorem C. Suppose Ω ⊂ R2 is a simply connected domain with non empty boundary, Brennan’s Conjecture holds
and h(z) = J (z, ϕ) is the conformal weight defined by a conformal homeomorphism ϕ : Ω → D. Then for every
p ∈ (4/3, 2) and every function f ∈ W 1,p(Ω), the inequality

inf
c∈R


Ω
| f (x, y)− c|r h(x, y) dxdy

 1
r

≤ Br,p(Ω , h)


Ω
|∇ f (x, y)|p dxdy

 1
p

(1.7)

holds for any r ∈ [1, p/(2− p)) with the constant

Br,p(Ω , h) ≤ inf
q∈[1,2p/(4−p))


K p,q(D) · Br,q(D)


.

Here Br,q(D) is the best constant in the (non-weighted) (r.q)-Poincaré–Sobolev inequality in the unit disc D ⊂ R2

and K p,q(Ω) is the norm of composition operator
ϕ−1

∗
: L1,p(Ω)→ L1,q(D)

generated by the inverse conformal mapping ϕ−1
: D→ Ω :

K p,q(Ω) ≤


D

ϕ−1
′

(p−2)q
p−q

dudv

 p−q
pq

.

Remark 1.4. Theorem C holds (without referring the Brennan’s Conjecture) for

1 ≤ r ≤
2p

2− p
·
|α0|

2+ |α0|
<

p

2− p
(1.8)

and p ∈ ((|α0| + 2)/(|α0| + 1), 2), where α0 = −1.752 represents the best result for which Brennan’s conjecture was
proved.

Remark 1.5. Let Ω ⊂ R2 be a simply connected smooth domain. Then ϕ−1
∈ Lα(D) for all α ∈ R and we have the

weighted Poincaré–Sobolev inequality (1.2) for all p ∈ [1, 2) and all r ∈ [1, 2p/(2− p)].

In the case, when we have an embedding of a weighted Lebesgue space into a non-weighted one, the weighted
Poincaré–Sobolev inequality (1.7) implies the standard Poincaré-Sobolev inequality (1.6).

Let us give some historical remarks about the notion of conformal regular domains. This notion was introduced
in [16] and was applied to the stability problem for eigenvalues of the Dirichlet–Laplace operator. In [10] the lower
estimates for the first non-trivial eigenvalues of the Neumann–Laplace operator in conformal regular domains were
obtained. In [5] we proved but did not formulated the following important fact about conformal regular domains and
the Poincaré–Sobolev inequality:
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Theorem 1.6. Let Ω ⊂ R2 be a simply connected domain of finite area such that the (s, 2)-Poincaré–Sobolev
inequality

inf
c∈R


Ω
| f (x, y)− c|s dxdy

 1
s

≤ Bs,2(Ω)


Ω
|∇ f (x, y)|2 dxdy

 1
2

does not hold for some s ≥ 2. Then Ω is not a conformal regular domain.

In the present work we suggest for the conformal regular domains a new method based on the theory of composition
operators [17,18] and its applications to the Sobolev type embedding theorems [19,20].

The following diagram illustrates this idea:

W 1,p(Ω)
ϕ∗

−→ W 1,q(D)
↓ ↓

Ls(Ω)
(ϕ−1)∗

←− Lr (D).

Here the operator ϕ∗ defined by the composition rule ϕ∗( f ) = f ◦ ϕ is a bounded composition operator on
Sobolev spaces induced by a homeomorphism ϕ of Ω and D and the operator (ϕ−1)∗ defined by the composition
rule (ϕ−1)∗( f ) = f ◦ ϕ−1 is a bounded composition operator on Lebesgue spaces. This method allows to transfer
Poincaré–Sobolev inequalities from regular domains (for example, from the unit disc D) to Ω .

In recent works we studied composition operators on Sobolev spaces in connection with the conformal mappings
theory [21]. This connection leads to weighted Sobolev embeddings [22,4] with the universal conformal weights.
Another application of conformal composition operators was given in [16] where the spectral stability problem for
conformal regular domains was considered.

2. Composition operators

Since all composition operators that will be used in this paper are induced by conformal homeomorphisms we
formulate results about composition operators for diffeomorphisms only.

2.1. Composition operators on Lebesgue spaces

For any domain Ω ⊂ R2 and any 1 ≤ p < ∞ we consider the Lebesgue space L p(Ω) of measurable functions
f : Ω → R equipped with the following norm:

∥ f | L p(Ω)∥ :=


Ω
| f (x, y)|p dxdy

1/p

<∞.

The following theorem about composition operators on Lebesgue spaces is well known (see, for example [18]):

Theorem 2.1. Let ϕ : Ω → Ω ′ be a diffeomorphism between two planar domains Ω and Ω ′. Then the composition
operator

ϕ∗ : Lr (Ω ′)→ Ls(Ω), 1 ≤ s ≤ r <∞,

is bounded, if and only if
Ω ′


Jϕ−1(u, v)

 r
r−s dudv

 r−s
rs

= K <∞, 1 ≤ s < r <∞,

sup
(u,v)∈Ω ′


Jϕ−1(u, v)

 1
s = K <∞, 1 ≤ s = r <∞.

The norm ∥ϕ∗∥ of the composition operator ϕ∗ equals K .
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2.2. Composition operators on Sobolev spaces

We define the Sobolev space W 1,p(Ω), 1 ≤ p <∞ as a Banach space of locally integrable weakly differentiable
functions f : Ω → R equipped with the following norm:

∥ f | W 1,p(Ω)∥ =


Ω
| f (x, y)|p dxdy

 1
p

+


Ω
|∇ f (x, y)|p dxdy

 1
p

.

We define also the homogeneous seminormed Sobolev space L1,p(Ω) of locally integrable weakly differentiable
functions f : Ω → R equipped with the following seminorm:

∥ f | L1,p(Ω)∥ =


Ω
|∇ f (x, y)|p dxdy

 1
p

.

Recall that the embedding operator i : L1,p(Ω)→ L1
loc(Ω) is bounded.

Let Ω and Ω ′ be domains in R2. We say that a diffeomorphism ϕ : Ω → Ω ′ induces a bounded composition
operator

ϕ∗ : L1,p(Ω ′)→ L1,q(Ω), 1 ≤ q ≤ p ≤ ∞,

by the composition rule ϕ∗( f ) = f ◦ ϕ if ϕ∗( f ) ∈ L1,q(Ω) and there exists a constant K <∞ such that

∥ϕ∗( f ) | L1,q(Ω)∥ ≤ K∥ f | L1,p(Ω ′)∥ for all f ∈ L1,p(Ω).

The main result of [17] gives the analytic description of composition operators on Sobolev spaces (see also [18])
and asserts (in the case of diffeomorphisms) that

Theorem 2.2 ([17]). A diffeomorphism ϕ : Ω → Ω ′ between two domains Ω and Ω ′ induces a bounded composition
operator

ϕ∗ : L1,p(Ω ′)→ L1,q(Ω), 1 ≤ q < p <∞,

if and only if

K p,q(Ω) =


Ω


|ϕ′(x, y)|p

|Jϕ(x, y)|

 q
p−q

dxdy

 p−q
pq

<∞.

Definition 2.3. We call a bounded domain Ω ⊂ R2 as a (r, q)-embedding domain, 1 ≤ q, r ≤ ∞, if the embedding
operator

iΩ : W
1,q(Ω) ↩→ Lr (Ω)

is bounded. The unit disc D ⊂ R2 is an example of the (r, 2)-embedding domain for all r ≥ 1.

The following theorem gives a characterization of composition operators in the normed Sobolev spaces [10]. For
readers convenience we reproduce here the proof of the theorem.

Theorem 2.4. Let Ω be an (r, q)-embedding domain for some 1 ≤ q ≤ r < ∞ and |Ω ′| < ∞. Suppose that a
diffeomorphism ϕ : Ω → Ω ′ induces a bounded composition operator

ϕ∗ : L1,p(Ω ′)→ L1,q(Ω), 1 ≤ q ≤ p <∞,

and the inverse diffeomorphism ϕ−1
: Ω ′→ Ω induces a bounded composition operator

(ϕ−1)∗ : Lr (Ω)→ Ls(Ω ′)

for some p ≤ s ≤ r .
Then ϕ : Ω → Ω ′ induces a bounded composition operator

ϕ∗ : W 1,p(Ω ′)→ W 1,q(Ω), 1 ≤ q ≤ p <∞.
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Proof. Because the composition operator (ϕ−1)∗ : Lr (Ω)→ Ls(Ω ′) is bounded, then the following inequality

∥(ϕ−1)∗g | Ls(Ω ′)∥ ≤ Ar,s(Ω)∥g | Lr (Ω)∥

holds. Here Ar,s(Ω) is a positive constant.
If a domain Ω is an embedding domain and the composition operators

(ϕ−1)∗ : Lr (Ω)→ Ls(Ω ′), ϕ∗ : L1,p(Ω ′)→ L1,q(Ω)

are bounded, then for a function f = g ◦ ϕ−1 the following inequalities

inf
c∈R
∥ f − c | Ls(Ω ′)∥ ≤ Ar,s(Ω) inf

c∈R
∥g − c | Lr (Ω)∥

≤ Ar,s(Ω)M∥g | L1,q(Ω)∥ ≤ Ar,s(Ω)K p,q(Ω)M∥ f | L1,p(Ω ′)∥

hold. Here M and K p,q(Ω) are positive constants.
The Hölder inequality implies the following estimate

|c| = |Ω ′|−
1
p ∥c | L p(Ω ′)∥ ≤ |Ω ′|−

1
p

∥ f | L p(Ω ′)∥ + ∥ f − c | L p(Ω ′)∥


≤ |Ω ′|−

1
p ∥ f | L p(Ω ′)∥ + |Ω ′|−

1
s ∥ f − c | Ls(Ω ′)∥.

Since q ≤ r we have

∥g | Lq(Ω)∥ ≤ ∥c | Lq(Ω)∥ + ∥g − c | Lq(Ω)∥ ≤ |c||Ω |
1
q + |Ω |

r−q
r ∥g − c | Lr (Ω)∥

≤


|Ω ′|−

1
p ∥ f | L p(Ω ′)∥ + |Ω ′|−

1
s ∥ f − c | Ls(Ω ′)∥


|Ω |

1
q + |Ω |

r−q
r ∥g − c | Lr (Ω)∥.

From previous inequalities we obtain for ϕ∗( f ) = g finally

∥g | Lq(Ω)∥ ≤ |Ω |
1
q |Ω ′|−

1
p ∥ f | L p(Ω ′)∥ + Ar,s(Ω)K p,q(Ω)M |Ω |

1
q |Ω ′|−

1
p ∥ f | L1,p(Ω ′)∥

+ K p,q(Ω)M |Ω |
r−q

r ∥ f | L1,p(Ω)∥.

Therefore the composition operator

ϕ∗ : W 1,p(Ω ′)→ W 1,q(Ω)

is bounded. �

3. Poincaré–Sobolev inequalities

3.1. Weighted Poincare–Sobolev inequalities

Let Ω ⊂ R2 be a planar domain and let v : Ω → R be a smooth positive real valued function in Ω . For 1 ≤ p <∞
consider the weighted Lebesgue space L p(Ω , v) of measurable functions f : Ω → R with the finite norm

∥ f | L p(Ω , v)∥ :=


Ω
| f (x, y)|pv(x, y) dxdy

1/p

<∞.

It is a Banach space for the norm ∥ f | L p(Ω , v)∥.
Applications of the conformal mappings theory to the Poincaré–Sobolev inequalities in planar domains are based

on the following result (Theorem 3.3, Proposition 3.4 [4]) which connected the classical mappings theory and the
Sobolev spaces theory.

Theorem 3.1. Let Ω ⊂ R2 be a simply connected domain with non-empty boundary and ϕ : Ω → D be a conformal
homeomorphism. Suppose that the (Inverse) Brennan’s Conjecture holds for the interval [α0, 2/3) where α0 ∈


−2, 0


and p ∈


|α0|+2
|α0|+1 , 2


.

Then the inverse mapping ϕ−1 induces a bounded composition operator

(ϕ−1)∗ : L1
p(Ω)→ L1

q(D)
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for any q such that

1 ≤ q ≤
p |α0|

2+ |α0| − p
<

2p

4− p

and for any function f ∈ L1
p(Ω) the inequality

∥(ϕ−1)∗ f | L1,q(D)∥ ≤


D
|(ϕ−1)′|

(p−2)q
p−q dudv

 p−q
pq

∥ f | L1,p(Ω)∥

holds.

Remark 3.2. Let us remark that |α0|+2
|α0|+1 >

4
3 for any α0 ∈


−2, 0


.

Using this theorem we prove

Theorem C′. Suppose that Ω ⊂ C is a simply connected domain with non empty boundary, the Brennan’s Conjecture
holds for the interval [α0, 2/3), where α0 ∈


−2, 0


and h(z) = Jϕ(z) is the conformal weight defined by a conformal

homeomorphism ϕ : Ω → D. Then for every p ∈ ((|α0| + 2)/(|α0| + 1), 2) and every function f ∈ W 1,p(Ω), the
inequality

inf
c∈R


Ω
| f (x, y)− c|r h(z) dxdy

 1
r

≤ Br,p(Ω , h)


Ω
|∇ f (x, y)|p dxdy

 1
p

holds for any r such that

1 ≤ r ≤
2p

2− p
·
|α0|

2+ |α0|
<

p

2− p

with the constant

Br,p(Ω , h) ≤ inf
q∈[1,2p/(4−p))


K p,q(D) · Br,q(D)


.

Here Br,q(D) is the best constant in the (non-weighted) Poincaré–Sobolev inequality in the unit disc D ⊂ C and
K p,q(Ω) is the norm of composition operator

ϕ−1
∗
: L1,p(Ω)→ L1,q(D)

generated by the inverse conformal mapping ϕ−1
: D→ Ω :

K p,q(Ω) ≤


D

ϕ−1
′

(p−2)q
p−q

dudv

 p−q
pq

.

Proof. By the Riemann Mapping Theorem, there exists a conformal mapping ϕ : Ω → D, and by the (Inverse)
Brennan’s Conjecture,

D
|(ϕ−1)′(u, v)|α dudv < +∞, for all − 2 < α0 < α < 2/3.

Hence, by Theorem 3.1, the inequality

∥∇( f ◦ ϕ−1) | Lq(D)∥ ≤ K p.q(D)∥∇ f | L p(Ω)∥

holds for every function f ∈ L1,p(Ω) and for any q such that

1 ≤ q ≤
p |α0|

2+ |α0| − p
<

2p

4− p
. (3.1)
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Choose arbitrarily f ∈ C1(Ω). Then g = f ◦ ϕ−1
∈ C1(D) and, by the classical Poincaré–Sobolev inequality,

inf
c∈R
∥ f ◦ ϕ−1

− c | Lr (D)∥ ≤ Bq,r (D)∥∇( f ◦ ϕ−1) | Lq(D)∥ (3.2)

for any r such that

1 ≤ r ≤
2q

2− q
.

By elementary calculations from the inequality (3.1), it follows that

2q

2− q
≤

2p

2− p
·
|α0|

2+ |α0|
<

p

2− p
.

Combining inequalities for 2q/(2− q) and r we conclude that the inequality (3.2) holds for any r such that

1 ≤ r ≤
2p

2− p
·
|α0|

2+ |α0|
<

p

2− p
.

Using the change of variable formula, the classical Poincaré–Sobolev inequality for the unit disc

inf
c∈R


D
|g(u, v)− c|r dudv

 1
r

≤ Br,q(D)


D
|∇g(u, v)|q dudv

 1
q

and Theorem 3.1, we finally infer

inf
c∈R


Ω
| f (x, y)− c|r h(x, y) dxdy

 1
r

= inf
c∈R


Ω
| f (x, y)− c|r Jϕ(x, y) dxdy

 1
r

= inf
c∈R


D
|g(u, v)− c|r dudv

 1
r

≤ Br,q(D)


D
|∇g(u, v)|q dudv

 1
q

≤ K p,q(D) · Br,q(D)


Ω
|∇ f (x, y)|p dxdy

 1
p

.

Approximating an arbitrary function f ∈ W 1,p(Ω) by smooth functions we obtain

inf
c∈R


Ω
| f (x, y)− c|r h(z) dxdy

 1
r

≤ Br,p(Ω , h)


Ω
|∇ f (x, y)|p dxdy

 1
p

with the constant

Br,p(Ω , h) ≤ inf
q:q∈[1,2p/(4−p))


K p,q(D) · Br,q(D)


. �

The property of the conformal α-regularity implies the integrability of a Jacobian of conformal mappings
(conformal weights) and therefore for any conformal α-regular domain we have the embedding of weighted Lebesgue
spaces Lr (Ω , h) into non-weighted Lebesgue spaces Ls(Ω) for s = α−2

α
r .

Lemma 3.3. Let Ω be a conformal α-regular domain. Then for any function f ∈ Lr (Ω , h), α/(α− 2) ≤ r <∞, the
inequality

∥ f | Ls(Ω)∥ ≤


D

(ϕ−1)′
α dudv

 2
α
·

1
s

∥ f | Lr (Ω , h)∥

holds for s = α−2
α

r .

Proof. Since Ω is a conformal α-regular domain then there exists a conformal mapping ϕ : Ω → D such that
D

Jϕ−1(u, v)
 r

r−s dudv

 r−s
rs

=


D

(ϕ−1)′(u, v)
α dudv

 2
α
·

1
s

<∞,
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for s = α−2
α

r . Then

∥ f | Ls(Ω)∥ =


Ω
| f (x, y)|s dxdy

 1
s

=


Ω
| f (x, y)|s J

s
r
ϕ (x, y)J

−
s
r

ϕ (x, y) dxdy

 1
s

≤


Ω
| f (x, y)|r Jϕ(x, y) dxdy

 1
r


Ω
J
−

s
r−s

ϕ (x, y) dxdy

 r−s
rs

=


Ω
| f (x, y)|r h(x, y) dxdy

 1
r


D
J

r
r−s

ϕ−1 (u, v) dudv

 r−s
rs

=


Ω
| f (x, y)|r h(x, y) dxdy

 1
r


D

(ϕ−1)′(u, v)
α dudv

 2
α
·

1
s

. (3.3)

The Lemma is proved. �

From Theorem C′ and Lemma 3.3 follows Theorem B′:

Theorem B′. Suppose that Ω ⊂ C is a simply connected domain with non empty boundary, the Brennan’s Conjecture
holds for the interval [α0, 2/3), where α0 ∈


−2, 0


.

Then for every

p ∈


max


4
3
,

2α(|α0| + 2)
(2α + 3α|α0| − 4|α0|)

, 2


,

every s ∈ [1, α−2
α

p
2−p

|α0|
2+|α0
] and every function f ∈ W 1,p(Ω), the inequality

inf
c∈R


Ω
| f (x, y)− c|s dxdy

 1
s

≤ Bs,p(Ω)


Ω
|∇ f (x, y)|p dxdy

 1
p

(3.4)

holds with the constant

Bs,p(Ω) ≤ ∥(ϕ−1)′|Lα(D)∥
2
s Br,p(Ω , h) ≤ inf

q∈[1,2p/(4−p))


B αs
α−2 ,q

(D) · ∥(ϕ−1)′|Lα(D)∥
2
s K p,q(D)


.

Proof. The inequality (3.4) immediately follows from the main inequality of Theorem C′ and the main inequality of
Lemma 3.3. The last part of this inequality used known estimates for the constant of the Poincaré–Sobolev inequality
in the unit disc.

It is necessary to clarify the restrictions for parameters p, r, s, because these restrictions do not follow directly from
Theorem A′ and Lemma 3.3.

By Lemma 3.3 s = α−2
α

r . By Theorem C′

1 ≤ r ≤
2p

2− p
·
|α0|

2+ |α0|
<

p

2− p
.

Hence

1 ≤ s ≤
α − 2
α
·

2p

2− p
·
|α0|

2+ |α0|
<
α − 2
α
·

p

2− p
.

Since 1 ≤ s we have from this inequality that

α

α − 2
≤

2p

2− p
·
|α0|

2+ |α0|
<

p

2− p
.
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By elementary calculations

p ≥
2α(2+ |α0|)

2α + 3α|α0| − 4|α0|
>

α

α − 1
.

The last inequality is correct by factor that Brennan’s conjecture is correct for all α : −2 < α < 2/3. �

Theorem A′ follows from Theorem B′, using s = p, that is necessary for coincidence of the first nontrivial
Neumann–Laplace eigenvalue and the constant in the Poincaré–Sobolev inequality of Theorem B′.

Theorem A′. Let ϕ : Ω → D be a conformal homeomorphism from a conformal α-regular domain Ω to the unit disc
D and the Brennan’s Conjecture holds for the interval [α0, 2/3), where α0 ∈


−2, 0


.

Then for every

p ∈


max


4/3,

4(α + |α0|)

α(2+ |α0|)


, 2


the following inequality holds

1
µp(Ω)

≤ inf
q∈[1,2p/(4−p))


B p

αp
α−2 ,q

(D) · ∥(ϕ−1)′|Lα(D)∥2


D

ϕ−1
′

(p−2)q
p−q

dudv

 p−q
q

.

Proof. By Lemma 3.3 p = α−2
α

r . By Theorem C′

1 ≤ r ≤
2p

2− p
·
|α0|

2+ |α0|
<

p

2− p
.

Hence

α

α − 2
≤

1
2− p

·
2 |α0|

2+ |α0|
.

By elementary calculations

p ≥ 2−
2 |α0|

2+ |α0|

α − 2
α
=

4(α + |α0|)

α(2+ |α0|)
>
α + 2
α

.

The last inequality holds provided that the Brennan’s conjecture holds true all α : −2 < α < 2/3. �

Corollary A′. Suppose that Ω is smoothly bounded Jordan domain with a boundary ∂Ω of a class C1 with a Dini
continuous normal. Let ϕ : Ω → D be a conformal homeomorphism from Ω onto the unit disc D. Then for every
p ∈ (1, 2) the following inequality is correct

1
µp(Ω)

≤ ∥(ϕ−1)′|L∞(D)∥p 1
µp(D)

.

Proof. If Ω is smoothly bounded Jordan domain with a boundary ∂Ω of a class C1 with a Dini continuous normal,
then for a conformal mapping ϕ : Ω → D, the derivative ϕ′ is bounded away from 0 and ∞ [23]. Hence. we can
apply Theorem A′ in the limit case α = ∞ and p = q . Then

1
µp(Ω)

≤ B p
p,p(D) · ∥(ϕ−1)′|L∞(D)∥2∥(ϕ−1)′|L∞(D)∥p−2

= ∥(ϕ−1)′|L∞(D)∥p 1
µp(D)

.

The corollary is proved. �

As an application we obtain the lower estimate of the first non-trivial eigenvalue on the Neumann eigenvalue
problem for the p-Laplace operator in the interior of the cardioid (which is a non-convex domain with a non-smooth
boundary).
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Example 3.4. Let Ωc be the interior of the cardioid ρ = 2(1+ cos θ). The diffeomorphism

z = ψ(w) = (w + 1)2, w = u + iv,

is conformal and maps the unit disc D onto Ωc. Then by Theorem A′:

1
µp(Ωc)

≤ inf
1≤q≤ 2p

4−p


2
π δ


1− δ

1/2− δ

1−δ
p 

D
(2|w + 1|)α dudv

 2
α

×


D
(2|w + 1|)

(p−2)q
p−q dudv

 p−q
q

. (3.5)

Here δ = 1/q − (α − 2)/αp.
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