The Functional Differential Equation $x'(t) = x(x(t))^*$

E. Eder

Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, D-8046 Garching bei München, West Germany

Received November 22, 1982; revised May 11, 1983

A classification of the solutions of the functional differential equation x'(t) = x(x(t)) is given and it is proved that every solution either vanishes identically or is strictly monotonic. For monotonically increasing solutions existence and uniqueness of the solution x are proved with the condition $x(t_0) = x_0$ where (t_0, x_0) is any given pair of reals in some specified subset of \mathbb{R}^2 . Every monotonically increasing solution is thus obtained. It is analytic and depends analytically on t_0 and x_0 . Only for $t_0 = x_0 = 1$ is the question of analyticity still open.

INTRODUCTION

In many problems of physics and other sciences there occur retarded differential equations of the form

$$x'(t) = f(x(t_{ret}))$$

where the retarded time t_{ret} is given as a function of t in which the function x itself may enter as well:

$$t_{\rm ret} = F(t, x)$$

where F is a functional with two arguments: a number t and a function x.

Whereas for regular ordinary first-order differential equations there is, for every given value of $x(t_0)$ (t_0 is arbitrary but fixed), a unique solution x of the equation, there is no similar general result for retarded differential equations. Consider, for example, the equation

$$x'(t) = x(t-1) \quad \text{for} \quad t \leq 0.$$

If ξ is any C^{∞} -function mapping the closed interval [-1, 0] into the set of reals \mathbb{R} such that the (n + 1)th derivative of ξ at 0 is equal to the *n*th

* Supported by the Stiftungsfonds Deutsche Bank im Stifterverband für die Deutsche Wissenschaft.

THE FDE
$$x'(t) = x(x(t))$$
 391

derivative of ξ at -1, $\xi^{(n+1)}(0) = \xi^{(n)}(-1)$ for all nonnegative integers *n* and if we define, for $t \leq 0$,

 $x(t) := \xi^{(n)}(t+n)$ where *n* is that nonnegative integer for which $-1 < t+n \le 0$, then *x* is a solution of the equation x'(t) = x(t-1). There are retarded differential equations, however, where it is assumed that |x(t)| does not grow too fast as $t \to -\infty$ (such a property can be contained in the retarded differential equation implicitly if it becomes singular when |x(t)| grows too fast, e.g., when $|x'(t)| \ge c$, the speed of light, in electrodynamics). In some such cases it can be proved that there is a unique solution for any given "final value" $x(t_0)$ and, in the case of second-order equations, $x'(t_0)$ (see [1-3]) or for any given suitably defined "initial value at $t = -\infty$ " (see [4]). We can make a coordinate transformation for *t* and *x* so that $t = -\infty$ is transformed into a finite value s_0 of a variable *s*. If the transformation connecting the variables *t* and *s* is such that ds/dt < 0 then the retarded differential equation is transformed into an advanced differential equation

$$y'(s) = g(y(s_{ady}))$$
 with $s_{ady} = G(s, y)$.

The assumption about the growth of |x(t)| becomes a local assumption about the behaviour of y in the neighbourhood of s_0 , e.g., a differentiability condition.

In this paper we consider the equation

$$x'(t) = x(x(t))$$

as an example of such an advanced differential equation. We shall prove existence, uniqueness, analyticity and analytic dependence of solutions on initial data.

1. PRELIMINARIES AND MONOTONICITY OF SOLUTIONS

DEFINITION 1. A solution of the functional differential equation

$$x' = x \circ x \tag{(*)}$$

is a function $x: A \to \mathbb{R}$ from an interval $A \subset \mathbb{R}$ (i.e., a connected subset of \mathbb{R}) into \mathbb{R} such that x'(t) = x(x(t)) for all $t \in A$.

This implies $x(A) \subset A$ for any solution x of (*).

Consider intervals A of the form $]-\infty, a]$. If $0 < a \le 1$ then (*) together with the initial condition x(a) = a will be, in a neighbourhood of a, an

advanced differential equation which can be transformed into a retarded one by transforming a to $-\infty$ on the *t*-axis (see the Introduction).

LEMMA 1 (Monotonicity of Solutions). If $A \subset \mathbb{R}$ is some interval and $x: A \to \mathbb{R}$ obeys a differential equation of the form

$$x' = f \circ x$$
 where f is C^1

then sign $\circ x'$ is constant.

Proof. Otherwise there would be a $t_0 \in A$ such that $x'(t_0) = 0$. Thus $f(x(t_0)) = 0$. So, by the uniqueness theorem for ordinary differential equations, $x(t) \equiv x(t_0)$, and hence $x' \equiv 0$.

DEFINITION 2 (\mathbb{R}_{∞}). Let \mathbb{R}_{∞} be the set $\{-\infty\} \cup \mathbb{R} \cup \{\infty\}$ with the linear ordering \leq defined as

$$r \leq s :\Leftrightarrow (r = -\infty \text{ or } s = \infty \text{ or } (r, s \in \mathbb{R} \text{ and } r \leq \inf_{i \in \mathbb{R}} s)).$$

An open set in \mathbb{R} is either an ordinary open set in \mathbb{R} or is the union of such a set with $|r, \infty]$ and/or $[-\infty, s[$ for some real r, s. Let A be an interval in \mathbb{R} and $x: A \to \mathbb{R}$ be a continuous function. If x has a continuous extension y: $\overline{A} \stackrel{\mathbb{R}}{\simeq} \to \stackrel{\mathbb{R}}{\simeq}$, and $t \in \overline{A} \stackrel{\mathbb{R}}{\simeq}$, then let x(t) be defined as x(t) := y(t).

THEOREM 1 (Monotonicity of Solutions). Let x be a solution of (*) in an interval A. Then sign(x'(t)) is independent of t for $t \in \overline{A}$. (Closure taken in \mathbb{R} , not in \mathbb{R}° !)

Proof. Obviously, x is C^{∞} . Setting, in Lemma 1. f = x gives the constancy of sign $\circ x'$ in A. This implies that x is monotonic, and therefore also $x' = x \circ x$ is monotonic.

Thus x' has a continuous extension to a function from $\overline{A}_{\infty}^{\mathbb{R}}$ to $\overline{A}_{\infty}^{\mathbb{R}}$. If sign $\circ x'$ were not constant in \overline{A} then there would exist an $a \in \overline{A} \setminus A$ such that x'(a) = 0 but x' nonzero in A. Then x could be extended to a differentiable

THE FDE
$$x'(t) = x(x(t))$$
 393

function y on $A \cup \{a\}$ with y'(a) = 0. So $y' = y \circ y$, and y is C^{∞} . Using Lemma 1 again, for y instead of x and f, yields a contradiction.

2. MAXIMAL AND INEXTENDABLE SOLUTIONS

DEFINITION 3. A solution x of (*) on an open interval A is maximal iff it is not a proper restriction of a solution on an open interval.

An extension y of x to an open interval $B \subset \mathbb{R}$ is a (*)-extension iff, for any open interval C with $A \subset C \subset B$, $y|_C$ is a solution of (*).¹

x is *inextendable* iff it has no proper (*)-extension.

Every maximal solution of (*) is inextendable. Every solution of (*) is a restriction of a maximal solution of (*) by Zorn's lemma.

LEMMA 2 (Values at Endpoints). Let $x:]a, b[\rightarrow \mathbb{R}$ be an inextendable solution of (*). Then

$a = -\infty$	and	$b = \infty$	if $x' \equiv 0$.
$(a = -\infty \text{ or } x(a) = a)$	and	$(b = \infty \text{ or } x(b) = b)$	<i>if</i> $x' > 0$,
$(a = -\infty \text{ or } x(a) = b)$	and	$(b = \infty \text{ or } x(b) = a)$	<i>if</i> $x' < 0$.

Proof. If $a > -\infty$ then $x(a) \notin]a, b[$, as otherwise the existence theorem for ordinary differential equations would yield a solution y of $y' = x \circ y$ and y(a) = x(a) in a neighbourhood of a. By the uniqueness theorem, x and y coincide where they both are defined, in contradiction to the inextendability of x. So x(a) = a or x(a) = b if $a > -\infty$. The same is true for x(b) if $b < \infty$. From $x(]a, b[) \subset]a, b[$ follows the assertion.

3. CLASSIFICATION OF INEXTENDABLE SOLUTIONS

THEOREM 2 (Classification of Solutions). Let $x:]a, b[\to \mathbb{R}$ be an inextendable solution of (*). Then one and only one of the following statements is true:

(1)
$$x \equiv 0 \land a = -\infty \land b = \infty$$

(2) $x' > 0 \land 0 < b < \infty \land x(b) = b \land$
(i) $0 < a < 1 < b \land x(a) = a$
(ii) $a = -\infty \land -\infty < x(-\infty) < 0 \land x(x(-\infty)) = 0$

¹ Note that, in contrast to the case of ordinary differential equations, the restriction of a solution x of (*) to a subinterval of its domain need not be a solution of (*); the subinterval might fail to be invariant under x.

(3)
$$x' < 0 \land$$

(i) $-\infty < a < -1 < b < 0 \land x(a) = b \land x(b) = a$
(ii) $a = -\infty \land b = \infty \land x(-\infty) = \infty \land -\infty < x(\infty) < 0$
 $\land x(x(\infty)) = 0.$

All asymptotes are approached exponentially

Proof. By Theorem 1 we have three cases: $x' \equiv 0$, x' > 0 and x' < 0.

Case 1: $x' \equiv 0$. Then $x \circ x = x' \equiv 0$. Since x is constant, we have $x \equiv 0$. By the inextendability of x, $a = -\infty$ and $b = \infty$.

Case 2: x' > 0. Then $b < \infty$. For, assume $b = \infty$. Then $x'' = (x' \circ x) \cdot x' = (x \circ x \circ x) \cdot (x \circ x)$ is positive and monotonically increasing. Thus x grows at least quadratically. So, for large enough t,

$$t+1 < x(t)$$

and

$$x(t+1) > x(t) + x'(t) > x'(t) = x(x(t))$$

in contradiction to the monotonicity of x. So we have $b < \infty$, and $b \ge x(x(t)) = x'(t) > 0$. By Lemma 2, x(b) = b.

If $a > -\infty$ then, by Lemma 2, x(a) = a. a = x(a) = x(x(a)) = x'(a). This

394

THE FDE
$$x'(t) = x(x(t))$$
 395

is >0 by Theorem 1. As x' is increasing and (x(b) - x(a))/(b - a) = 1, we have x'(a) < 1 < x'(b). But a = x'(a) and b = x'(b). Thus a < 1 < b.

If $a = -\infty$ then $x(x(-\infty)) = x'(-\infty) \ge 0$. So $x(-\infty) > -\infty$, and thus $x'(-\infty) = 0$. So $x(x(-\infty)) = 0$. Thus $0 = x(x(-\infty)) > x(-\infty)$ because of the strict monotonicity of x.

Case 3: x' < 0. If $a > -\infty$ then, by Lemma 2, x(a) = b. $x'(a) = x(x(a)) \ge a > -\infty$. So $b = x(a) < \infty$. Thus, by Lemma 2, x(b) = a. b = x(x(b)) = x'(b) which is <0 by Theorem 1. As above a < -1 < b.

If $a = -\infty$ then let $t_0 \in]-\infty$, b[. For $t < t_0$ we have $x'(t) < x'(t_0) < 0$. $x(t) > x(t_0) + (t_0 - t) \cdot (-x'(t_0))$. Thus $x(-\infty) = \infty$ and $b = \infty$. $x(\infty) = x(x(-\infty)) = x'(-\infty) < x'(t_0) < 0$. $x(x(\infty)) = x'(\infty) \leq 0 < \infty$. So $x(\infty) > -\infty$. Thus $x'(\infty) = 0$. So $x(x(\infty)) = 0$.

4. EXISTENCE, UNIQUENESS, ANALYTICITY AND ANALYTIC DEPENDENCE

LEMMA 3 (Local Existence, Uniqueness, Analytic Dependence). There is a real-valued analytic function x on an open neighbourhood of $\{(a, a) | -1 < a < 1\}$ in $\mathbb{R} \times \mathbb{R}$ such that, for any $a \in [-1, 1[, x(a, \cdot))$ is the unique solution of (*) with the initial condition x(a, a) = a.

x can be extended to give a holomorphic function *y* of a neighbourhood of $\{(a, a) \mid a \in \mathbb{C} \land |a| < 1\}$ in $\mathbb{C} \times \mathbb{C}$ into \mathbb{C} such that, for any $a \in \mathbb{C}$ with |a| < 1, $y(a, \cdot)$ is the unique holomorphic solution of (*) with the initial condition y(a, a) = a.

Here "unique" means it coincides with every other solution of (*) with the same initial condition on the intersection of their domains of definition.

Proof. Let \mathbb{A} be either the set of reals or the set of complex numbers. Let A be a subset of \mathbb{A} such that $|a| \leq 1 - \varepsilon$ for all $a \in A$ for some $\varepsilon \in [0, \frac{1}{2}[$. For every $a \in \mathbb{A}$ we denote the open ball with center a and radius ε by $B_{\varepsilon}(a)$. Let $S := \{(a, t) \mid a \in A \land t \in B_{\varepsilon}(a)\}$ and $C_b(S, \mathbb{A})$ be the set of continuous bounded functions from S into \mathbb{A} . We set $B := C_b(S, \mathbb{R})$ if $\mathbb{A} = \mathbb{R}$ and $B := \{x \in C_b(S, \mathbb{C}) \mid x \text{ is holomorphic in } \mathring{S}$, and $x(a, \cdot)$ is holomorphic on $B_{\varepsilon}(a)$ for each $a \in A\}$ if $\mathbb{A} = \mathbb{C}$, where \mathring{S} is the union of all open subsets of S in $\mathbb{C} \times \mathbb{C}$. Let $\|\cdot\|$ be the supremum norm on B. Then $(B, \|\cdot\|)$ is a Banach space. The set

$$X := \{x \in B \mid x(a, a) = a \text{ for each } a \in A, \text{ and } |x(a, t_2) - x(a, t_1)| \le |t_2 - t_1|$$

when $(a, t_1), (a, t_2) \in S\}$

is a closed subset of B.

Obviously, for $x \in X$ and $a \in A$, $x(a, \cdot)$ maps $B_{\varepsilon}(a)$ into $B_{\varepsilon}(a)$. Therefore a map $T: X \to B$ can be defined by

$$Tx(a, t) \coloneqq a + \int_a^t x(a, x(a, \tau)) d\tau.$$

If $x \in X$ and $(a, \tau) \in S$, then

$$|x(a, x(a, \tau))| \leq |x(a, a)| + |x(a, x(a, \tau)) - x(a, a)|$$
$$\leq |a| + |\tau - a| < |a| + \varepsilon \leq 1.$$

Therefore, if $x \in X \land a \in A \land t_1, t_2 \in B_{\varepsilon}(a)$ then

$$|Tx(a, t_2) - Tx(a, t_1)| = \left| \int_{t_1}^{t_2} x(a, x(a, \tau)) d\tau \right| \leq |t_2 - t_1|,$$

i.e., T maps X into X.

We prove that T is contractive. Let $x, y \in X$.

$$|(Tx - Ty)(a, t)| = \left| \int_{a}^{t} x(a, x(a, \tau)) - y(a, y(a, \tau)) d\tau \right|$$

$$\leq \left| \int_{a}^{t} |x(a, x(a, \tau)) - y(a, x(a, \tau))| d\tau \right| + \left| \int_{a}^{t} |y(a, x(a, \tau)) - y(a, y(a, \tau))| d\tau \right|.$$

The integrand in the first term on the right hand side of the inequality is $\leq ||x - y||$ and the integrand in the second term is $\leq |x(a, \tau) - y(a, \tau)| \leq ||x - y||$. Hence, $|(Tx - Ty)(a, t)| \leq 2 \cdot |t - a| \cdot ||x - y|| \leq 2\varepsilon ||x - y||$. So $||Tx - Ty|| \leq 2\varepsilon ||x - y||$ for all $x, y \in X$, and $2\varepsilon < 1$.

By Banach's fixed point theorem, T has a unique fixed point.

Now let $a \in [-1, 1[$. Setting $A := \{a\}$ and $\mathbb{A} = \mathbb{R}$ shows that there is, locally, a unique solution x of (*) with the initial condition, because every such solution must lie in X for some ε and be a fixed point of T. For $A := \{a\} \land \mathbb{A} = \mathbb{C}$ let $Z := \{x \in X \mid x(b, t) \text{ is real when } b \text{ and } t \text{ are real}\}$. Z is a closed subset of X, and T maps Z into Z. So the fixed point z of T must lie in Z. So $z \mid_{\mathbb{P}} = x$. Thus x = a is analytic. Also, z is the only holomorphic solution.

Now let $a \in \mathbb{C}$ and |a| < 1. Let $0 < \delta < 1 - |a|$, $A := B_{\delta}(a)$, $\mathbb{A} = \mathbb{C}$. Let y be the least common extension of all the fixed points thus generated, starting from any a with |a| < 1.

THE FDE
$$x'(t) = x(x(t))$$
 397

LEMMA 4. There is a unique solution of (*) with the initial condition x(1) = 1 in the interval $[\frac{2}{3}, 1]$.

Proof. Let

$$X := \{ x \in C_b([\frac{2}{3}, 1], \mathbb{R}) \mid x(1) = 1 \text{ and } 0 \le x(t_2) - x(t_1) \le t_2 - t_1$$

whenever $\frac{2}{3} \le t_1 \le t_2 \le 1 \}.$

Any $x \in X$ maps $[\frac{2}{3}, 1]$ into $[\frac{2}{3}, 1]$.

We can, similarly as in Lemma 3, define a $T: X \to X$ by

$$Tx(t) := 1 + \int_1^t x(x(\tau)) \, d\tau.$$

Again, T is contractive in $(X, \|\cdot\|)$ $(\|\cdot\| = \text{sup-norm})$. As $(X, \|\cdot\|)$ is complete, there is a unique fixed point of T. This fixed point is the unique solution.

LEMMA 5 (Existence, Uniqueness, Analytic Dependence). There is an open neighbourhood N of $\{(a, a) \mid 0 \leq a < 1\}$ in $\mathbb{R} \times \mathbb{R}$ and an analytic function $x: N \to \mathbb{R}$ such that, for any $a \in [0, 1[, x(a, \cdot))$ is the unique inextendable solution of (*) with the initial condition x(a, a) = a.

Proof. For any function x as in Lemma 3 let \hat{x} be the unique maximal solution of the ordinary differential equation

$$\hat{x}(a, \cdot)'(t) = x(a, \hat{x}(a, t))$$

with the initial condition

$$\hat{x}(a,a) = a$$

for $a \in [-1, 1[$. Here $\hat{x}(a, \cdot)'(t)$ or $\partial_2 \hat{x}(a, t)$ denotes the derivative of \hat{x} with respect to the second argument at (a, t). Then \hat{x} is analytic again and is as in Lemma 3. \hat{x} is an extension of x. Now let, for some x_0 as in Lemma 3,

$$x_{n+1} := \hat{x}_n$$
 for all $n \in \mathbb{N}_0$.

Let x be the least common extension of all x_n . Then $\hat{x} = x$.

For $a \in [0, 1[$, the domain of definition of $x(a, \cdot)$ is some interval]r, s[. Since $x(a, \cdot)'(a) = a > 0$, it follows from Theorem 2 that $x(a, \cdot)'$ is positive everywhere and $s < \infty$. By a similar argument as in the proof of Lemma 2 we obtain from $\hat{x} = x$:

$$x(a, r) = r$$
 if $r > -\infty$ and $x(a, s) = s$.

But x(a, a) = a and r < a < s. So the strict monotonicity of $x(a, \cdot)'$ implies $r = -\infty$ and $s = x(a, \cdot)'(s) > 1$. Thus $x(a, \cdot)$ is inextendable. In the case a = 0 the inextendability of $x(a, \cdot)$ follows immediately from the definition of x.

THEOREM 3 (Existence, Uniqueness, Analytic Dependence). Every strictly monotonically increasing inextendable solution of (*) is of type (2)(ii) (in Theorem 2) with $b \ge 1$. It is analytic with a singularity at b if b > 1.²

There is a set $U \subset \mathbb{R} \times \mathbb{R}$ with

$$\{(t_0, x_0) \mid t_0, x_0 \ge 0 \text{ and } x_0 \le t_0\} \subset U$$

and

$$\{(t_0, t_0) \mid 0 < t_0 < 1\} \subset \mathring{U}$$

such that there is a unique inextendable solution x_u of (*) through every $u \in U$ (i.e., with the initial condition $x_u(t_0) = x_0$ where $u = (t_0, x_0)$). If $u = (t_0, x_0)$ then $x_u \equiv 0$ for $x_0 = 0$ and x_u is of type (2)(ii) if $x_0 > 0$.

Let x be the function $(u, t) \mapsto x_u(t)$, and let S be its domain of definition. Then x is continuous. The set $\{(u, t) | u \in \mathring{U} \text{ and } (u, t) \in S\}$ is open, i.e., it is \mathring{S} . The restriction $x|_{\mathring{S}}$ of x to \mathring{S} is analytic.

If we define, for any $u \in U$, $b_u \in \mathbb{R}_{\infty}$ as the supremum of the domain of definition of x_u , then b_u depends continuously on u (see Definition 2 for the topology of \mathbb{R}_{∞}).

Proof. We know from Lemma 5 that every type (2)(i) solution is extendable, and that the same is true for any type (2)(ii) solution with b < 1. So, by Theorem 2, every strictly monotonically increasing inextendable solution is of type (2)(ii) with $b \ge 1$. If x is a type (2)(ii) solution with b > 1 then there is an $s \in [0, 1]$ with x(s) = s. By Lemma 5, x is analytic.

Now let x be the function of Lemma 5. For $a \in [0, 1]$ we have x(a, a) = aand $\partial_2 x(a, a) = x(a, x(a, a)) = a$. So, by Taylor's theorem, $x(a, t) = a + a \cdot (t-a) + \frac{1}{2}\partial_2^2 x(a, \tau) \cdot (t-a)^2$ where τ lies between a and t. Thus $\partial_1 x(a, a) = 1 - a > 0$. So, there is an open neighbourhood V of $\{(a, a) \mid 0 < a < 1\}$ such that $\partial_1 x$ is positive everywhere in V. We can assume that V is a subset of the neighbourhood N in Lemma 5, and we can assume $t_0, x_0 \ge 0$ for all $(t_0, x_0) \in V$. Let $U := \{(t, x(a, t)) \mid (a, t) \in V\} \cup \{(t_0, x_0) \mid t_0, x_0 \ge 0$ and $x_0 \le t_0\}$.

Since $\{(t, x(a, t)) | (a, t) \in V\}$ is open we have $\{(t_0, x_0) | t_0, x_0 \ge 0$ and $x_0 \le t_0\} \subset U$ and $\{(t_0, x_0) | 0 < t_0 < 1\} \subset \mathring{U}$.

² If b = 1 then it is not analytic at least at 1.

398

For any $a \in [0, 1]$ let

$$A_a := \{ (t_0, x_0) \in U \mid ((a, t_0) \in V \text{ or } a < t_0 < b_{(a,a)}) \text{ and } x_0 > x(a, t_0) \}.$$

For $u \in U$ let $a[u] := \inf\{a \in [0, 1] \mid u \notin A_a\}$ and $x := x(a[u], \cdot)$. By the continuity of x the solution x obeys the initial conditions $x_{i}(t_{0}) = x_{0}$. The uniqueness of the solution follows from $\partial_1 x(a, t) > 0$ which is true for u := $(t, x(a, t)) \in \{(t, x(a, t)) \mid (a, t) \in V\}$ by the construction of V and can easily be seen to be true also for $u \in \{(t_0, x_0) | t_0, x_0 > 0 \text{ and } x_0 < t_0\}$ and therefore for all $u \in \mathring{U}$. So there is a unique solution x_u through every $u \in U$, and $\{(u, t) \mid u \in \mathring{U} \text{ and } (u, t) \in S\}$ is open and $(u, t) \mapsto x_u(t): \mathring{S} \to \mathbb{R}$ is analytic. A simple estimate shows that $a \mapsto b_{(a,a)}$ is strictly monotonically decreasing and continuous.

It remains to show that type (2)(ii) solutions are not analytic at b if $b \ge 1$. Assume x is such a solution, with no singularity at b. Let

$$x_n := \underbrace{x \circ x \circ \cdots \circ x}_{n \text{ times}} \quad \text{for} \quad n \in \mathbb{N}.$$

Then $x'_n = x_{n+1} \cdot x_n \cdot \cdots \cdot x_3 \cdot x_2$. Equation (*) implies $x^{(n)} = P_n(x_{n+1}, x_n, \dots, x_3, x_2)$ where P_n is some polynomial with nonnegative coefficients, and the coefficient of

$$x_{n+1} \cdot x_n \cdot x_{n-1}^2 \cdot x_{n-2}^3 \cdot x_{n-3}^4 \cdot \cdots \cdot x_3^{n-2} \cdot x_2^{n-1}$$

is 1. But $x_k(b) = b$ for all k, and b > 0. So

$$x^{(n)}(b) \ge b \cdot b \cdot b^2 \cdot b^3 \cdot b^4 \cdot \cdots \cdot b^{n-2} \cdot b^{n-1} = b^{n(n-1)/2+1}$$

If b > 1, this grows too fast to be the *n*th derivative of an analytic function. Thus x has a singularity at b.

For $a \in [0, 1]$ let x be the solution through (a, a), and $b_a := b_{(a,a)}$. Then this implies that the radius of convergence of x at a < 1 is $\leq b_a - a$. But

$$\lim_{\substack{a \to 1 \\ a < 1}} (b_a - a) = 0$$

As all derivatives of x at a are ≥ 0 and increasing in a, this implies that x is not analytic at 1.

We summarize our results in a

MAIN THEOREM (A Summary). Every solution of (*) is a restriction of an inextendable solution x: $[a, b] \to \mathbb{R}$ of (*) which is defined on some open

E. EDER

interval]a, b[where $a, b \in \mathbb{R}$. If x:]a, b[$\rightarrow \mathbb{R}$ is an inextendable solution of (*) then one and only one of the following statements holds:

- (1) x vanishes everywhere $\wedge a = -\infty \wedge b = \infty$
- (2) x is strictly monotonically increasing \wedge

$$\wedge a = -\infty \wedge 1 \leq b < \infty \wedge -\infty < x(-\infty) < 0 \wedge x(b)$$
$$= b \wedge x(x(-\infty)) = 0$$

(3) x is strictly monotonically decreasing
$$\wedge$$

(i)
$$-\infty < a < -1 < b < 0 \land x(a) = b \land x(b) = a$$

(ii) $a = -\infty \land b = \infty \land x(-\infty) = \infty \land -\infty < x(\infty) < 0$
 $\land x(x(\infty)) = 0.$

If x is strictly monotonically increasing and b > 1, then x is analytic with a singularity at b.

For every $u = (t_0, x_0) \in \mathbb{R} \times \mathbb{R}$ with $t_0, x_0 \ge 0 \wedge x_0 \le t_0$ there is a unique inextendable solution x_u of (*) with $x_u(t_0) = x_0$. The function $(u, t) \mapsto x_u(t)$ is analytic at a point $(u, t) = ((t_0, x_0), t)$ if t is in the domain of definition of x_u and $t_0, x_0 > 0$ and $(x_0 < t_0 \lor (x_0 = t_0 \land 0 < t_0 < 1))$. The supremum b_u of the domain of definition of x_u depends continuously on u.

Remark. A strictly monotonically increasing solution of (*) is the restriction of a strictly monotonically increasing inextendable solution of (*) to an interval]a, b[with $a \le r \le b$ where r is defined by x(r) = r and $r \le 1$. So the main theorem gives a complete survey of the monotonically increasing solutions. Only the question of the analyticity of one single inextendable solution x, namely, that solution for which x(1) = 1 (and its restrictions), is still open.

The strictly monotonically decreasing solutions are advanced in one part of their domain of definition and retarded in the other and if t is in one of those parts then the "retarded or advanced time" x(t) is in the other. I did not consider this case here because I do not see applications of such solutions.

References

- 1. S. Doss AND S. K. NASR, On the functional equation dy/dx = f(x, y(x), y(x+h)), h > 0, Amer. J. Math. 75 (1953), 713.
- DEH-PHONE K. HSING, Existence and uniqueness theorem for the one-dimensional backwards two-body problem of electrodynamics, *Phys. Rev. D* 16(4) (1977).
- 3. R. D. DRIVER, Can the future influence the present? Phys. Rev. D 19(4) (1979).
- 4. E. EDER, Existence, uniqueness and iterative construction of motions of charged particles with retarded interactions, Ann. Inst. H. Poincaré XXXIX (1) (1983), 1.