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Exome and whole-genome analyses powered by next-generation sequencing (NGS) have become invaluable
tools in identifying causal mutations responsible for Mendelian disorders. Given that individual exomes contain
several thousand single nucleotide variants and insertions/deletions, it remains a challenge to analyze large num-
bers of variants from multiple exomes to identify causal alleles associated with inherited conditions. To this end,
we have developed user-friendly software that analyzes variant calls from multiple individuals to facilitate iden-

gz:;oerds' tification of causal mutations. The software, termed exomeSuite, filters for putative causative variants of mono-
Filtering genic diseases inherited in one of three forms: dominant, recessive caused by a homozygous variant, or recessive
Software caused by two compound heterozygous variants. In addition, exomeSuite can perform homozygosity mapping
Mendelian disease and analyze the variant data of multiple unrelated individuals. Here we demonstrate that filtering of variants
Homozygosity mapping with exomeSuite reduces datasets to a fraction of a percent of their original size. To the best of our knowledge
this is the first freely available software developed to analyze variant data from multiple individuals that rapidly

assimilates and filters large data sets based on pattern of inheritance.
© 2014 Elsevier Inc. All rights reserved.
1. Introduction individual patient or a cohort of subjects, including patients and unaf-

Recent technological advances have made it economically feasible to
sequence exomes or whole genomes of large numbers of individuals. As
aresult new analysis tools are required to handle the large sets of genet-
ic sequencing data. To this end several sequence alignment and variant
callers have been developed, however; user friendly software that
systematically compiles and compares variant call files is lacking.

The software, called exomeSuite, was designed to perform multiple
functions related to novel monogenic disease-associated mutation
discovery. The primary function is to filter variant calls from either an
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fected individuals, to identify candidate disease-causing mutations
inherited in either dominant or recessive fashion. Additionally, the soft-
ware allows users to compile databases of variants identified from
exomes they have sequenced and use these databases to annotate re-
sults or to query them by gene. Other minor functions incorporated
into the software are: the ability to build and maintain databases of
variants of interest and screen variant call format (VCF) files against
the said databases, the ability to annotate results with publicly available
databases/tools (similar to ANNOVAR [1]), the ability to perform SNP-
based homozygosity mapping (similar to HomozygosityMapper2012
[2]), and the ability to perform set functions on result files.

The software was designed to accommodate a variety of organiza-
tional and structural differences in the format of input files generated
by different labs; as such, extremely few formatting requirements are
imposed on input data. Details of these formatting requirements are
given in Section S1 of the Supplemental material.

We describe the software that we developed, and the analysis of two
pedigrees that led to an improvement in the original software design.
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2. Methods
2.1. Subjects

Information and blood samples were collected from members across
three generations of a consanguineous Pakistani family (Pedigree 1,
Fig. 1A), as well as a non-consanguineous family of European ancestry
(Pedigree 2, Fig. 2A). Standard ophthalmic evaluation was performed
on all available members of these pedigrees. Written informed patient
consent and local institutional review board (IRB) approvals were ob-
tained for studies involving human subjects. All clinical investigations
were conducted according to the principles expressed in the Declaration
of Helsinki.

The Pakistani family (Pedigree 1) is from the Punjab province of
Pakistan. A detailed medical history was obtained by interviewing fam-
ily members. A total of 22 individuals including 9 affected individuals
were enrolled. Detailed retinal evaluation including funduscopy was
carried out on 3 affected members (V:1, V:10 and V:16) at Layton
Rahmatulla Benevolent Trust (LRBT) Hospital, Lahore. Blood samples
were collected from affected and unaffected family members. DNA
was extracted as described previously [3,4].

In the pedigree of European ancestry (Pedigree 2), funduscopy, elec-
troretinography, and visual field measurement were performed on
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Patient III:3. Blood was collected from the proband as well as two addi-
tional affected brothers of the proband who were reported to have been
diagnosed with retinitis pigmentosa (RP). There was no known history
of hearing loss (USH2A) mutations.

2.2. Exome capture, sequencing and data processing

Whole exomes were captured using NimbleGen SeqCap EZ exome
V3 probes (Roche NimbleGen, Madison, WI) and sequenced using the
[llumina Hi Seq (Illumina, San Diego, CA) following manufacturers' pro-
tocols. Unique paired-end (2 x 100 base) DNA sequence reads that
passed quality control was mapped to the human reference genome
build hg19 with SAMtools [5] and variants were called using GATK [6].

Using exomeSuite, the resultant single nucleotide variant (SNV) and
insertion/deletion (indel) files were first filtered for the presumed
pattern of inheritance, and subsequently analyzed for variants that
matched the following criteria: (1) the variant was found in the homo-
zygous state in fewer than 0.5% of individuals in all three public data-
bases integrated into exomeSuite (1000 Genome [7], HapMap [8], and
NHLBI ESP6500 [9]), (2) if the variant is a SNV it is not predicted by
MutationTaster [10], PolyPhen [11], and SIFT [12] as benign or polymor-
phic, and (3) if the variant is intronic, it is less than 50 bases from the
intron-exon junction. Additionally, if the presumed inheritance pattern
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Fig. 1. Pedigree 1. (A) Results of STR analysis as well as RDH5 ¢.536 and LRP1 ¢.9410 genotyping are displayed below the corresponding individual adjacent to colored chromosomes
depicting haplotypes. Loci are ordered top-to-bottom in a centromeric-to-telomeric fashion based on coordinates given by UCSC Genome Browser. (B) Results of in-silico homozygosity
mapping performed on SNPs exome sequenced from individuals V:4,V:5,V:9,and V:16. A 14.7 MBp region at chromosome 12q14 that is homozygous in the four affected members exome
sequenced in Pedigree 1 is shown. Green tally marks indicate loci that are homozygous and identical in all four individuals, red tally marks indicate loci that are not, and yellow tally marks
indicate loci where there was insufficient read depth in one or more individuals. Regions between adjacent tally marks of the same color are shaded. The 12q14 homozygous region in-
cludes the LRP1 and RDH5 genes which are separated by approximately 1.4 MBp. Performance of exomeSuite processing when absence of a variant in a variant call file is interpreted as

homozygous reference (C) and unknown genotype (D).
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Fig. 2. Pedigree 2. (A) The individual whose exome was sequenced, patient IIl:2, is denoted
by a red outline. USH2A genotypes for all individuals enrolled in this study are found below
the respective subject. (B) Filtering performance of exomeSuite processing.

is recessive with underlying compound heterozygous variants then
there must be at least two variants within a gene that satisfy these
post-filtering criteria.

2.3. Segregation analysis

For Pedigree 1, primers (forward primer 5-CAGATGCTCCCAGGAAGA
AG-3, reverse primer 5-GAGTGGGCTGCTGTTAGTCC-3 and forward
primer 5-CTTCCTGCAGGTCCTACACC-3, reverse primer 5-AATGGTCA
CCCCAGTCTGTC-3) were designed to amplify and sequence exon 3 of
retinol dehydrogenase 5 (RDH5) and exon 59 of low density lipoprotein
receptor-related protein 1 (LRP1), respectively. All members of pedigree
1 for whom DNA samples were available as well as 95 unrelated
Pakistani control subjects were screened for the RDH5 ¢.536A>G and
LRP1 ¢.9410C>T variants.

For Pedigree 2, primers (forward primer 5-TGAAAGTCACAAAAGCCT
ACCC-3, reverse primer 5-TGGCCTCAAAGTATGATGGA-3, and forward
primer 5-CAACTCTGCATGTTACTTCTGG-3, reverse primer 5-CAGATTCC
ACCTCAAAATGCT-3) were designed to amplify and sequence exons 52
and 56 of USH2A respectively.

2.4. Linkage and haplotype analyses

Microsatellite markers spanning reported loci or genes associated
with RP/RD were analyzed and haplotypes were constructed as de-
scribed earlier [13]. In brief, fluorescently labeled short tandem repeat
markers flanking the disease locus were used for amplification. The
resulting PCR products were separated in an ABI3100 DNA analyzer,
and alleles were assigned by using GeneMapper software ver. 4
(Applied Biosystems, Foster City, CA). The marker order and distances
between the markers were obtained from the national Center for Bio-
technology Information sequence maps. Two-point linkage analysis
with markers at the RDH5 locus was performed using the FASTLINK
version of MLINK from the LINKAGE Program Package, whereas

maximum LOD scores were calculated using ILINK. Autosomal recessive
RD was analyzed as a fully penetrant trait with an affected allele fre-
quency of 0.001 [13].

2.5. Development of exomeSuite

exomeSuite is a collection of scripts programmed in a combination
of Matlab and C+ + available either as source code or as pre-compiled
stand-alone application with a graphical user interface.

exomeSuite requires installation of the Matlab Compiler Runtime.
Mac and Linux installations additionally require X11 installation [14].

2.5.1. Screening & filtering by inheritance pattern

exomeSuite is blind to the relationship between individuals and only
considers whether individuals are affected or unaffected by a condition;
it operates on the premise that the reference allele does not manifest
the condition studied.

The software was designed with the following processing pipeline in
mind (Fig. 3). First, screen individuals for previously published muta-
tions known to cause the disease of interest. If none are found, then
screen individuals for variants segregating with the disease phenotype
according to the expected mode of inheritance. After input files are
filtered to identify variants segregating with the disease phenotype,
variants can then be annotated based on user-specified criteria, such
as allele frequency less than 0.5%, to eliminate variants which may
segregate with the disease phenotype but occur at high frequency in
the population. Additional annotation steps might include predicted
impact of the mutation (damaging vs. benign), and expression in rele-
vant tissue(s).

Input files should be in the form of individual tab-separated variable
format text files that adhere to the variant call file (VCF) format, or some
highly similar format. Acceptable deviations from the VCF format are
detailed in the manual. Since exomeSuite was conceived for the purpose
of germ line variant discovery, it accepts a maximum of two alleles at a
given location for a given individual, and the variant(s) must be report-
ed as either heterozygous or homozygous variants.

Screening for known variants is accomplished by comparing the ge-
nomic location and variant alleles to one or more databases of variants
of interest. The most current set of dbSNP variants with clinical impact
attributes is included in the software. Additional databases can be creat-
ed by the user either manually or by importing a tab separated variable
table that can be created in any spreadsheet viewer, e.g. Microsoft Excel.
Results of screening for known mutations are output in a tab delimited
text format that can be opened in any spreadsheet viewer.

When screening for known variants fails to identify the causal gene
for the disease, an individual or a group of individuals can be filtered for
variants that segregate by mode of inheritance: autosomal dominant,
autosomal recessive with suspected homozygous inheritance, and auto-
somal recessive with suspected compound heterozygous inheritance.
Each of these analyses are output as separate files as described below.

» dominant.txt: The mode of inheritance is presumed to be autosomal
dominant. The output file includes all variants, for which each affected
individual carries one variant allele and one reference allele, and each
unaffected individual is homozygous reference.
recessive-homozygous.txt: The mode of inheritance is presumed to be
recessive, and the causative mutation occurs in the homozygous state.
The output file includes all variants, for which each affected individual
carries the variant at the same site in both alleles, and each unaffected
individuals has at least one reference allele.

recessive-compound het.txt: The mode of inheritance is presumed to
be recessive, but disease in affected individuals is caused by inheri-
tance of two potentially damaging mutations on separate alleles
(compound heterozygotes). Unaffected individuals carry only a single
(simple heterozygotes) or no variant alleles (homozygous reference).
The compound heterozygous output file includes all variants for
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Fig. 3. Basic workflow of exomeSuite. The blue box indicates everything included in exomeSuite. Gray arrows entering the blue box indicate outside resources that exomeSuite has been
designed to utilize automatically. Within the blue box databases that the user can create and manipulate are indicated by colored cylinders; the red database is the “genes of interest”
database, the purple database is the database of variants identified in sequenced exomes, and the green database is a database of known mutations. Funnels represent filtering functions,

and are numbered to indicate the order in which they were designed to be used.

which all affected individual are heterozygous, and for which all unaf-
fected individuals are either homozygous reference or heterozygous,
with the additional caveat that there must be two or more variants
within a gene for them to be included in the output. If three or more
heterozygous variants are present within a single gene all are included
in the result file, and the researcher is left to decide which two vari-
ants are causative of the disease state should this gene indeed be re-
sponsible for the manifested phenotype. Complicating this analysis
is the presence of mutations in cis (occurring on the same allele)
and trans (occurring on different alleles) that needs to be clarified
by segregation analysis.

Informal and formal descriptions of the algorithm are available in
the Supplementary material.

To properly analyze sex-linked disease-causative mutations all Y
chromosome SNV/indels called for female subjects are eliminated
since they are due to misalignment of the sequence to the reference
human genome. Likewise, all X and Y chromosome SNV/indels called
for male subjects are treated as hemizygous (coded as homozygous
SNV/indels) when filtering for homozygous recessive inheritance. We
treat X chromosome SNV/indels in males as heterozygous when filter-
ing for compound heterozygous recessive inheritance, since the domi-
nant filter eliminates any variants for which an affected individual is a
homozygous variant. This is not done for the Y chromosome because
it would result in an output identical to the homozygous recessive file.

In addition to generating result files for the three segregation modes,
exomeSuite is capable of generating the union, intersection and comple-
ment of one result file with respect to another result file. The union of
two result files allows one to study mutations in unrelated individuals
in the context of genes rather than variants, enabling identification of
candidate genes in unrelated individuals where mutations may be
homozygous recessive in some and compound heterozygous in other
individuals. The intersection allows one to study specific mutations at
the variant level across files of different input format. The complement

of results is particularly informative for determining what variants
have been filtered out by the inclusion of additional individuals in the
analysis.

2.5.2. Post-filtering annotation

The software allows for the automated annotation of variants, a
feature we refer to as post-filtering analysis, based on user-defined
criteria. The information for this automated annotation must be pro-
vided in the input file or selected from the annotation databases/
tools that exomeSuite was designed to interface with. Users may
define their personal lists of genes of interest, i.e. genes for which
mutations are known to be associated with the disease being stud-
ied; exomeSuite includes a list of genes curated by the RetNet
website [15], as well as the ability to download newer lists when
they become available on the RetNet website. exomeSuite includes
the ability to annotate variants for: allele frequency by interfacing
with 1000 Genome [7], HapMap [8], and NHLBI ESP 6500 [9],
as well as user-defined databases created with the software; pres-
ence in Watson and Venters genomes [16]; impact as predicted by
MutationTaster [10], PolyPhen [11], and SIFT [12]; distance to
nearest splice site (UCSC) [17]; predicted impact on splicing
(NNSplice) [18]; if the variant occurs in a microRNA gene (mirBase)
[19] or region targeted by microRNA (TargetScan) [20]; and lastly,
tissue expression (NCBI Unigene EST Profile [21]). exomeSuite also
provides hyperlinks for each candidate gene to the HGNC site and
hyperlinks for rsIDs to NCBI's SNP Cluster Report site [22].

Available disease-associated variant databases are known to contain
false positives, hence results of variant screening against such databases
should be interpreted carefully. For example, ABCA4 p.His423Arg &
p.Ser2255Ile are both listed in HGMD [23] but have homozygous geno-
type frequencies greater than 6.5% in 1000 Genome [7], HapMap [8] and
NHLBI ESP 6500 [9] and so are unlikely to cause disease. Post-filtering
annotation of variant screening files that remove high frequency alleles
eliminates many false positives.
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2.5.3. SNP-based homozygosity mapping

When analyzing consanguineous families, homozygosity mapping
may be used to identify regions of the genome that are conserved
across, and unique to, a group of affected individuals. Homozygosity
mapping requires SAMtools [5], and access to the sequence pileup of
the individuals in the form of SAM or BAM files [5]. Users are able to
set a minimum mapping quality for reads and a minimum phred score
for bases used to perform homozygosity mapping, as well as a minimum
read depth and cutoff for making homozygosity/heterozygosity deci-
sions. Results are displayed as colored tally marks along an image of
the chromosome; an example is given for Pedigree 1 in the Supplemen-
tal material. Green tally marks designate SNPs that are identically
homozygous in all affected individuals and not so in any unaffected
individual, red tallies indicate regions that are not identically homozy-
gous in all affected individuals, black tallies indicate regions that are in-
conclusive (all affected individuals are homozygous, but so is at least
one unaffected individual), and yellow tally marks indicate SNPs for
which one or more individuals lack sufficient read depth to conclude
segregation. Regions between adjacent tally marks of the same color
are shaded in.

Users are able to define a custom set of SNPs that they would like to
use when performing homozygosity mapping, or rely upon a set of 2277
SNPs selected from those identified in the NHLBI ESP6500 database
based on two criteria: (1) maximize the information the SNV imparts,
and (2) maintain a maximum distance between adjacent queried
SNVs of 10 megabases where possible.

3. Results
To demonstrate the capabilities of exomeSuite, we present the anal-

ysis of exomes from two different pedigrees; one representing a consan-
guineous family with recessive inheritance (Pedigree 1), and another

representing a recessive pattern of inheritance possibly due to a pair
of compound heterozygous mutations (Pedigree 2).

Exome sequencing produced an average of 13.75 gigabases of
sequence per individual which when mapped yielded an average read
depth of 106 within the targeted regions.

Pedigree 1 (Fig. 1A), a five-generation pedigree with 6 consanguine-
ous marriages and 9 members affected with retinal degeneration (RD)
was ascertained from the Punjab province of Pakistan. The parents of
all affected members were unaffected. The pattern of inheritance of
retinal degeneration was assumed to be autosomal recessive.

The initial symptom of disease was night blindness with onset in
early childhood. Visual acuities of affected individuals were reduced
when compared to unaffected individuals. Funduscopy of Patient V:1,
V:10 and V:16 revealed findings consistent with FA, a specific form
of congenital night blindness that may be associated with diffuse
cone dysfunction [24,25]. At the age of 17, the fundus of patient V:1
(Fig.4A) exhibited normal foveal reflexes with no apparent vascular ab-
normalities and normal optic nerves. Whitish yellow subretinal punc-
tate deposits were present along and anterior to the arcades, and
extended into the periphery as linear hypopigmented flecks organized
in concentric rings. Patient V:10, at age 18, showed similar findings to
patient V:1 (Fig. 4B) with whitish-yellow subretinal punctate deposits
extending posteriorly within the arcades, and linear hypopigmented
lesions extending into the periphery with punctate spots superimposed
upon the deeper, hypopigmented, linear lesions. Foveal light reflexes
were not clearly evident and there were retinal pigment epithelial
abnormalities near the fovea in each eye. Patient V:16 at 30 years old
exhibited similar fundus findings as V:1 and V:10 (Fig. 4C); however,
the punctate deposits were less white and appeared less superficial.
The foveal light reflex was not evident and there were retinal pigment
epithelial abnormalities near the fovea as well as yellow subretinal le-
sions within the arcades and involving the fovea. The punctate deposits

Fig. 4. Color fundus photos of affected individuals. (A) V:1 at age 17 shows whitish-yellow subretinal punctate deposits along and anterior to the arcades (black arrows), extending into the
periphery as linear hypopigmented flecks organized in concentric rings (black arrowheads). (B) V:10 at age 18 shows similar punctate deposits extending posteriorly within the arcades
and linear hypopigmented lesions extending into the periphery with punctate spots superimposed upon the deeper, hypopigmented, linear lesions (black arrow). Foveal light reflexes
were not clearly seen and there were retinal pigment epithelial abnormalities near the fovea in each eye (white arrows). (C) V:16 at age 30 shows similar findings with small yellow

subretinal lesions involving the fovea in the left eye (white arrow).
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and flecks were observed together in some regions of the fundus with
the puncta superficial to the deeper, hypopigmented, linear flecks. Elec-
troretinography (ERG) of the affected individuals showed no response
after dark adaptation to dim or bright stimuli, although photopic
30 Hz flicker responses were measurable but reduced from normal, con-
sistent with diffuse rod-greater-than-cone dystrophy (data not shown).
Overall the phenotype observed in affected members of this pedigree is
similar to other patients described with FA [26,27,25].

The exome of individual V:5 was captured and sequenced. Analysis
of these variants did not identify either homozygous or compound
heterozygous, known or novel damaging variants in genes previously
reported to be involved in causing RD. Subsequently, exome capture
and sequencing were performed on three additional members (V:4,
V:9, and V:16). We found 5878 variants in 3571 unique genes segregat-
ing with the disease phenotype (Fig. 1¢). Twenty-three autosomal vari-
ants passed the post processing filters described in Section 2.2; twelve
of the 23 variants were not found in the homozygous state in any of
our previously sequenced unaffected individual exomes. One of the 12
variants was located in an intergenic region, eight were intronic variants
predicted by NNSplice to not affect splicing, one represented an in-
frame insertion of a single amino acid, and one was a silent variant
found in several other exomes we've sequenced and predicted by
NNSplice to not affect splicing. The remaining variant was a missense
variant predicted to be damaging by PolyPhen [11] and MutationTaster
[10], NM 002332.2:c.9410C>T (p.Thr3137Met), located in the LRP1
gene. This mutation is located within a YWTD domain between the
second and third ligand-binding clusters of the protein. This position
in the LRP1 protein is highly conserved across species. LRP1 is a member
of the low-density lipoprotein receptor (LDLR) family, and LDLR is
the most studied member of this family. In LDLR the YWTD domain
is thought to be critical for pH-dependent ligand release within
endosomes [28], and several missense mutations within this structure
have been associated with familial hyperlipidemia [29]. LRP5, another
LDLR member, has been previously associated with familial exudative
vitreoretinopathy (FEVR) in a single British woman [30].

To exclude the possibility of the involvement of another causative
mutation, and to confirm the involvement of LRP1, microsatellites
linked to known RD loci associated with diminished but not absent
cone responses were analyzed and tested for homozygosity. In addition
homozygosity mapping was performed using exomeSuite. Analysis of
microsatellite marker genotypes in the LRP1 locus revealed a homozy-
gous region segregating with the disease (Fig. 1A). Linkage analysis
with markers at this locus confirmed linkage with significant positive
LOD scores (Table S5). Similarly, analysis of exome variants using
exomeSuite identified a 14 megabase homozygous region on chromo-
some 12 that segregated with the disease phenotype (Fig. 1B). This
homozygous region on chromosome 12 encompassed the RDH5 gene
in addition to LRP1. Mutations in RDH5 have been reported to be associ-
ated with FA [26,31].

Subsequent manual examination of RDH5 variants in affected mem-
bers variant call files revealed the presence of a novel SNV, NM
001199771.1:¢.536A>G (p.Lys179Arg), in all affected members of the
pedigree except the proband. Manual inspection of the sequence align-
ments suggested that the p.Lys179Arg RDH5 mutation is present in the
proband but was not called as the sequence in that region did not pass
the criteria for SNP calling. Dideoxy sequencing analysis confirmed
segregation of both RDH5 ¢.536 A>G and LRP1 c.9410 C>T novel variants
in members of pedigree 1. These variants were not detected in 95 unre-
lated Pakistani controls.

To address the concern that the causative mutation might be missed
in an individual by exome analysis, the exomeSuite software was
augmented to allow for the absence of a variant in an individual's
input file to be interpreted either as homozygous reference, or as an un-
known genotype. Reanalysis of the exomes of the four affected individ-
uals in Pedigree 1 yielded 35,957 variants found to be homozygous in
one or more of the affected individuals and not heterozygous in any

(Fig. 1D). Post processing with the filters described in Section 2.2
narrowed the list to 1719 autosomal variants, of which 1385 were not
previously observed in any of the unaffected members in our sequenced
exome database. Of these, 15 were located in RetNet genes (Table S5).
Seven of the 15 were intronic variants predicted by NNSplice to not af-
fect splicing, one was a silent coding variant likewise predicted to not af-
fect splicing, one was a variant in a 3’ UTR that did not occur within a
miRNA target region, and one was a known 5’ UTR variant found to
occur at a homozygous frequency of less than 0.2% of individuals. The
remaining five variants were missense variants, only one of which, a
novel missense change, RDH5 SNV NM 001199771.1:c.536A>G
(p.Lys179Arg), was found to segregate with the disease phenotype
when the alignment files of the four sequenced individuals were manu-
ally reviewed. Reanalysis of variants following the improvements made
to exomeSuite resulted in the identification of the RDH5 variant as a
candidate.

Pedigree 2 (Fig. 2A) is of European ancestry with three siblings
affected with recessive RD. The onset of symptoms in the proband
(I1:3) was at age 26. The patient was examined at age 46 and visual
acuity was noted to be 20/30 OD, 20/50 OS. Upon fundus examina-
tion her retina showed diffuse retinal atrophy with mild bone
spicules (data not shown). Her electroretinogram showed diffuse
rod-cone dysfunction (performed at age 39) and visual fields showed
a ring scotoma with intact central fields, consistent with a diagnosis of
RP (data not shown).

Patient II1:2, was selected for exome sequencing, and sequence var-
iants were initially analyzed for compound heterozygous mutations.
Patient II:2 carried 26,470 variants in 5916 genes that matched the in-
heritance criteria (Fig. 2B). Post filtering analysis, as described in
Section 2.2, narrowed this list to 1388 autosomal variants in 334 unique
genes; of these, 18 variants were identified in 7 unique genes previously
associated with RD (Table S3). Removing a variant found to be homozy-
gous in one or more unaffected individuals in our exome sequenced
database resulted in just 16 variants in 6 genes that could satisfy a reces-
sive pattern of disease inheritance assumed to be caused by two com-
pound heterozygous mutations. Removing intronic variants and silent
coding variants predicted by NNSplice to not affect splicing further
narrowed the candidate list to 5 variants in 2 RetNet genes. One of the
variants was located in the 3’ UTR region of PDE6B that is predicted to
not reside within a miRNA targeted region. Only one gene, USH2A,
was determined to carry two previously reported mutations: a missense
mutation NM 206933.2:¢.10342G>A (p.Glu3448Lys) [32], and an
intronic mutation NM 206933.2:¢.11047+1G>A [33]. The p.Glu3448Lys
mutation was previously reported to be heterozygous in a single affect-
ed individual and absent in 80 controls [32], and categorized as a rare
polymorphism. The p.Glu3448Lys mutation was predicted by SIFT
[12], pMut [34] and AGVGD [35] to be benign while PolyPhen [11]
predicted the variant to be damaging. On reexamination, AGVGD [35]
categorized the variant as C55, very likely to be damaging. Additionally,
MutationTaster [10] predicts the variant as “disease causing.” Subse-
quent dideoxy sequencing of the three affected members of this
pedigree confirmed heterozygosity for the USH2A missense variant
and the USH2A intronic SNV segregating with the disease phenotype
(Fig. 2A).

4. Discussion

As the rapid pace of next generation sequencing technology con-
tinues to drive cost and sequencing times down, utilization of the tech-
nique will continue to grow. This growth however must be met with an
ability to rapidly process the enormous amount of data and interpret the
results. Our aim was to develop a simple-to-use, freely available applica-
tion that rapidly assimilates and filters large sets of NGS data to facilitate
identification of disease-associated genes. Special care was taken to
ensure minimal requirements on the format of input data so that the
software could process virtually all types of data sets.
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We have used exomeSuite previously to analyze a consanguineous
pedigree with autosomal recessive retinal degeneration in which the
exomes of one unaffected and two affected siblings were sequenced.
This led to the identification of a novel splice site variant in the RBP4
gene, NM 006744.3:c.111+1G>A, that segregated with the disease phe-
notype [36]. The two pedigrees presented in this manuscript where
exomeSuite identified four mutations in three genes (LRP1, titRDH5
and USH2A), along with the previously reported pedigree [36], demon-
strate the ability of exomeSuite to correctly identify causative mutations
segregating with disease.

Furthermore, we have demonstrated how the application may be
used to identify disease-causing mutations despite their absence in
some of the input files. The built-in homozygosity mapper allowed for
the identification of a novel RDH5 variant despite a false negative SNV
call in the proband of pedigree 1. Despite these limitations, and until
direct sequencing (i.e. not resequencing) of the whole genome becomes
available, exome sequencing continues to be widely accepted as a stan-
dard tool for screening individuals for novel disease-causing genetic
mutations.

In this study exome sequencing led to the identification of the novel
disease causing RDH5 mutation in a consanguineous Pakistani pedigree.
This mutation occurs in the active site of the enzyme [37] and likely
eliminates or drastically reduces its activity. The fundus phenotype of
the three patients examined is typical of FA. Therefore it is likely that
the novel RDH5 missense variant ¢.536 A>G (p.Lys179Arg) may be
sufficient to cause the retinal phenotype observed in Pedigree 1. How-
ever, involvement of the novel LRP1 change segregating with the
disease in this pedigree cannot be ruled out. Additional studies are
needed to establish the causative nature of the RDH5 variant and the
role of the LRP1 variant in causing retinal pathology or modifying the
phenotype in this pedigree.

Using exomeSuite we also identified two USH2A mutations in a ped-
igree of European ancestry. Both of these mutations have been previ-
ously reported. The intronic variant was recently found to occur in a
homozygous state in an affected individual of a Pakistani pedigree
[33], while the missense variant was identified in a single patient
while screening a cohort for USH2A variants [32].

exomeSuite provides users with a user-friendly package of functions
geared to rapidly assimilate data and narrowing several thousand vari-
ants to small lists that can easily be manually reviewed for the identifi-
cation of disease-causing variants. To the best of our knowledge there is
no other freely available application that provides all this functionality.
In this manuscript we validated its main functions in identifying the
underlying genetic cause of disease in two pedigrees, including one for
which the input data was imperfect.

Exome sequencing and analysis enable discovery of variants in sev-
eral genes in an unbiased manner. This has led to the identification of
several novel variants in genes known to cause disease, as well as new
disease-causative genes. Additionally, it can lead to the identification
of rare variants in multiple genes segregating with disease, such as the
RDH5 and LRP1 variants presented here. Further analysis of such vari-
ants may explain the heterogeneity of phenotypes observed in individ-
uals with the same clinical diagnosis.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ygeno.2014.02.006.
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