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Purpose: To develop lateralization models for distinguishing between unilateral and bilateral mesial temporal
lobe epilepsy (mTLE) and determining laterality in cases of unilateral mTLE.
Background: mTLE is the most common form of medically refractory focal epilepsy. Many mTLE patients fail to
demonstrate an unambiguous unilateral ictal onset. Intracranial EEG (icEEG) monitoring can be performed to
establish whether the ictal origin is unilateral or truly bilateral with independent bitemporal ictal origin.
However, because of the expense and risk of intracranial electrode placement, much research has been done
to determine if the need for icEEG can be obviated with noninvasive neuroimaging methods, such as diffusion
tensor imaging (DTI).
Methods: Fractional anisotropy (FA) was used to quantify microstructural changes reflected in the diffusivity
properties of the corpus callosum, cingulum, and fornix, in a retrospective cohort of 31 patients confirmed to
have unilateral (n = 24) or bilateral (n = 7) mTLE. All unilateral mTLE patients underwent resection with an
Engel class I outcome. Elevenwere reported to have hippocampal sclerosis on pathological analysis; nine had un-
dergone prior icEEG. The bilateral mTLE patients had undergone icEEG demonstrating independent epileptiform
activity in both right and left hemispheres. Twenty-three nonepileptic subjects were included as controls.
Results: In cases of right mTLE, FA showed significant differences from control in all callosal subregions, in both
left and right superior cingulate subregions, and in forniceal crura. Comparison of right and left mTLE cases
showed significant differences in FA of callosal genu, rostral body, and splenium and the right posteroinferior
and superior cingulate subregions. In cases of left mTLE, FA showed significant differences from control only in
the callosal isthmus. Significant differences in FA were identified when cases of right mTLE were compared
with bilateral mTLE cases in the rostral and midbody callosal subregions and isthmus. Based on 11 FA measure-
ments in the cingulate, callosal and forniceal subregions, a response-driven lateralization model successfully
differentiated all cases (n = 54) into groups of unilateral right (n = 12), unilateral left (n = 12), and bilateral
mTLE (n = 7), and nonepileptic control (23).
Conclusion: The proposed response-driven DTI biomarker is intended to lessen diagnostic ambiguity of laterality
in cases of mTLE and help optimize selection of surgical candidates. Application of this model shows promise in
reducing the need for invasive icEEG in prospective cases.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords:
Response-driven lateralization models
Diffusion tensor imaging
Bilateral
Bitemporal
Mesial temporal lobe epilepsy
013227.
on Departments, Henry Ford Health System, Detroit, MI 48202, USA.
mnazemz1@hfhs.org (M.-R. Nazem-Zadeh), eair1@hfhs.org (E.L. Air), jschwal1@hfhs.org (J.M. Schwalb), gdivine1@hfhs.org
rg (V.S.Wasade), fmahmou1@hfhs.org (F. Mahmoudi), sshokri1@hfhs.org (S. Shokri), hbagher1@hfhs.org (H. Bagher-Ebadian),
.

. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://core.ac.uk/display/82668462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2015.10.015&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.nicl.2015.10.015
mailto:gdivine1@hfhs.org
mailto:hszadeh@ut.ac.ir
http://dx.doi.org/10.1016/j.nicl.2015.10.015
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/22131582
www.elsevier.com/locate/ynicl


695M.-R. Nazem-Zadeh et al. / NeuroImage: Clinical 11 (2016) 694–706
1. Introduction

1.1. Temporal lobe epilepsy and intracranial EEG

According to the World Health Organization, more than fifty million
peopleworldwide and threemillion people in the USA suffer fromepilep-
sy — a disorder characterized by recurrent, spontaneous seizures (Hirtz
et al., 2007). Mesial temporal lobe epilepsy (mTLE) is the most common
formof surgically remediable focal epilepsy, accounting for 60–75% of pa-
tients undergoing surgery formedically refractory epilepsy (Engel, 1996).
Many mTLE patients with truly unilateral epileptogenicity cannot be
clearly defined as such using noninvasive measures such as scalp EEG,
structural magnetic resonance imaging (MRI), seizure semiology, and
neuropsychology (Dupont et al., 2015; Javidan, 2012; Mansouri et al.,
2012; Sperling et al., 1992). Scalp EEG may suggest a bilateral mTLE
when, in fact, the condition is unilateral. In a recent study, 1026 (73%)
out of 1403 patients presumed to have bilateral mTLE on scalp EEG
were found to have a unilateral mTLE by intracranial EEG (icEEG)
(Aghakhani et al., 2014). Conversely, about 10–20% of all mTLE patients
have true bilateral mTLE, with ictal onsets arising independently in both
hemispheres (Hirsch et al., 1991; Hufnagel et al., 1994; Kuba et al.,
2003; Řehulka et al., 2014; So et al., 1989). Such patients are not candi-
dates for surgical resection. Although on the basis of scalp EEG and seizure
semiology, some cases may be correctly determined to be unilateral
(Marks and Laxer, 1998; Serles et al., 2000) or bilateral (Loesch et al.,
2014; Řehulka et al., 2014), icEEG monitoring remains the gold standard
for defining unilateral versus bilateral epileptogenicity (Bulacio et al.,
2012; Pacia and Ebersole, 1999; Sperling et al., 1992).

1.2. Disadvantages of icEEG

Intracranial electrode implantation for extraoperative electrocorti-
cography delays definitive surgical treatment, increases the expense of
investigation (Bulacio et al., 2012; Kuzniecky et al., 1997), and carries
significant risks of infection, intracranial hemorrhage and elevated
intracranial pressure (Arya et al., 2013). This has spurred many groups,
including ours, to investigate whether noninvasive neuroimaging
methods (Aghakhani et al., 2014; Zhang et al., 2014) can detect the mi-
crostructural changes that are associated with different seizure activi-
ties, thereby obviating the need for icEEG.

1.3. Neuroimaging for detection of structural change

The chronic effects of epileptogenesis lead to progressive structural
changes that may be detected using neuroimaging modalities such as
structuralMRI,MR spectroscopy, and diffusion tensor imaging (DTI). Hip-
pocampal atrophy on T1-weighted imaging and hyperintensity on Fluid
Attenuated Inversion Recovery (FLAIR) imaging in the hippocampus,
amygdala, or temporal neocortex, ipsilateral to the side of seizure onset,
often typifies the appearance of pathology, known as mesial temporal
sclerosis (MTS) (Aroniadou-Anderjaska et al., 2008; Jafari-Khouzani
et al., 2006, 2010; Pereira et al., 2005). Although MTS remains a useful
predictor of successful surgery for epilepsy (Achten et al., 1997; de Tisi
et al., 2011; Engel, 1996; Vainio et al., 1994), there have been reports of
patients with pathologically-confirmed hippocampal sclerosis without
abnormalities on T1-weighted and FLAIR imaging (Yang et al., 2014).
Moreover, structural MRI may not detect subtle chronic epileptogenic
alterations in non-MTS mTLE types.

1.4. DTI as an early biomarker of microstructural changes

DTI is an MRI technique that measures the overall magnitude
(i.e., diffusivity) and directionality (i.e., anisotropy) of molecular dis-
placement (Pierpaoli et al., 2001) due to Brownian motion (Le Bihan
et al., 1986). It can detect microstructural changes in brain tissue before
any abnormality appears on structural MRI (Eriksson et al., 2001;
Hufnagel et al., 2003; Nakasu et al., 1995; Parekh et al., 2010;
Rugg-Gunn et al., 2001; Szabo et al., 2005; Wall et al., 2000). Neuronal
loss at the seizure focus in mTLE results in alteration of white matter
tracts connecting the focus to other brain regions, which then may
cause structural changes in remote but anatomically connected brain
regions (Scanlon et al., 2013). Since propagation of synchronized
neuronal firing in mTLE is widespread, extralimbic structures can
also be affected (Aroniadou-Anderjaska et al., 2008; Bernasconi
et al., 1999, 2003; Chahboune et al., 2009; Concha et al., 2004,
2005, 2009; de Curtis and Paré, 2004; Gross et al., 2006; Kim et al.,
2008, 2010; Kuo et al., 2008; Laitinen et al., 2010; Liacu et al.,
2012b; Liu et al., 2012; Parekh et al., 2010; Pereira et al., 2005;
Thivard et al., 2005). Thus, DTI holds potential as a useful tool for in-
vestigating deficits in the integrity of temporal and extratemporal
white matter fiber tracts involved in mTLE (Liu et al., 2014; Mishra
et al., 2011; Rugg-Gunn et al., 2001; Waites et al., 2006; Wall et al.,
2000; Yogarajah and Duncan, 2008). Diminished local structural
connectivity of cortical regions throughout the default mode net-
work (DMN) has been seen in patients with mTLE compared to
healthy subjects (Chiang and Haneef, 2014; DeSalvo et al., 2014;
Vaessen et al., 2011). An analogous decrease in functional connec-
tivity has been noted using functional MRI (fMRI) (Pittau et al.,
2012; Skudlarski et al., 2008). Also, a widespread increase in global
network efficiency has been seen within the DMN in mTLE patients
(Chiang and Haneef, 2014; DeSalvo et al., 2014; Vaessen et al., 2011)
relative to nonepileptic controls, implying that epileptogenicity pro-
motes signal propagation along certain pathways.
1.5. Gray matter changes attributed to mTLE

MRI studies in cases of mTLE have documented abnormalities in
limbic and extralimbic structures of the hippocampus throughout its
four main histological divisions (CA1–4) (Bernasconi et al., 2003),
the parahippocampal gyrus (Bernasconi et al., 2003), entorhinal cor-
tex (Bernasconi et al., 1999, 2003), piriform cortex (Pereira et al.,
2005), amygdala (Aroniadou-Anderjaska et al., 2008; de Curtis and
Paré, 2004; Pereira et al., 2005), and thalamus (Parekh et al., 2010)
in mTLE. Excitotoxic neuronal injury at sites of focal epileptogenicity
may lead to a loss of volume and alteration in diffusion properties in
such structures, including a global alteration relative to nonepileptic
cases, or interhemispheric asymmetry in each case (Nazem-Zadeh
et al., 2014b).
1.6. White matter changes attributed to mTLE

Abnormalities have also been documented in the white matter
structures of cingulum (Concha et al., 2004, 2009), fornix (Concha
et al., 2004), corpus callosum (Chahboune et al., 2009), uncinate fascic-
ulus (Rodrigo et al., 2007), external capsule (Gross et al., 2006), arcuate
fasciculus (Powell et al., 2007), hippocampal mossy fibers (Kuo et al.,
2008; Laitinen et al., 2010), and thalamic fibers (Bonilha et al., 2012).
The cingulum and fornix are integral components of the limbic circuit
that mediate the expression of epileptogenicity arising from mesial
temporal structures (Ahmadi et al., 2009; Concha et al., 2004, 2009,
2010; Liacu et al., 2012b; Yoo et al., 2002). The TLE-induced alteration
makes them suitable candidates as biomarkers of laterality. Interhemi-
spheric variation of FA in the posteroinferior cingulum and crus of the
fornix have lateralized mTLE in individual cases (Nazem-Zadeh et al.,
2014b). The corpus callosum connects the inferior temporal and occip-
ital regions as well as superior temporal and parietal regions of each
hemisphere at its isthmus and splenium, respectively (Firat et al.,
2014; Weber et al., 2007). These subregions have, likewise, been
found to be affected by mTLE (Firat et al., 2014; Hermann et al., 2003;
Weber et al., 2007).
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1.7. DTI findings with structural changes

The related microstructural changes can be detected using segmen-
tation or fiber tracking (FT) with DTI data. Most previous studies have
reported bilateral alterations of fractional anisotropy (FA) andmean dif-
fusivity (MD), as indices of fiber integrity and overall diffusivity, respec-
tively (Nazem-Zadeh et al., 2012a; Pierpaoli et al., 2001) as a way to
differentiate the DTI-based structural changes in subjects with unilater-
al mTLE from those in nonepileptic controls (Concha et al., 2004, 2009,
2010; Gross et al., 2006; Hugg et al., 1999; Kim et al., 2008, 2010;
Liacu et al., 2012b; Rugg-Gunn et al., 2001; Thivard et al., 2005;
Wieshmann et al., 1999; Yogarajah and Duncan, 2008). Some have re-
ported upon the capability of DTI to lateralize mTLE by comparing vari-
ations among patients with mTLE and nonepileptic subjects (Ahmadi
et al., 2009; Focke et al., 2008; Nazem-Zadeh et al., 2014b; Yoo et al.,
2002), butmost have not applied DTI to lateralize epileptogenicity in in-
dividual mTLE patients, and none have reported its capability to differ-
entiate bilateral from unilateral cases.

We hypothesized that a multistructural analysis of DTI changes in
the cingulum, fornix and corpus callosum can differentiate between
subjects with and without epilepsy and can serve as effective quantita-
tive neuroimaging biomarkers to distinguish between unilateral and bi-
lateral mTLE, as well as to specify laterality. This represents a novel
approach to the noninvasive lateralization of mTLE.

2. Materials and methods

2.1. Human subjects

This research study was approved by the Henry Ford Health System
Institutional Review Board and involved 31 patients with mTLE. Seven
patients had bilateral mTLE confirmed by icEEG (male:female, 3:4;
ages 33.1 ± 12.5 years and 38.3 ± 7.5 years, respectively). Twenty-
four patients had unilateral mTLE, achieving an Engel class I outcome
following resection of their mesial temporal structure (male:female,
13:11; ages 41.8 ± 12.9 years and 42.0 ± 12.8 years, respectively), 9
of whom had undergone prior icEEG and 11were reported to have hip-
pocampal sclerosis on pathological analysis (Table 1). A cohort of 23
nonepileptic subjects (male:female, 15:8; ages 30.6 ± 3.6 years and
34.6 ± 7.9 years, respectively) served as controls to establish a
boundary (i.e., control) domain and account for any natural variance
in the proposed model. The side of epileptogenicity was blinded
during all processing.

2.2. Image acquisition

All subjects underwent preoperative imaging in a single 3.0 T
MRI system using a standardized protocol for image acquisition. T1-
weighted images were acquired using the spoiled gradient echo proto-
col (SPGR) with TR/TI/TE = 10,400/4500/300 ms, flip angle = 15°,
voxel size = 0.39 × 0.39 × 2.00 mm3. FLAIR images were also acquired
with TR/TI/TE = 9002/2250/124 ms, flip angle = 90°, voxel size =
0.39 × 0.39 × 3.00 mm3. DTI images (b-value of 1000 s/mm2) in 25 dif-
fusion gradient directions alongwith a set of null images (b-value of 0 s/
mm2) were acquired using echo planar imaging (EPI) with TR/TI/TE =
10,000/0/76 ms, flip angle = 90°, voxel size = 1.96 × 1.96 × 2.6 mm3

2.3. Image pre-processing

Before segmenting the white matter structures of interest, the DTI
images were prepared by interpolation to a homogeneous voxel size
of 1.96mm isotropic resolutionwith subsequent tensor, FA andMD cal-
culation (Nazem-Zadeh et al., 2012a; Pierpaoli et al., 2001). For the pur-
pose of segmentation, the principal diffusion direction (PDD), the
eigenvector corresponding to the largest eigenvalue of the tensor, was
also calculated from the tensor.
2.4. Segmentation of the cingulum, fornix, corpus callosum and their
subregions

The cingulumand its subregionswere established using an automat-
ic seed-based segmentation andfiber tracking algorithm (Nazem-Zadeh
et al., 2012a), and included: 1— insertion of seed points on both left and
right sides of the cingulum in sagittal views; 2— automatic extraction of
a two-dimensional region of interest (ROI) for each seed point; 3— fiber
tracking between consecutive ROIs; 4 — postprocessing of the seg-
mented structure through a morphological operation consisting of
a dilation followed by an erosion using a cubical structuring element
with 2 × 3 × 3 voxels (Nazem-Zadeh et al., 2012a); and 5 — division
of each segmented left and right cingulum into three subregions
(i.e., posteroinferior, superior, and anteroinferior) using the points
with highest curvature on the mesial axis.

The corpus callosum and its subregions were established using an
automatic seed-based segmentation algorithm, and included: 1— auto-
matic three-dimensional segmentation using a level-set algorithm
based on tensor similarities between neighboring voxels of a growing
surface boundary (Nazem-Zadeh et al., 2012b); and 2 — extraction of
the main axes using principal component analysis (PCA) and division
intoWitelson subregions of genu (including rostrum), rostral body, ante-
rior midbody, posterior midbody, isthmus and splenium (Nazem-Zadeh
et al., 2013; Witelson, 1989).

The fornix was also established using a multiple ROI fiber-tracking
algorithm (Nazem-Zadeh et al., 2012a), and included: 1 — manual de-
piction of three coronal ROIs at the most anterior part of the forniceal
body, the branching point of the forniceal body from the crura and be-
tween the branching point and the most posterior part of the forniceal
crura; 2 — manual depiction of two axial ROIs at the most posterior
and the most inferior parts of the forniceal crura; 3— fiber-tracking be-
tween consecutive ROIs; and 4— division of the fornix into three subre-
gions of anterior body, left crus and right crus using the branching point
of the forniceal crura from the body (Fig 1).

2.5. Hippocampal T1 volumetry and FLAIR intensity analysis

The volumes of both left and right hippocampi from 31 mTLE pa-
tients and 23 nonepileptic subjects were established from the ROIs
drawn manually using standard protocol of hippocampal delineation
(Jafari-Khouzani et al., 2011). The hippocampal head, body and tail
were outlined. While the subiculum was also included, the amygdala
and temporal horn of the lateral ventricle, and white matter tracts, in-
cluding the alveus and fimbria, were not included. The alveus was
used as a landmark separating the amygdala and hippocampus. The
most anterior coronal slice was taken where the alveus demarcated
the hippocampal head as it tapered below the amygdala. The hippocam-
pal tail was taken to a posterior point where it narrowed and curved
medially towards the crus. The gray-white matter interface was used
as the inferior and lateral border (Jafari-Khouzani et al., 2011). Using
an affine registration tool (FLIRT; (Jenkinson et al., 2002)) and T1
images, the hippocampal boundaries were coregistered to FLAIR im-
ages to acquire the mean and standard deviation of FLAIR intensity
within the hippocampus (Akhondi-Asl et al., 2011; Jafari-Khouzani
et al., 2010).

2.6. Structural change analysis

T-tests and one-way analysis of variance were used to compare
mean ages for patients and controls, and among the three locations
(unilateral mTLE, bilateral mTLE, and control), respectively. A chi-
square test was used to compare gender proportions. Two-way repeat-
ed measures analysis of variance (RMANOVA) was used to examine the
relationships between FA measurements and hippocampal measure-
ments (i.e., the volumes on T1-weighted images and means and stan-
dard deviations of signal intensities on FLAIR images) with the brain



Table 1
The patient characteristics, neuroclinical findings and neuroimaging lateralization results.

Patient
number

Age at
the
surgerya

Gender Lateralization by
EEG Phase I

Lateralization
by WADA
test

Lateralization by
neuropsychological
tests

icEEG icEEG
strategy

Side of
epileptogenicityb

Pathology-proven
MTS

Lateralization
by FA in
posteroinferior
cingulum

Lateralization
by FA in
fornix

Lateralization
by
hippocampal
volume

Lateralization
by
hippocampal
FLAIR
intensity

Lateralization
by the
proposed
model M3

1 30 M L Tmp L L N – L NA L L L L L
2 31 M R Tmp N R Y R Frt-Tmp R N N R R L R
3 30 M L Tmp L N Y L Tmp L Y N L N L L
4 46 M bi-Tmp L N R L L Y bi-Tmp L Y L L L L L
5 28 M R Tmp R R N – R NA N R R R R
6 44 M bi-Tmp, R N L, R and L Frt R N Y bi-Tmp R NA L R N L R
7 40 F L Tmp N L N – L NA L N L N L
8 29 M L Tmp R N N – L NA L N L L L
9 44 F L Tmp L L N – L Y L L L L L
10 53 M L Tmp, convexity focus L L Y L Tmp L Y L L L L L
11 65 F Bi-Tmp N N N icEEG during

surgery
R N N N N L R

12 48 F R Tmp R R N – R NA N R R R R
13 61 M L Tmp L N N – L Y L L L L L
14 38 F L Tmp L N N icEEG during

surgery
L N N N L N L

15 29 F R Tmp R R N – R NA N R R L R
16 61 M L Tmp L R N – L Y L L L L L
17 28 M R Tmp R N N – R NA N N N R R
18 48 F R Tmp, R Ins R R Y R Tmp + R Ins R Y R R R R R
19 52 F L Tmp N L N – L Y L R L L L
20 53 M R Tmp, R Occ, R

neocortex
and R insula interictal

R R Y bi-Tmp + R
Frt

R NA N N L N R

21 15 F R Tmp N L Y bi-Tmp R Y R R R R R
22 49 M R Tmp R R N – R Y R R R R R
23 45 F R Tmp neocortex, R

Frt-Prt interictal
R R Y R Tmp + R Prt R NA R L N R R

24 38 F L Tmp L L N – L Y L N L L L
25 34 F bi-Tmp R = L N R Y bi-Tmp B NA L N N N B
26 35 M L Tmp N NA Y bi-Tmp B NA N N N N B
27 20 M L Tmp, L-Frt-Tmp,

R-Frt-Cnt,
rare bi-Frt interictal

NA NA Y bi-Tmp B NA N N N L B

28 46 F bi-Tmp R N L (R ictal and
R
and L interictal)

Frt-Tmp-Cnt, R L Y bi-Tmp B NA R N L N B
29 43 F bi-Tmp R N L L NA Y bi-Tmp B NA N N N R B
30 30 F bi-Tmp R = L R R Y bi-Tmp B NA L N L N B
31 44 M bi-Tmp R = L N NA Y bi-Tmp B NA N N N N B

Table notes: Tmp: temporal, Occ: occipital, Frt: frontal, Prt: parietal, Ins: insular, Cnt: central, bi-Tmp: bitemporal, bi-Frt: bifrontal, L: left, R: right, B: bilateral mTLE. N: non-lateralizing, NA: not available.
Note that except for the proposed model M3, there were some mTLE cases for which the other lateralization methods including neuroclinical ones failed to detect the epileptogenic side, with either a false positive, or a nonlateralizing result.

a Age at icEEG only for bilateral mTLE cases.
b For the patients with icEEG, icEEG findings, and for the patient without icEEG, the multi-disciplinary decision made on the laterality prior to the surgery will serve as the source of truth for the side of epileptogenicity.
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Fig. 1. The segmented corpus callosum (red), cingulum (green), and fornix (blue) (a): in three-dimensional views, (b): with overlaid segments on FA sagittal images.
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region (i.e., a repeated factor) and mTLE laterality type (i.e., a fixed
factor). Of particular interest were tests for interaction between region
and laterality type, since significant interaction implies that separate
one-way ANOVAs are required to assess mTLE laterality type effects
by holding the region constant, and separate one-way RMANOVAs are
required to assess region effects by holding mTLE laterality type con-
stant. For each region, one-way ANOVAonmTLE laterality typewas per-
formed, but was considered statistically significant only if the overall
ANOVA F-test for all mTLE laterality types was also significant after a
multiple comparisons adjustment. For each mTLE laterality type, one-
way RMANOVA was performed for the corpus callosum, cingulum,
and fornix regions followed by paired t-tests between pairs of their sub-
regions (i.e., adjacent subregions in corpus callosum, cingulum, and for-
nix and corresponding left and right subregions in cingulum and
fornix). A paired t-test between subregions in a structure was consid-
ered statistically significant only if the overall RMANOVA F-test was
also significant in the entire corresponding structure, and its p-value
was below a level determined by a multiple comparisons adjustment.
Multiple comparisons were addressed by separate Bonferroni adjust-
ments for six pairwise comparisons between laterality types and 21
comparisons between regions (15 for FA measurements and 6 for hip-
pocampal measurements including volumes, and FLAIR means and
standard deviations) for the one-way ANOVAs; and for 18 pairwise
comparisons between regions and six comparisons amongmTLE groups
for RMANOVAs.

2.7. Development of lateralization response-driven models

The FA or MD indices within the subregions of the cingulum
(i.e., anteroinferior left and right, superior left and right, and
posteroinferior left and right), the subregions of the corpus callosum
(i.e., genu, rostral body, anterior midbody, posterior midbody, isthmus,



Fig. 2.Comparison of FA across the cingulum, corpus callosumand fornix (a) and themean
and standard deviation of hippocampal FLAIR intensities and volumes in the left and right
hippocampi (b), betweenmTLE cohorts and the control cohort. Asterisks show significant
differences in each cohort with respect to the other cohorts with the corresponding color,
after Bonferroni adjustments. Note that, for greater clarification, the standarddeviations of
hippocampal FLAIR intensities and the hippocampal volumes have been scaled to ×10 and
1/10, respectively. Figure notations: FA: fractional anisotropy, Ge: genu, Rb: rostral body,
Am: anterior midbody, Pm: posterior midbody, Is: isthmus, Sp: splenium of CC: corpus
callosum. A: anteroinferior, S: superior, P: posteroinferior, L: left side, R: right side of Cg:
cingulum. Ab: anterior body, LC: left crus, RC: right crus of Fx: fornix. Std: standard
deviation, TLE: temporal lobe epilepsy, R, L, and Bi TLE: TLE patients with right, left, and
bilateral epileptogenic side, respectively. LH and RH: left and right hippocampus, Std:
standard deviation, FLAIR: Fluid Attenuated Inversion Recovery.
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splenium) and the subregions of the fornix (i.e., anterior body, left and
right crus) were extracted for cohorts of unilateral mTLE, bilateral mTLE,
and control. These multivariate features were considered as inde-
pendent variables and incorporated into the development of three
response-driven models of the laterality using multinomial logistic
function regression (Hosmer et al., 2013). The laterality label
(i.e., L = unilateral left mTLE, R = unilateral right mTLE, U = unilat-
eral mTLE, B = bilateral mTLE and N = non-lateralizing) was con-
sidered the dependent variable.

Model 1: Right mTLE vs. Left mTLE
Model 2: Unilateral mTLE vs. Bilateral mTLE
Model 3: Right mTLE vs. Left mTLE vs. Bilateral mTLE vs. Control

In order to assess how themultinomial logistic function generalized to
an independent dataset and how accurately this response model per-
formed in practice, a cross-validation was performed using the ‘leave-
one-out’ approach for 54 repetitions considering a single case as valida-
tion data and the remaining 53 cases as training data (Picard and Cook,
1984). The multinomial logistic models were regressed to training data
as follows:

ln
Pr Yi ¼ TjMkð Þ
Pr Yi ¼ NjMkð Þ

� �
¼ βk

T � Xk
i ð1Þ

where Xi
k is a vector of ith observation in the training dataset incorporated

in Model k, Pr(Yi = T|Mk) and βT
k are the posterior probability of the epi-

leptogenic side Yi being Tϵ{R, L, U, B, N} (depending on theModel) and the
vector of regression coefficients of Model k associated with Xi

k and the
posterior probability, respectively. Since, in multinomial logistic regres-
sion, the epileptogenic side Yi for each observation in the training dataset
was assumed to be known, the posterior probability Pr(Yi = T|Mk) was
set to 0 or 1 depending on the decision made for laterality. By estimation
of coefficientsβT

k forModel k, the posterior probability of the epileptogen-
ic side Yj for the jth validation data was calculated.

The comparative index of deviance (Dev) was calculated for the re-
sponse models as a sum of squares of residuals between the maxima
of the observed data and the fitted log likelihood functions. The smaller
the deviance, the more accurate the model fits the training data. The
probability of detection (PD), on the other hand, was calculated to pos-
teriorly measure the performance of the model decision making on the
test data. It was defined as:

PD ¼ 1
n

Xn
j¼1

X
T

1 Yj ¼ TjSidej ¼ T
� � ð2Þ

where n is the number of all subjects and Yj and Sidej are the lateraliza-
tion result and the epileptogenic side, respectively and 1(.) is a unit
function with the value of 1 for true arguments and 0, otherwise.

We also compared the lateralization result by the proposed model
M3 using neuroclinical and neuroimaging methods outlined here:

• Neuroclinical methods
○ EEG Phase I monitoring
○ WADA (i.e., intracarotid sodium amobarbital procedure) on both

left and right hemispheres to establish cerebral language andmem-
ory representation of each hemisphere (Loring, 1997).

○ Neuropsychological tests of language, verbal, and nonverbal memo-
ry, and IQ (Akanuma et al., 2003; Jones-Gotman et al., 2010; Keary
et al., 2007) including
▪ Boston naming test
▪ Wechsler verbal and nonverbal immediate and delayed memory
tests

▪ California verbal learning recognition, long delay free recall, and
total tests
▪ Rey–Osterreith nonverbal immediate and delayed memory
▪ Verbal, nonverbal and full scale IQ tests.

• Neuroimaging asymmetry methods (Nazem-Zadeh et al., 2014b)
including

○ FA in posteroinferior cingulum
○ FA in fornix
○ Hippocampal volume, hippocampal FLAIR intensity
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3. Results

3.1. Structural change

The patients averaged 10 years older than controls (p= 0.001), but
was no significant difference in age by mTLE cohorts (p= 0.436). Gen-
der proportions were statistically equivalent for the groups (p N 0.31).
Two-way RMANOVA demonstrated significant interaction between
region and mTLE laterality type in FA measurements (p b 0.001).
Fig. 2a and Table 2 show the results of comparisons among the
mTLE laterality types for each region using one-way ANOVA. For all
Table 2
The comparison of FA and hippocampal measurements among the mTLE laterality types using

L mTLE     

vs.    

Control

R mTLE    

vs.    

Control

B mTLE    

vs.    

Control

F
A

 m
e

a
su

re
m

e
n

ts

C
o

rp
u

s 
C

a
ll

o
su

m

Ge 0.063 <0.001 0.040

Rb 0.080 <0.001 0.614

Am 0.055 <0.001 0.900

Pm 0.012 <0.001 0.999

Is <0.001 <0.001 0.407

Sp 0.156 <0.001 0.040

C
in

g
u

lu
m

PL 0.932 0.085 0.934

PR 0.066 0.009 0.993

SL 0.392 <0.001 0.893

SR 0.966 <0.001 0.988

AL 0.148 0.010 0.434

AR 0.932 0.028 1.000

F
o

rn
ix

AB 0.790 0.005 0.344

LC 0.016 <0.001 0.394

RC 0.347 <0.001 0.435

H
ip

p
o

ca
m

p
a

l 

m
e

a
su

re
m

e
n

ts

FLAIR 

Mean

LH 0.015 <0.001 0.004

RH 0.048 <0.001 0.002

FLAIR 

Std

LH 0.004 0.004 0.144

RH 0.666 0.002 0.301

Volume

LH 0.019 0.976 0.991

RH 0.045 0.159 0.904

The background shading and the numbers in cells represent, respectively, the significance and u
cohorts, for the overall mTLE effect (last column). Overall p-values were significant if below 0.
Table notations: FA: fractional anisotropy, Ge: genu, Rb: rostral body, Am: anteriormidbody, Pm: p
P: posteroinferior, L: left side, R: right side of cingulum. AB: anterior body, LC: left crus, RC: right
mesial temporal lobe epilepsy, R, L, and B mTLE: mTLE patients with right, left, and bilateral epile
callosal regions, right posteroinferior and bilateral superior cingulate
regions, and bilateral forniceal crura, the overall ANOVA F-test on
all mTLE laterality types was significant after Bonferroni adjustments
(p b 0.0024). In the t-tests between pairs of laterality types, FA showed
significant differences in all callosal subregions for right mTLE versus
control, in the genu, rostral body, and splenium for right versus left
mTLE, and in the rostral, anterior and posterior midbody, and isthmus
for right versus bilateral mTLE. The callosal isthmus showed significant
differences for left mTLE versus control cohort (p b 0.0083). In the
t-tests between pairs of types, FA showed significant differences in bilat-
eral superior cingulate subregions for right mTLE versus control, and in
one-way ANOVA and pairwise comparisons between laterality types.

L mTLE     

vs.              

B mTLE 

R mTLE     

vs.              

B mTLE

L mTLE    

vs.              

R mTLE

Overall 

mTLE 

Effect (3 df)

0.939 0.050 0.002 <0.001

0.887 0.001 0.001 <0.001

0.547 0.001 0.009 <0.001

0.120 <0.001 0.030 <0.001

0.360 0.003 0.085 <0.001

0.805 0.010 <0.001 <0.001

0.758 0.582 0.053 0.053

0.151 0.124 <0.001 <0.001

0.946 0.043 0.068 <0.001

1.000 0.017 0.005 <0.001

0.995 0.698 0.757 0.011

0.956 0.165 0.019 0.015

0.839 0.680 0.118 0.008

0.810 0.296 0.730 <0.001

1 0.042 0.009 <0.001

0.805 0.999 0.636 <0.001

0.487 0.993 0.211 <0.001

0.884 0.886 1.000 <0.001

0.877 0.576 0.096 <0.001

0.197 0.938 0.020 0.014

0.502 0.134 0.001 0.001

nadjusted p-values between pairs of left (L), right (R), and bilateral (B) mTLE, and control
05/21 = 0.0024. Pairwise p-values were significant if below 0.05/6 = 0.0083.
osteriormidbody, Is: isthmus, Sp: splenium of corpus callosum. A: anteroinferior, S: superior,
crus of fornix. Std: standard deviation, LH: left hippocampus, RH: right hippocampus. mTLE:
ptogenic side, respectively. FLAIR: Fluid Attenuated Inversion Recovery.
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the right posteroinferior and right superior cingulate subregions for left
and right mTLE (p b 0.0083). FA showed significant differences in all
forniceal crura for right mTLE versus control (p b 0.0083).

Table 3 shows the results of one-way RMANOVA for the corpus
callosum, cingulum, and fornix followed by paired t-tests between
pairs of their subregions for each mTLE laterality type. The overall
RMANOVA F-tests were significant across the entire corpus callosum,
cingulum, and fornix (p b 0.0028), and for genu versus rostral body,
posterior midbody versus isthmus, and isthmus versus splenium in
corpus-callosum, for left superior versus right superior and for all neigh-
boring structures in cingulum, and for all neighboring structures in for-
nix (p b 0.0083). Within the corpus callosum, a significant difference
was observed between the isthmus and splenium for all cohorts, be-
tween the genu and rostral body for right mTLE and control cohorts,
and between the posterior midbody and isthmus for right mTLE. For
the neighboring structures of the cingulum, a significant difference
was observed between the posteroinferior and superior and between
the superior and anteroinferior subregions of both sides for all cohorts,
except for the posteroinferior and superior right subregions in left
mTLE cohort. For the cingulate corresponding bilateral structures, a sig-
nificant difference was observed between left and right superior subre-
gions for bilateral mTLE and control cohorts. For the fornix, a significant
difference was observed between the anterior body and left crus for left
mTLE and control, and between the anterior body and right crus for left
mTLE, right mTLE, and control cohorts. The results for MD measure-
ments were not significant.

Two-way RMANOVA showed significant interaction between
region and mTLE laterality type for the hippocampal measurements
(p b 0.001). Fig. 2b and Table 2 show the results of comparison among
the mTLE laterality types for the left and right hippocampi using one-
way ANOVA. For all hippocampal measurements except for the left
hippocampal volume, the overall ANOVA F-test on all mTLE laterality
types was significant after Bonferroni adjustments (p b 0.0024). In the
t-tests between pairs of laterality types, the mean of FLAIR intensity in
both hippocampi showed significant differences for right and bilateral
Table 3
The results of FA comparison within three structures by RMANOVA, and among pairs of region

L mTLE R mTLE U m

F
A

 m
e

a
su

re
m

e
n

ts

Corpus 

callosum

Entire structure <0.001 <0.001 <

Ge vs. Rb 0.019 0.002 <

Rb vs. Am 0.700 0.113

Am vs. Pm 0.133 0.575

Pm vs. Is 0.012 <0.001 <

Is vs. Sp <0.001 <0.001 <

Cingulum

Entire structure <0.001 <0.001 <

PL vs. PR 0.002 0.269

SL vs. SR 0.131 0.069

AL vs. AR 0.240 0.203

PL vs. SL <0.001 0.002 <

SL vs. AL <0.001 <0.001 <

PR vs. SR 0.709 0.005

SR vs. AR <0.001 <0.001 <

Fornix

Entire structure <0.001 <0.001 <

AB vs. LC <0.001 0.011 <

AB vs. RC <0.001 <0.001 <

LC vs. RC 0.088 0.104

The background shading and the numbers in cells represent, respectively, the significance
and corresponding left and right subregions in cingulum and fornix, for different cohorts
The p-values (last column) were significant if below 0.05/18 = 0.0028. The p-values for
Table notations: FA: fractional anisotropy, Ge: genu, Rb: rostral body, Am: anterior midbody,
S: superior, P: posteroinferior, L: left side, R: right side of cingulum. AB: anterior body, LC: left
and B mTLE: mTLE patients with right, left, unilateral, and bilateral epileptogenic side, respecti
mTLE versus control. Moreover, the standard deviation of FLAIR intensi-
ty in both hippocampi showed significant differences for right mTLE
versus control, and in left hippocampus for left mTLE versus control.
Furthermore, the right hippocampal volume showed a significant differ-
ence for left versus right mTLE (p b 0.0083).

3.2. Lateralization response-driven models

Based on the differences in FA in the corpus callosum, cingulum and
fornix, multivariate response-driven models were developed as bio-
markers of laterality, to determinewhat the simplest andmost accurate
methods were for distinguishing between unilateral and bilateral cases
as well as to specify the laterality of individual mTLE cases. Table 4
shows the probability of detection and the deviance of the fit forModels
1 to 3, averaged over 54 repetitions of leave-one-out cross validations
using the FA feature vectors in the cingulate, callosal, and forniceal sub-
regions. InModel 1, the side of epileptogenicity was detected in 100% of
cases of left and right mTLE only using the FA feature vector in the cin-
gulum (Dev = 7.3). This demonstrates that the cingulum expresses
greater asymmetry than either the fornix or corpus callosum in unilater-
al mTLE cases. Integrating the FA attribute into both corpus callosum
and cingulum, the same probability of detection was achieved (100%)
while drastically decreasing the deviance of the fit (Dev = 0.7), which
implied a more accurate fit of themodel to the dataset. By such integra-
tion, a 100% probability of detection was also achieved for Model 2.
It can be inferred that the corpus callosum contributes considerably
more than the cingulum or fornix for distinguishing bilateral from uni-
lateralmTLE cases. The integration of forniceal FA featureswith both the
corpus callosum and cingulum achieved a 100% probability of detection
for Model 3, while assigning all cases correctly to each of the unilateral
right and left mTLE, bilateral mTLE and control cohorts with a lower de-
viance for all Models (Dev= 30.4). The same 100% probability of detec-
tion for Model 3 is achieved by reducing the cingulate features to only
left and right posteroinferior for a total 11 of features. The slight increase
in the deviance of the fit (Dev = 36.6) may imply a lower chance of
s using paired t-tests.

TLE B mTLE mTLE Control All Subjects

0.001 <0.002 <0.001 <0.001 <0.001

0.001 0.46 <0.001 <0.001 <0.001

0.455 0.282 0.247 0.674 0.412

0.159 0.109 0.656 0.371 0.855

0.001 0.010 <0.001 0.174 <0.001

0.001 0.008 <0.001 <0.001 <0.001

0.001 <0.001 <0.001 <0.001 <0.001

0.119 0.323 0.065 0.106 0.017

0.018 <0.001 <0.001 <0.001 <0.001

0.677 0.700 0.626 0.015 0.029

0.001 0.001 <0.001 <0.001 <0.001

0.001 <0.001 <0.001 <0.001 <0.001

0.023 <0.001 <0.001 <0.001 <0.001

0.001 <0.001 <0.001 <0.001 <0.001

0.001 0.005 <0.001 <0.001 <0.001

0.001 0.021 <0.001 <0.001 <0.001

0.001 0.028 <0.001 <0.001 <0.001

0.485 0.873 0.469 0.138 0.74

and unadjusted p-values between pairs of regions, including all adjacent subregions
of left, right, unilateral, bilateral, and all mTLE, control, and for all subjects together.
specific mTLE groups were significant if below 0.05/6 = 0.0083.
Pm: posterior midbody, Is: isthmus, Sp: splenium of corpus callosum. A: anteroinferior,
crus, RC: right crus of fornix. mTLE: patients with mesial temporal lobe epilepsy; R, L, U
vely.
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overfitting and a higher generalization of the model to a new dataset.
Fig. 3a and b shows the logistic fit for binomial Models 1 to 2 using
the reduced FA feature vectors in the cingulate, callosal and forniceal
subregions. TheMDmetric did not contribute to the solution as substan-
tively as the FA metric.

The same multivariate response-driven models were developed
from more standard volumetrics and FLAIR analyses as a comparison
to DTI-based models. The combination of mean and standard deviation
of hippocampal FLAIR intensities and hippocampal volumeswas superi-
or to any other combination (Table 4). Fig. 3c and d shows the logistic fit
and the probability of detection for binomial Models 1 and 2 using all
hippocampal features. The left and right mTLE cohorts were distin-
guishable from each other by Model 1. However, the bilateral cohort
was not distinguishable from unilateral cohorts using Model 2. Even
in models with PD = 1, a lower deviance was achieved with FA, sug-
gesting a more appropriate fit with FA metrics than with those of the
hippocampus.

Table 1 also shows the lateralization results by neuroclinical
(columns 4–6) as well as neuroimaging methods (columns 11–15).
Correct detection of mTLE laterality by each of these lateralization
Table 4
The probability of detection and the deviance of fit averaged over 54 repetitions of leave-
one-out cross validation for lateralization models (columns), using feature vectors of FA
measurements in the corpus callosum, cingulum, and fornix subregions and their combina-
tions, as well as mean and standard deviation of hippocampal FLAIR intensities and volumes
in the left and right hippocampi and their combinations (rows).

M1 M2 M3

F
A
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a
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e
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ts

Corpus callosum
PD 0.96 0.87 0.76

Dev 7.97 16.87 62.13

Cingulum
PD 1.00 0.81 0.69

Dev 7.41 25.28 86.87

Fornix
PD 0.88 0.74 0.76

Dev 20.68 26.74 89.98

Corpus callosum + 

cingulum

PD 1.00 1.00 0.96

Dev 0.67 12.35 40.75

Corpus callosum + 

fornix

PD 1.00 0.97 0.91

Dev 3.43 13.41 44.68

Cingulum + fornix
PD 1.00 0.87 0.93

Dev 4.41 19.46 59.13

Corpus callosum + 

cingulum + fornix

PD 1.00 1.00 1.00

Dev 0.11 10.84 30.36

Reduced features 

corpus callosum + 

cingulum + fornix

PD 1.00 1.00 1.00

Dev 2.8 14.23 36.54
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FLAIR mean
PD 0.83 0.77 0.69

Dev 23.01 32.28 95.12

FLAIR Std
PD 0.79 0.77 0.61

Dev 28.14 32.63 108.22

FLAIR mean + 

FLAIR Std

PD 0.79 0.71 0.72

Dev 20.65 30.12 80.07

Volume
PD 0.92 0.77 0.72

Dev 9.47 32.68 88.41

FLAIR mean +  

FLAIR Std + volume

PD 1.00 0.71 0.81

Dev 1.60 30.00 44.78

Table notations: FA: fractional anisotropy, PD: probability of detection, Dev: deviance of the
fit, Std: standard deviation. FLAIR: Fluid Attenuated Inversion Recovery. M1–M3: lateraliza-
tionModels 1 to 3. The background shading in cells represents 100% probability of detection
achieved by models and features.
methods ranged widely as 24/31, 18/30, 15/27, 18/31, 22/31, 23/31,
22/31, and 31/31, respectively, considering that the results of some
neuroclinical methods were not available. Some mTLE cases could not
be lateralized by these other methods, with either false positive or
nonlateralizing results obtained (Table 1).

4. Discussion

The cingulum, fornix and corpus callosumwere seen to have distinc-
tive diffusion indices in cases of both unilateral and bilateral mTLE com-
pared to that of control subjects sufficient to distinguish them from one
another. We compared these DTI-based changes with hippocampal
structural changes (i.e., volumetrics and FLAIR intensities) and found
the former to be more reliable not simply in distinguishing between
unilateral and bilateral mTLE cases but in specifying the laterality of in-
dividual mTLE cases. These were then used to develop a response-
driven lateralization model that could be used as an effective quantita-
tiveneuroimagingbiomarker to establishunilateral and bilateral epilep-
togenic zones in mTLE in order to lessen diagnostic ambiguity and,
hopefully, eventually to reduce the need for invasive electrographic
monitoring. The proposed lateralization model based on FA measure-
ments was superior to neuroclinical methods including EEG Phase I
monitoring,WADA, and neuropsychological tests as well as to previous-
ly introduced neuroimaging asymmetry analysis methods including FA
in the posteroinferior cingulum and fornix, and hippocampal volume
and FLAIR intensity. A combined model integrating the FA and hippo-
campal measurements would probably further improve the probability
of detection in other datasets. Regression overfitting can be partly ad-
dressed by testing the model's ability to generalize its performance on
a set of data not used for training by cross validation techniques, al-
though overfitting can be a concernwhen the number of integrated fea-
tures becomes comparable to the sample size.

Previous research has studied changes of DTI indices either in cases
of mTLE or MTS compared to a nonepileptic cohort (Concha et al.,
2009; Gross et al., 2006; Kim et al., 2008), or between brain structures
ipsilateral and contralateral to the site of seizure onset (Concha et al.,
2004, 2009; Liacu et al., 2012a; Nazem-Zadeh et al., 2014b). Only a
few studies have compared DTI changes in cases of right and left mTLE
(Ahmadi et al., 2009; Focke et al., 2008; McDonald et al., 2008; Shon
et al., 2010). Focke et al. (2008) reported FA reduction in both left and
right forniceal crura for right mTLE and in the left forniceal crus for
leftmTLE (Focke et al., 2008). These findingswere supported by the cur-
rent study, but only the former was significant. Otherwise, an FA reduc-
tion in the parahippocampal gyrus was not identified in our left mTLE
cohort. Our finding in posteroinferior cingulum was in agreement
withMcDonald et al. (2008)who found that in parahippocampal cingu-
lum, right mTLE patients showed a lower FA in the right side compared
to the left, and left mTLE patients showed a lower FA in the left side
compared to the right (McDonald et al., 2008). They found FA in the
right parahippocampal cingulum significantly lower in the right mTLE
patients compared to the controls. They did not find the fornix sensitive
to mTLE laterality compared to controls. Shon et al. (2010) reported in-
creased MD for mTLE cases with MTS in the ipsilateral hippocampus as
well as the parahippocampal and frontoparietal regions. Those patients
with a left MTS also, specifically, showedMD increases in the ipsilateral
posterior cingulum and the callosal isthmus in addition to the contralat-
eral occipitotemporal regions. In the absence ofMTS, the leftmTLE cases
demonstrated increased MD in the ipsilateral posterior fornix and the
posterior cingulum. They reported that changes in MD were more pre-
dominant and extensive in patients with left compared to patients
with right mTLE (Shon et al., 2010). Ahmadi et al. (2009) reported re-
duced FA in the ipsilateral cingulate and parahippocampal gyri in cases
of right and left TLE (Ahmadi et al., 2009). Significant fiber tract asymme-
try was evident in cases of right TLE with reduced FA in the right inferior
fronto-occipital fasciculus and fasciculi of the parahippocampal and cin-
gulate gyri. Thosewith left TLE demonstrated reduced FA in the left fornix



Fig. 3. The logistic fit and the probability of detection for Models 1 and 2 using the features vector of FA measurements in the cingulum, corpus callosum, and fornix subregions (a and b,
respectively), as well as the features vector of FLAIR signal intensity and volumemeasurements in the hippocampus (c and d, respectively). FA: fractional anisotropy, TLE: temporal lobe
epilepsy. FLAIR: Fluid Attenuated Inversion Recovery. Note that each curve is the average of 54 curves generated by repetitions of leave-one-out cross validation.
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relative to the right. Similar trends were seen in the present study as for
the cingulum and fornix but were not judged significant. Ahmadi et al.
(2009) also found general bilateral widespread white matter changes in
patients with left mTLE and mostly unilateral changes in patient with
rightmTLE compared to controls. In contrast,we found the rightmTLEpa-
tients underwent more FA reduction in corpus callosum, cingulum, and
fornix subregions than left and bilateral mTLE cohorts, compared to the
control cohort. Because of the variability in diffusion properties seen
across the cingulum, it may be best to consider division of this structure
into superior, posteroinferior, and anteroinferior subregions to better
appreciate distinct DTI changes in cases of mTLE (Nazem-Zadeh
et al., 2014b).
In thiswork, we studied the diffusion anisotropy in the fornix, cingu-
lum and corpus callosum as the white matter structures affected by
mTLE evidenced in the literature. We were also interested in studying
other fiber tracts such as uncinate fasciculus and hippocampal mossy
fibers, which, however, cannot be reconstructed accurately and repro-
ducibly using streamlinefiber trackingmethods. Tract-based spatial sta-
tistics (TBSS) methods were not intended to be utilized either, because
instead of measuring the anisotropy within the whole volume of white
matter structures, they measure it across their skeleton or main axis.
Furthermore, the atlas-based registration/segmentation methods do
not work very well for quite small or narrow white matter structures
as they are vulnerable to the misregistration between subjects.
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Especially for some mTLE cases in which some of white matter struc-
tures do not align well with the atlas structures, uncertainty would be
induced in feature measurements.

There are limited studies on the application of DTI indices for
lateralizing seizure onset in individual mTLE patients. In our previous
work, the problem of lateralization of mTLE was addressed by inter-
hemispheric asymmetry analysis of FA in bilateral structures such as
the posteroinferior cingula, forniceal crura, and hippocampi, where
mTLE cohort showed a significant asymmetry in FA in ipsilateral com-
pared to contralateral sides. However, the introduced asymmetry
analysis could not detect the side of epileptogenicity in all non-MTS
cases (Nazem-Zadeh et al., 2014b). In contrast, we included the corpus
callosum and its subregions in the current study. The corpus callosum
is a commissural fiber tract with diffusivity perpendicular to its main
axis, which it does not contain bilateral structures to apply the asymme-
try analysis. Furthermore, significant interhemispheric variation of FA
for either the cingulum or the forniceal crura in any mTLE cohorts was
not evident. Paired measures establishing single asymmetry indices
were therefore not worthwhile. In addition to the problem of identify-
ing the mTLE laterality, the current study addresses the problem of
distinguishing unilateral from bilateral mTLE, using FA metrics in the
subregions of the cingulum, fornix and corpus callosum. The proposed
model was not only successful in detecting all bilateral mTLE cases but
effectively identified the side of epileptogenicity for all unilateral non-
MTSmTLE cases. It also was capable of rendering the probability of uni-
lateral or bilateral epileptogenicity and the side of epileptogenicity in
the case of unilateral mTLE.

In the current study, the variability in quantitative imaging indices
was alleviated through the use of a single imaging scanner with identi-
cal parameters. Subject-specific factors related to the natural variability
of neurobiological attributes in designated anatomical sites were taken
into account by integrating the indices of a nonepileptic control cohort
and multinomial modeling, establishing boundary domains from the
nonepileptic cohort as a means of defining acceptable ranges (Nazem-
Zadeh et al., 2014a). This provided greater confidence in determining
laterality for those cases whose imaging attributes were identified as
existing outside the boundary domain.

Some limitations exist in the current study. The number of bilateral
mTLE patients reviewed was not large. The further recruitment of bilat-
eral cases over time will provide greater assurance of these findings in
order to implement a robust lateralization scheme. The proposed later-
alization model is only applicable to stringently defined mTLE patients
and is not generalizable to all epilepsy patients. It is not likely to be
valid for patients with suspected extratemporal epilepsy. The validity
in patients with lateral, neocortical TLE is unknown. Due to the variabil-
ity of DTI indices inherent in the choice of scanner and imaging param-
eters, the model is also only applicable to those patients imaged by the
scanner and imaging parameters for which the model has been devel-
oped. Finally, even for the same imaging system, further steps, such as
validation in an independent cohort of patients is called for before clin-
ical application.

The use of icEEG allowed establishment of bilateral TLE as thosewith
truly independent bitemporal ictal origins. Despite electrographic fea-
tures supporting bilateral independent temporal epileptogenicity,
there have been efforts by several groups to assess predominance of
one side over the other, leading to considerations of surgical candidacy
(Boling et al., 2009; Chung et al., 1991; Hirsch et al., 1991; Holmes et al.,
2003; Luo et al., 2013;Malmgren et al., 2014; Sirven et al., 1997). In a re-
view of bitemporal epileptogenicity, Aghakhani et al. (2014) evaluated
group data of those cases declared to express genuine bitemporal
epileptogenicity by extraoperative icEEG. Out of 173 bitemporal
patients who were found to have sufficient laterality and underwent
unilateral resection, 58 patients (33.5%) achieved Engel class I and 19
patients (11%) achieved Engel class II outcomes. Zhang et al. (2014)
reported 41.7% of patients with bilateral mTLE, 50% of whom were
MRI-negative, became seizure-free (Zhang et al., 2014). Spencer et al.
(2011) questioned the notion that icEEG for 1 to 3 weeks should be
considered the gold standard. They suggested that some of the failures
in resection of putative epileptic foci in presumed unilateral patients
may be due to the fact that certain numbers of patients are truly bilateral.
Theremay be a sampling error attributable to an insufficiently short-term
icEEG. They averred that icEEG with NeuroPace RNS™ is probably the
gold standard (Spencer et al., 2011). Nevertheless based on these com-
prehensive studies, the reliance on icEEG alone as a necessarily strong
or exclusive predictor of surgical outcome for apparent bilateral mTLE
cases may not be fully warranted (Aghakhani et al., 2014). A multi-
modal approach including neuroimaging and icEEG can identify an
epileptic focus in most cases, and provide suitable surgical options
for nonlesional or bilateral mTLE patients with a possible good out-
come (Zhang et al., 2014). The notion that DTI attributes may have a
declarative role is compelling because of the overt structural chang-
es putatively brought about by epileptogenicity. Such DTI changes in
bilateral mTLE patients, if concordant with icEEG, may be sufficient-
ly robust to serve as a suitable differentiating metric or biomarker,
to more confidently proceed with a unilateral resection.

5. Conclusions

By looking at the DTI characteristics of various brain regions, we
were able to differentiate 12 left, 12 right and 7 bilateral mTLE from
one another and from 23 controls more robustly than with a model
usingmore traditional volumetrics and FLAIR analyses of the hippocam-
pus. This pilot study suggests that the application of the proposed later-
alization model on a large population of mTLE cases may further prove
its ability in lessening the diagnostic ambiguity of laterality and help op-
timize selection of surgical candidates.
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