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A classification of the solutions of the functional differential equation Y(t) = 
X(.X(~)) is given and it is proved that every solution either vanishes identically or is 
strictly monotonic. For monotonically increasing solutions existence and 
uniqueness of the solution x are proved with the condition x(t,) = x,, where (f,, xJ 
is any given pair of reals in some specified subset of L?‘. Every monotonically 
increasing solution is thus obtained. It is analytic and depends analytically on t, 
and x0. Only for to = ‘~a = 1 is the question of analyticity still open. 

INTRODUCTION 

In many problems of physics and other sciences there occur retarded 
differential equations of the form 

where the retarded time tret is given as a function oft in which the function x 
itself may enter as well: 

where F is a functional with two arguments: a number t and a function x. 
Whereas for regular ordinary first-order differential equations there is, for 

every given value of x(to) (t, is arbitrary but fixed), a unique solution x of 
the equation, there is no similar general result for retarded differential 
equations. Consider, for example, the equation 

x’(t)=x(t- 1) for t < 0. 

If c is any P-function mapping the closed interval [-1, O] into the set of 
reals R such that the (n -+ 1)th derivative of < at 0 is equal to the nth 
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derivative of < at -1, r(n+1)(O) = rcn)(-l) for all nonnegative integers n and 
if we define, for t < 0, 

x(t) := c(“)(t + n) where n is that nonnegative integer for which 
-1 < t + n < 0, then x is a solution of the equation x’(t) = x(t - 1). There 
are retarded differential equations, however, where it is assumed that ix(t)\ 
does not grow too fast as t-+ -co (such a property can be contained in the 
retarded differential equation implicitly if it becomes singular when Ix(t)\ 
grows too fast, e.g., when Ix’(t)] > c, the speed of light, in electrodynamics). 
In some such cases it can be proved that there is a unique solution for any 
given “final value” x(t,) and, in the case of second-order equations, x’(to) 
(see [l-3]) or for any given suitably defined “initial value at t = -co” (see 
[4]). We can make a coordinate transformation for t and x so that t = ---CO 
is transformed into a finite value sg of a variables. If the transformation 
connecting the variables t and s is such that ds/dt < 0 then the retarded 
differential equation is transformed into an advanced differential equation 

Y’(S) = dY(%d”)) with s,dv = G(s, V). 

The assumption about the growth of Ix(t)1 becomes a local assumption about 
the behaviour of 4’ in the neighbourhood of s,, e.g., a differentiability con- 
dition. 

In this paper we consider the equation 

x’(t) =x(x(t)) 

as an example of such an advanced differential equation. We shall prove 
existence, uniqueness, analyticity and analytic dependence of solutions on 
initial data. 

I. PRELIMINARIES AND MONOTONICITY OF SOLUTIONS 

DEFINITION 1. A solution of the functional differential equation 

x1=x0x (*) 

is a function x: A + R from an interval A c R (i.e., a connected subset of R) 
into R such that x’(t) =x(x(t)) for all t E A. I 

This implies x(A) c A for any sohttion x of (+). 
Consider intervals A of the form ]-co, a]. If 0 < a < 1 then (*) together 

with the initial condition x(a) = a will be, in a neighbourhood of a, an 
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advanced differential equation which can be transformed into a retarded one 
by transforming a to ---co on the t-axis (see the Introduction). 

LEMMA 1 (Monotonicity of Solutions). If A c IF: is some interval and 
x: A --f R obeys a d@erential equation of the form 

x’=f ox where f is C’ 

then sign 0 x’ is constant. I 

ProoJ: Otherwise there would be a t, E A such that x’(tJ = 0. Thus 
f(x(t,)) = 0. so, by the uniqueness theorem for ordinary differential 
equations, x(t) = x(t,), and hence x’ = 0. 

DEFINITION 2 (R ). Let R be the set {--co} U R U (co } with the linear 
oc cc 

ordering ,< defined as 

r<s:=(r=--co ors=co or (r,sER andrGinAs)). 

An open set in R is either an ordinary open set in Fi or is the union of such 
m 

a set with ]r, co ] and/or [-co, s[ for some real r, s. Let A be an interval in 
R and X: A --f R be a continuous function. If x has a continuous extension JK 

22 --) R , and t E AZ, then let x(t) be defined as x(t) := y(t). 1 
02 

THEOREM 1 (Monotonicity of Solutions). Let x be a solution of (*) in 
an interval A. Then sign(x’(t)) is &dependent oft for t EA. (Closure taken 
in R, not in R !) I 

to 

ProoJ Obviously, x is C”. Setting, in Lemma 1. f = x gives the 
constancy of sign 0 x’ in A. This implies that x is monotonic, and therefore 
also x’ = x 0 x is monotonic. 

Thus x’ has a continuous extension, to a function from 26: to 22. If 
sign o x’ were not constant in x then there would exist an a E x\A such that 
x’(a) = 0 but x’ nonzero in A. Then x could be extended to a differentiable 
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function y on A U (a} with ~‘(a) = 0. So JJ’ = y 0 y, and J is C”. Using 
Lemma I again, for y instead of x and f, yieIds a contradiction. m 

2. MAXIMAL AND INEXTENDABLE SOLUTIONS 

DEFINITION 3. A solution x of (*) on an open interval A is maximal iff 
it is not a proper restriction of a solution on an open interval. 

An extension 4’ of x to an open interval B c R is a ($:)-extension iff, for 
any open interval C with A c C c B, y jc is a solution of (*). ’ 

x is inextendable iff it has no proper (*)-extension. m 

Every maximal solution of (*) is inextendable. Every solution of (*) is a 
restriction of a maximal solution of (*) by Zorn’s lemma. 

LEM~~A 2 (Values at Endpoints). Let x: ]a, b[ + IR be an inextendable 
solution of (*). Then 

a=-CO and b=co if x’ E 0, 

(a = -cm or x(a) = a) and (b= co orx(b)= b) if x’ > 0, 

(a = -a3 or x(a) = b) and (b = 00 or-~(b) = a> if x’ < 0. 

Proof: If a > --00 then x(a) 6G ]a, b[, as otherwise the existence theorem 
for ordinary differential equations would yield a solution y of y’ = x 0 y and 
y(a) = x(a) in a neighbourhood of a. By the uniqueness theorem, x and J’ 
coincide where they both are defined, in contradiction to the inextendability 
of x. So x(a) = a or x(a) = b if a > -co. The same is true for x(b) if b < CD. 
From x(]a, b[) c ]a, b[ follows the assertion. 1 

3. CLASSIFICATION OF INEXTENDABLE SOLUTIONS 

THEOREM 2 (Classification of Solutions). Let x: ]a, b[ + R be an inex- 
tendable solution of (*). Then one and only one of the following statements is 
true: 

(1) x=OAa=-wAb=w 

(2) x’ > 0 A 0 < b < 00 A x(b) = b A 

(i) O<a<l<bAx(a)=a 

(ii) a = --a~ A -CCI <x(--00) < 0 A x(,x-co)) = 0 

’ Note that. in contrast to the case of ordinary differential equations, the restriction of a 
solution x of (+) to a subinterval of its domain need not be a solution of (*); the subinterval 
might fail to be invariant under x. 
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(3) x’ < OA 

(i) -co <a <-1 <b<OAx(a)=bAx(b)=a 

(ii) a=--oOAb=a3Ax(-co)=~~3A-co<x(co)~O 
A x(x(a3)) = 0. I 
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All asymptotes are approached exponent,ally 

ProoJ By Theorem 1 we have three cases: x’ = 0, x’ > 0 and x’ < 0. 

Case 1: x’ = 0. Then x o x = x’ E 0. Since x is constant, we have .Y = 0. 
By the inextendability of x, a = -co and b = co. 

Case 2: x’>O. Then b<m. For, assume b=co. Thenx”=(x’ox). 
x’ = (x o x o x) . (x o x) is positive and monotonically increasing. Thus x 
grows at least quadratically. So, for large enough I, 

and 

t + 1 < x(t) 

x(t + 1) > x(t) + x’(t) > x’(c) = x(x(t)) 

in contradiction to the monotonicity of x. So we have b < co, and b > 
x(x(t)) = x’(t) > 0. By Lemma 2, x(b) = b. 

If a > -co then, by Lemma 2, x(a) = a. a =x(a) =x(x(a)) = x’(u). This 
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is >O by Theorem 1. As x’ is increasing and (x(b) - x(u))/(b - a) = 1, we 
have x’(a) < 1 < x’(b). But a =x’(a) and b =x’(b). Thus a < 1 < b. 

If a =--co then x(x(-co)) =x’(-co) 20. So x(-co) > --co, and thus 
~‘(-00) = 0. So x(x(-co)) = 0. Thus 0 =x(x(-co)) > x(-co) because of 
the strict monotonicity of x. 

Case 3: x’ < 0. If a > -co then, by Lemma 2, x(u) = b. x’(u) = 
x(x(u)) > LZ > -co. So b = x(u) < co. Thus, by Lemma 2, x(b) = a. b = 
x(x(b)) =x’(b) which is (0 by Theorem 1. As above a < - 1 < b. 

If a = --co then let t, E ]-co, b[. For t < t, we have x’(t) < x’(to) < 0. 
x(t) > x(t,) + (t, - t) . (-x’(Q). Thus x(--a, j = co and b = 00. x(m) = 
x(x(-co)) = x’(-00) < x’(t,) < 0. x(x(a)) =x’(m) < 0 < co. so x(m) > 
--oo. Thus x’(co) = 0. So x(x(00)) = 0. I 

4. EXISTENCE, UNIQUENESS, ANALYTICITY AND 
ANALYTIC DEPENDENCE 

LEMMA 3 (Local Existence, Uniqueness, Analytic Dependence). There is 
a real-valued analytic function x on an open neighbourhood of ((a, a) ) 
-1 < a < 1) in IF1 x R such that, for any a E l-1, l[, x(a. .) is the unique 
solution of (*) with the initial condition x(a, a) = n. 

x can be extended to git)e a holomorphic function y of a neighbourhood of” 
((u,u)luEC Ala\< l} in G x iC into C such that, for any a E ic: with 
(al < 1, y(a, .) is the unique holornorphic solution of (*) with the initiai 
condition y(u, a) = a. 

Here “unique” means it coincides with eoery other solution of (.*) with the 
same initial condition on the intersection of their domains of definition. n 

Proof Let A be either the set of reals or the set of complex numbers. Let 
A be a subset of A such that (a]<l--E for all aE.4 for some eE]O?j[. 
For every a E b we denote the open ball with center a and radius E by B,(a). 
Let S := ((a, t) / a E A A t E B,(a)1 and C,(S, /e) be the set of continuous 
bounded functions from S into iA. W! set B := C,(S, R) if A = IF1 and B := 
{x E C&S, K) ( x is holomorphic in S, and x(u, .) is holomorphic on B,(u) 
for each a E A } if A = G, where j is the union of all open subsets of S in 
u^ x c. Let I] . /I be the supremum norm on B. Then (B, /( . I]) is a Banach 
space. The set 

X := (x E B 1 x(u, a) = a for each a E A, and /~(a, tz) - x(a, tJ < / tz - t: 1 

when (a, tl>, (a, tz) E S} 

is a closed subset ofB. 
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Obviously, for x E X and a E A, ~(a, .) maps B,(a) into B,(a). Therefore a 
map T: X-t B can be defined by 

.t 
Tx(a, t) := a + 

! 
s(a, x(a, r)) dr. 

a 

If x E X and (a, r) E S, then 

Ix(a, x(a, r))/ ,< Ix(a, a>1 + (x(a, x(a, 5)) - x(a, a)/ 

<jul+jr-a(<la(+c,<l. 

Therefore, if x E X A a E A A t,, t, E B,(a) then 

) Tx(a, tz) - Tx(a? tJ = 1 it” .~(a, x(a, z)) dr / < (t? - t, 1: 
. ti 

i.e., T maps X into X. 
We prove that T is contractive. Let x, y E X. 

,< -’ Jxju, ~(a, z)) -~(a, ~(a, t))l dr $ 
a 

The integrand in the first term on the right hand side of the inequality is 
<<i]x -J I( and the integrand in the second term is < / ~(a, r) -~(a, t)l ,< 
(Ix -yj(. Hence, I(Tx-T~‘)(u,t)l~2.It-a[~lj(s--J’I(~2&((~--4’((. So 
11 TX - 511 < 2~ 1(x --II/ for all x, y E X, And 2s < 1. 

By Banach’s fixed point theorem, T has a unique fixed point. 
Now let a E l-1, l[. Setting A := {a) and A = R shows that there is, 

locally, a unique solution .Y of (*) with the initial condition, because every 
a 

such solution must lie in X for some E and be a fixed point of T. For A := 
{a } A /a = @ let Z := {x E XI x(b, t) is real when b and t are real}. Z is a 
closed subset of X, and T maps Z into Z. So the fixed point z of T must lie 
in Z. So z IIp = x. Thus x is analytic. Also, z is the only holomorphic 

a a 
solution. 

Nowletu~Cand(u(<1.LetO<6<1-~a~,A:=B,(u),A=6.Lety 
be the least common extension of all the fixed points thus generated, starting 
from any a with Ia] < 1. I 
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LEMMA 4. There is a unique solution of (e) with the initial condition 
x(l)= 1 in the interval [i, 11. 1 

Proof. Let 

X := {x E C,([+, 11, R) ] x(1) = 1 and 0 < x(t2) - x(t,) < t, - t, 

whenever f < t, < t2 < 1 }. 

Any x E X maps (4, I] into [i, I]. 
We can, similarly as in Lemma 3, define a T: X + X by 

TX(t) := 1 +j’ X(x(r)) ds. 
I 

Again, T is contractive in (X, ]] . I]) (]I . ]} = sup-norm). As (X, jl . 11) is 
complete, there is a unique fixed point of T. This fixed point is the unique 
solution. n 

LEMMA 5 (Existence, Uniqueness, Analytic Dependence). There is an 
open neighbourhood N of ((a, a) ( 0 < a < 1 } in IFi X R and an analytic 
function x: N+ IF? such that, for any a E [0, 1 [, x(a, .) is the unique inexten- 
dable solution of (*) with the initial condition x(a, a) = a. I 

Proof. For any function x as in Lemma 3 let 2 be the unique maxima! 
solution of the ordinary differential equation 

,?(a, -)‘(t) = x(a, $(a, t)) 

with the initial condition 

x^(a, a) = a 

for a E l-1, l[. Here $a, s)‘(t) or l?,SZ(a, t) denotes the derivative of .f with 
respect to the second argument at (a, t). Then .u” is analytic again and is as in 
Lemma 3. 2 is an extension of x. Now let, for some x, as in Lemma 3, 

n 
X n+1 :=x, for all nE IN,. 

Let x be the least common extension of all x,. Then 2 = x. 
For a E 10, l[, the domain of definition of x(a, .) is some interval jr, s[. 

Since x(a, .)‘(a) = a > 0, it follows from Theorem 2 that x(a, .)’ is positive 
everywhere and s < co. By a similar argument as in the proof of Lemma 2 
we obtain from .< = x: 

x(a, r) = r if ?->--co and x(a, s) = s. 
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But ~(a, a) = a and Y < a < s. So the strict monotonicity of x(a, e)’ implies 
r = --co and s = x(u, .)‘(s) > 1. Thus x(a, .) is inextendable. In the case 
a = 0 the inextendability of x(u, .) follows immediately from the detinition 
ofx. I 

THEOREM 3 (Existence, Uniqueness, Analytic Dependence). Ezlery 
strictly monotonically increasing inextenduble solution of (*) is of type (2)(ii) 
(in Theorem 2) with b > 1. It is analytic with a singularity at b if b > 1.’ 

There is a set U c R X IR with 

and 

{(t,,t,)lO<to< l,c~ 

such that there is a unique inextendable solution x, of (*) through every 
u E U (i.e., with the initial condition x,(t,) =x0 where u = (to. x0)). If u = 
(to, x,,) then x, = 0 for x,, = 0 and x, is of type (2)(ii) ifx,, > 0. 

Let x be the function (u, t) F+ x,(t), and, let S be its domain of definition. 
Then x is continuous. The set \(u, t) 1 u E U and (u, t) E 5’) is open, i.e., it is 
S. The restriction x 13 of x to S is analytic. 

If we define, for i2ny u E U, b, E R as the supremum of the domain of 
cc 

definition of xu, then b, depends continuously on u (see Definition 2 for the 
topology of E >. I 

ProoJ: We know from Lemma 5 that every type (2)(i) solution is exten- 
dable, and that. the same is true for any type (2)(ii) solution with b < 1. So, 
by Theorem 2, every strictly monotonically increasing inextendable solution 
is of type (2)(ii) with b > 1. If x is a type (2)(ii) solution with b > 1 then 
there is an s E 10, I[ with x(s) = s. By Lemma 5, x is analytic. 

Now let x be the function of Lemma 5. For a E [O, I[ we have X(LI, a) = a 
and ~?J~x(u, a) = x(a, x(a, a)) = a. So, by Taylor’s theorem, x(u, t) = a + a . 
(t - a) + @:~(a, r) . (t - a)’ where r lies between a and t. Thus a,x(u, a) = 
1 - a > 0. So, there is an open neighbourhood V of ((a, a) IO < a < I} such 
that 3,x is positive everywhere in I? We can assume that V is a subset of the 
neighbourhood N in Lemma 5, and we can assume to, x0 > 0 for all 
(to, x,,) E V. Let U := {(t, x(a, t)) ) (a, t) E V) U {(to, x0) 1 to, x, > 0 and 
-x0 < to b 

Since {(t, x(u, t)) ) (a, t) E V} is open0 we have ((to, x0) 1 to, x0 > 0 and 
x,,<t,}cUand {(t,,x,)~O<t,<l}cU. 

‘If b = 1 then it is not analytic at least at 1. 
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For any a E [0, 11 let 

A, := {(to, x,,) E U/ ((a, t,) E V or a < t, < b(,,,,) and x0 > x(a, t&j. 

For u E U let U[U] := inf{a E [0, 11 1 u &A,} and ; :=x(a[u], e). By the 

continuity of x the solution x obeys the initial conditions x(t,) = x,. The 
u u 

uniqueness of the solution follows from a,x(a, t) > 0 which is true for u := 
(t, ~(a, t)) E {(1, x(a, t)) ) (a, t) E V} by the construction of V and can easily 
be seen to be true also for u E {(to, x,,) 1 t,, x0 > 0 and x0 < to} and therefore 
for all u E 6. So there is a unique solution x,, through every u E U, and 
{(u, t) / u E 6 and (u, t) E S} is open and (u, r) t+ x,(t): s + R is analytic. A 
simple estimate shows that a ++ b(,,,, is strictly monotonically decreasing 
and continuous. 

It remains to show that type (Z)(ii) solutions are not analytic at b if b 2 I. 
Assume x is such a solution, with no singularity at b. Let 

x,:=x0x0 . . . ox for rtEiN. 
n times 

Thenx:,=x,,.,.x,.....?c,.x,. 
Equation (*) implies x’“) = P,(x,+, , x,,..., x5, x2) where P, is some 

polynomial with nonnegative coeffkients, and the coefficient of 

X PI + 1 
. x, . xi- 1 . ,gm2. x:-3 . * . . . x;-? . x-l 

is 1. But xk(b) = b for all k, and b > 0. So 

x’“‘(b)>b. b. b= . b3 . b4. . . . . b”-2. b”-l zbn(n-1),‘2+1. 

If b > 1. this grows too fast to be the rzth derivative of an analytic function. 
Thus x has a singularity at 6. 

For a E [0, l] let x be the solution through (a, a), and b, := b(,,,,. Then 
a 

this implies that the radius of convergence of x at a < 1 is <b, - a. But 
cl 

lii (b, - a) = 0. 

U<l 

As all derivatives of x at a are >O and increasing in a, this implies that x is 
a I 

not analytic at 1. I 

We summarize our results in a 

MAIN THEOREM (A Summary). Every solution of (*> is a reswiction of 
an inextenduble solution x: ]a, b[ + R of (*) which is defined OIZ some open 
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interval ]a, b[ where a, b E [R . If x: ]a, b[ + IR is an inextendable solution of 
m 

(*j then one and only one of the following statements holds: 

(1) x vanishes everywhere A a = --co A b = 03 

(2) x is strictly monotonicaltj~ increasing A 

Aa=-aAl<b<coA -a<x(-m)<OAx(b) 

= b A x(x(-co)) = 0 

(3) x is strictly monotonical@ decreasing A 

(i) --oo < a < - 1 < b < 0 A x(a) = b A x(b) = a 

(ii) a=-oo Ab= coAx(-cc)=coA--co<x(co)<O 
A x(x( co j) = 0. 

If x is strictly monotonically increasing and b > 1, then x is analytic with a 
singularity at b. 

For every u = (to, x,,) E iR x IR with t,, x0 > 0 A x, < t, there is a unique 
inextendable solution x, of (*) with x,(t,) = x0. The function (u, t) w s,(t) is 
analytic at a point (u, tj = ((t,, x,), t) if t is in the domain of deJnition of x, 
and t,, x,, > 0 and (x0 < t, V (x,, = t, A 0 < to < 1)). The supremum b, of the 
domain of dejinition of x, depends continuously on u. 1 

Remark. A strictly monotonically increasing solution of (*) is the 
restriction of a strictly monotonically increasing inextendable solution of (xj 
to an interval ]a, b[ with a < r < b where r is defined by x(r) = r and r < 1. 
So the main theorem gives a complete survey of the monotonically 
increasing solutions. Only the question of the analyticity of one single inex- 
tendable solution x, namely, that solution for which x(1) = 1 (and its 
restrictions), is still open. 

The strictly monotonically decreasing solutions are advanced in one part 
of their domain of definition and retarded in the other and if t is in one of 
those parts then the “retarded or advanced time” x(t) is in the other. I did 
not consider this case here because I do not see applications of such 
solutions. 
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