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Abstract 

A fixed-point free map f : X A X is said to be colorable with k colors if there exists a closed 
cover C of X consisting of k elements such that C n f(C) = 8 for every C in C. It is shown that 
every fixed-point free continuous selfmap of a compact space X with dimX < n can be colored 
with n + 3 colors. Similar results are obtained for finitely many maps. It is shown that every free 
Z,-actionon an n-dimensional compact space X has genus at most n + 1. 
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1. Introduction 

In the paper [2] the terminology “coloring of a map” of a map was introduced. We 

recall: 

Definition 1. Let f : X + X be a fixed-point free map. We say that f can be colored with 

t? colors or that f is colorable with Ic colors if there is a closed cover C = {Cl, , Ck} 

with k sets such that no C, contains a pair {x, f(z)} or, equivalently, C, n f(Ci) = 8 

for each i = 1, , k. The elements of C are called colors and we shall say that C is a 

coloring of f. 

A theorem of KatEtov states that every fixed-point free map ‘p : D + D on a discrete 

space can be colored with three colors. The theorem of Liusternik and Schnirel’man is 
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the statement that every coloring of the antipodal map CY : S” -+ S” on the n-dimensional 

sphere Sn needs at least n + 2 colors. 

In [2,4,6] topological versions of this theorem were obtained. 

Theorem 2 [2]. (1) Let X be aparacompact Hausdoflspace with dimX < n. Suppose 

that L is afixed-pointfree involution of X. Then there exists a closed cover {Cl, , C,} 

of X with k < n + 2 such that no Ci contains a pair {x, L(X)}, i = 1,. . . , k. 

(2) Let X be a metrizable space with dimX < n. Then every fixed-pointfree homeo- 

morphism of X onto itself can be colored with n + 3 colors. 

(3) Let X be a compact metrizable space with dimX < n. Every fixed-point free 

continuous map of X to itself can be colored with n f 3 colors. 

The function dim is the covering dimension. The first goal of this paper is to show 

that in the second and the third statement of this theorem the metrizability condition can 

be dropped. 

Theorem 3. Let X be a paracompact space with dimX < n. Then every fixed-point 

free homeomorphism of X onto itself can be colored with n + 3 colors. 

Theorem 4. Let X be a compact space with dim X < n. Every fixed-point free contin- 

uous map of X to itself can be colored with n + 3 colors. 

In Theorem 3 homeomorphism cannot be replaced by continuous map. For basic 

information we refer to [2,4]. 

We frequently use the following result. 

Lemma 5 [6]. Everyfied-pointfree homeomorphism f : X 4 X of afinite-dimensional 

paracompact Hausdorfs space onto itself has a fixed-point free tech-Stone extension 

fif:px_,px. 

2. Proofs 

Proof of Theorem 3. By Lemma 5 we only have to prove Theorem 3 under the additional 

assumption that X is compact. (Recall that dim X = dim/3X.) Assume f : X + X is 

a homeomorphism with X compact. We show that this map is weakly conjugated to a 

fixed-point free map (even homeomorphism) on a compact metric space of dimension 

not larger than that of X. This means that we construct a compact metrizable space Y 

with dimY < dimX = n, a fixed-point free map f * : Y + Y and a map cp: X + Y 

such that cp o f = f* o cp. The space Y shall be the Wallman representation of a carefully 

selected collection of zero-sets of X. If we succeed in this construction we are done with 

the proof. Indeed, a coloring {Al, . , A,+j} of the constructed map on Y induces the 

coloring {cp-‘(Al), . , cp-‘(An+?)} of the map f. 

The idea of this proof as described above is due to K.P. Hart. 
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Since the proof of Theorem 3 relies on the use of the family of zero-sets 2(X) we 

state a lemma from [l] in which the covering dimension is characterized by the zero-sets 

of the space. 

Lemma 6. Let X be a compact Hausdorff space. The following statements are equiva- 

lent. 

(1) dimX < 71. 

(2) There exists a base B of zero-sets such that for every finite collection 3 c B with 

n 3 = 8 there exists a finite collection s c f? such that: 

(a) for every element G E 4 there exists an F E 3 with F c G, 

(b) n G = 8, 
(c) every subcollection of G with more than n + 1 elements is a covering of X. 

We are looking for a countable collection 7 C 2(x) with the following properties. 

List 7. Properties of 7. 

(1) {RX) c 7-. 
(2) For S, T E 7 we have {S n T, S U T} C 7. 

(3) For T E 7 we have {f-‘(T), f(T)} C 7. 

(4) The lattice 7 is normal, i.e., for every disjoint S,T E 7 there exist G and H 

in 7 such that G n S = @ = T n H and G U H = X. (This property is also known as 

the screening-property.) 

(5) For every T E ‘T there exist T, E ‘T such that X\T = U{Tn : n E N}. 

(6) For every finite collection 3 c 7 with n 3 = 8 there exists a finite collection 

G c 7 with: 

(a) n 6 = 0, 
(b) every subcollection of g with more than n + 1 elements is a covering of X, 

(c) for every element G E G there exists an F in 3 with F c G. 

(7) There is a jmite subcollection {Cl, , C,} of ‘T satisfying f(Ci) n Ci = 8, for 

all 1 < i 6 Ic and CI U.. U Ck = X. 

The following lemma is the heart of the construction. 

Lemma 8. Given a countable collection S c 2(X) there exists a countable collection 

7 c 2(X) with 7 > S and satisfying the properties 1, . . ,6 from List 7. 

Proof. The proof is trivial, since all the conditions in List 7 are satisfied in 2(X). 

As X is compact and the map f has no fixed points there exists a finite covering 

{Cl, . , C,} of zero-sets such that f(C) n C, = 0 for every i. Now apply Lemma 8 to 

the collection s = (8, Cl, . , Ck, X} and we obtain the required countable collection 

7 satisfying the 7 properties from List 7. 

The space Y will be the Wallman representation of the collection 7 (as described by 

Wallman in [lo]). So Y is the collection of all 7-ultrafilters with as a closed base the 
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family {S*: S E 7}, where S* = {F e Y: S E 3). (Note that the fifth property 

implies that S = T if and only if S” = T*.) Lemma 6 together with the fact that 7 is 

countable implies the following. 

Lemma 9. The constructed space Y is compact metrizable and dim Y < dim X. 

Next, define the map cp : X + Y by 

cp(Z) = {S E 7: 3: E S}. 

Clearly P(Z) E Y and the compactness of X implies that ‘p is surjective. Moreover, the 

following identities are easy to verify. 

P(S) = s*, cp-‘(s*) = s. 

Finally, we define the continuous function f* : Y + Y by: 

f*(F) = {f(F): F E F}. 

Obviously f*(F) E Y. The following equalities are easily seen to be true. 

(f*)-‘(S*) = (f-‘(S))*, f*(S*) = (.f(S))*. 

In particular, f* is continuous. (In fact it is not difficult to see that the map f* is a 

homeomorphism.) We check that the map f* is fixed-point free. Indeed, Y = CT U . 

UC; and as f(Cz)nC, = 0 it follows that (f(C,))* nCc = 8 and so f*(C%F)nC; = 8. 

Finally we observe that the maps cp and f * defined as above satisfy: 

pOf=f*O’P. 

This ends the proof of Theorem 3. 

Proof of Theorem 4. This proof can be copied from [2]. Here it was verified that if 

the fixed-point free homeomorphisms of every compact n-dimensional (metric) space X 

can be colored with n + 3 colors then the same is true for all fixed-point free continuous 

maps. 

3. A topological version of the De Bruijn-Erd6s theorem 

There exists a generalization of the KatCtov theorem due to de Bruijn and Erdiis. 

Theorem 10 [Sl. Let D be a set and ~1,. , pp : D t D befxed-pointfree maps. Then 

D=AIU...UA~~+I withA~n~~(A~)=Bforalli<2p+landj<p. 

In [4] a topological version of this theorem was obtained for the class of compact 

zero-dimensional spaces. Here we present one for the class of finite dimensional spaces. 

Definition 11. Let fj :X + X (j = 1,. , l) be fixed-point free maps. We say that 

these maps can be colored with Ic colors if there is a closed cover C = {Cl, , C,} 
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with k sets such that fj(Ci) n Ci = 8, for all i < Ic and j < e. The elements of C are 

called colors and we shall say that C is a coloring of fi, . , ft. 

We have a good generalization of Theorem 10 and Theorem 3 if we restrict ourself to 

homeomorphisms on the class of finite dimensional paracompact spaces. 

Theorem 12. Let X he a paracompact space with dimX < n. Let fi : X + X (i = 

1, : !) he fixed-point free homeomorphisms of X and let gj : X + X (j = 1, , k) 

be ,fixed-point free involutions of X. Then { fl, . . . , fe, 91,. , gk} can he colored with 

71, + 2.!? + k + 1 colors. 

But for the larger class of continuous maps we can only prove a similar statement 

under the condition that the maps commute. 

Theorem 13. Let X he a compact space with dim X < n. Let fi : X + X (i = 1. , li) 

be fixed-point free continuous maps and let g,? : X + X (j = 1, , k) he fixed-point 

,free involutions of X such that any hvo functions from { fl , . , fe, 91, , ,gk} commute. 

Then {f 1, , fe: 91, , gk} can be colored with n + 2& + k + 1 colors. 

We are quite convinced that the assumption on commutativity can be dropped, but we 

do not see yet how to do it. 

In the final remark of this paper we show that the upperbound n + 2e + Ic + 1 is the 

best upperbound for all n, C and lc E (0, l}. (For other lc we do not have examples.) In 

particular, the number n + 3 in Theorem 3 is the best upperbound, for all n. 

4. Proofs 

Preliminaries ,for the proof af Theorem 12 

By Lemma 5 we only have to prove Theorem 12 under the additional assumption 

that X is compact. (Note that the pgJ remain fixed-point free involutions.) Using the 

same construction as in Section 2 we see that we can even assume that the space X is 

compact metric. Indeed, we replace condition 3 in the List 7 of the Wallman lattice by 

the condition: 

(3) For every T E 7 and i,j we have {f,r’[T], fi[T],gj[T]} c 7. And so we 

construct a compact metrizable space Y with dimY < dimX = n and fixed-point 

free maps f,* : Y + Y and involutions g; : Y + Y and a map cp: X + Y such that 

9 o fi = f$* o p and cp o Q~ = g; o cp. So we can follow the method from [2]. 

Let X be a compact metric space with dim X < n and let fl : X + X (i = 1,. , !) 
be fixed-point free homeomorphisms of X and let gj : X + X (j = 1,. , k) be hxed- 

point free involutions of X. The following two propositions are well-known and proofs 

can be found in [l]. 
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Proposition 14. Suppose that X is a metrizable space. Let Z be a subspace with 

dim Z < n. Then for every pair of disjoint closed subsets F and G there is a parti- 

tion 5’ between F and G with dim(S n Z) < n - 1. 

Proposition 15. Let { Yk: k E PI} b e a collection of F,-subsets of a metrizable space X. 

Suppose that dim Yk = nk > 0 for k in N. Then there exists an F,-set Z of X such that 

dim Z = 0 and dim(Yk\Z) = nk - 1 for all k in N. 

The following two lemmas are the key, and the proofs are direct translations from [2]. 

The details are left to the reader. 

Lemma 16. Suppose X is a metrizable space with dimX < n and let hl, . , h, be 

homeomorphisms of X onto itself without$xed points. Let cp, with or without subscript, 

denote one of the maps hi and/or id. Suppose that S = {Si: i E IV} is a family of closed 

subsets of X such that 

dim (cpi,(Sil) n ... ~w,(&,)) < n-p 

whenever il < . < i, and 1 < p < n + 1. Then for each pair of disjoint closed 

subsets F and G of X there is a partition S between F and G such that 

dim (cpi, (Si,) n . . . n Pik-1 (St,_,) n P(S)) < n - k 

whenever il < . . . < ik_1 and 1 < k < n+ 1. 

Lemma 17. Let X be a metrizable space with dimX < n and let ‘p, with or without 

subscript, denote a map from a finite collection of homeomorphisms from X to X. Let 

K = {Ki: 1 < i < m} be a finite closed cover of X and U = {Ui: 1 < i < m} be 

an open swelling of K. Then there exists a closed swelling C = {Li: 1 < i < m} of K 

such that Ki C Li C Ui and 

cpi, [aLi,] n.. n Cpi +, [aLin+,] = 0 II 

whenever 1 < it < . . . < in+, < m. 

Proof of Theorem 12. Let K = { Kl , . . . , K,} be a finite coloring of {fr , , fe, 91, . , 

gk}. Let hi denote one of the maps from this collection of maps. There exists an open 

swelling U = {Vi: 1 6 i 6 m} such that hj(U,) n UP = for all j and all 1 < p < m. 

Let cp with or without subscript denote fi, f,:’ or ,9j. (Note that gj = ,9;‘.) By 

Lemma 17 we find a closed swelling L = {L,: 1 < i < m} of K such that K, c L, c U,, 

for all 1 < i 6 m and 

(pi, [aLi,] n . . . f- (pi,,+, [aLin+, = 0. 

NOW put C = {Cl,. . ,Cm} with Ci = Cl(Li\{Lj U...ULi-I}). Suppose < > n+2e+ 

Ic + 1. We want to remove color Cc thus reducing the number of colors. Let y E Cc and 

let {Cz, : j < t}, where t < C - 1, be the collection of colors containing at least one 
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element of the form fj(y), f;‘(y) or gi(y). By using the appropriate functions cp we 

find 

71 E cpzl [C,, I n n CF~,, 1% I. 

Suppose pz,, is f, for t,,t indices, cpz,, is fJy’ for tJ,2 and cpi, is h,j for t,,? indices. Note 

that CJ,b t,,b = t. 

The question is for how many indices is y E ‘p[aLi,]. By the construction of C we 

find y for at least tj,b - 1 indices in cp(aLi,). 

This gives xj,btj,b = t - 28 - k < n. Which implies y is contained in at most 

n + 2e + k sets, hence within the first n + 21+ k + 1 sets there is a set not containing any 

of the previous mentioned forms. We can move y to this set using the same technique 

as described in [2, Theorem 41. 

Proof of Theorem 13. First we prove the theorem in case all the maps are surjective. For 

notational convenience the maps are called ft , , fe+k. Consider the following inverse 

system. 

fz,Xfi,Xf~Xfi*lX,,,~X”h+X, 

The inverse limit of the sequence with these bonding maps is called Y. Note that Y is 

a compact space with dimY < n. As the maps commute every continuous map f% can 

be seen as a map from the inverse sequence to itself and therefore can be lifted to a 

unique fixed-point free homeomorphism Fi : Y + Y. (Moreover, if fi is an involution, 

so is Fi.) As the dimension of Y is at most n the maps {Fl , . , Fe+k} can be colored 

with n. + 2e + k + 1 colors, say 

C={C,: 1 <i<n+2e+k+l}. 

The projection of Y on the jth coordinate space is denoted 7~~. Since f is surjective, 

so is 7rJ. The projection rrj(C) is a closed cover of X. (Here we use that the maps are 

surjective.) 

For fixed index i, the preimages ~~7’ (rrj (‘3~)) f orm a descending sequence with inter- 

section n{n,‘(rrj(Ci)) / j E N} = Ci. Th e map F, satisfies for sufficiently large jr, 

Sinse fr 0 rrj = 7rj 0 F,, it follows that 7rJ,.(Ci) n fr(~j(Ci)) = 8. So, the projection 

nJ(C) is a coloring of all the maps fr, for sufficiently large j. Now we consider the case 

in which the maps fi are arbitrary continuous maps. Consider the sequence of closed 

subspaces 

Xl = fl (X), x2 = f2(xl), > &+k = .fl+k(&+k+l), 

Xt+k+l = fl (&+k), xe+k+2 = f2(&+k) 

As the maps commute the sequence {X,: n > l} is decreasing. Put K = n X,. Then 

f,(K) C K and the maps fi : K t K are surjective. By the first result, the maps fi 
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onKcanbecoloredbyn+2C+Ic+lcolors:C={C~/1~i~n+2&+Ic+l}.InX 

there is an open collection 

suchthatCiCUiandf,(U,)nU,=0,forallj=l,...,e+Icandi=l,...,n+ 

2-e + Ic + 1. The union U of U is a neighborhood of K. For m sufficiently large, X, 

is contained in U. Let us assume for convenience that X, = fl(X,-1). Then for sure 

{fl?-J~), . . . , fr’ (Un+u+lc+l )} is an (open) coloring of fl on Xm_l. But as the maps 

commute it will also be an open coloring for the other maps: 

Next we take preimages under fe+k to obtain a covering of Xm_2, etc. and in this way an 

open cover of X is obtained in m steps. A closed shrinking of this cover is the required 

coloring of the maps fi by n + 2e + Ic + 1 colors. 

5. An application 

First we collect some definitions. 

Definition 18. Let X be a compact space. A continuous map f : X t X is called a 

Z&-action on X if 

(1) vx E x: fP(5) = z. 

If, moreover: 

(2) V’z E X: the set {x, f(x), , fp-‘(x)} h as cardinality p then the Z&-action is 

called free. 

Definition 19. Let X be a compact space and let f : X + X be a free Z&-action on X. 

(1) A subset C c X is called a set of the first type if there exists a closed set A c X 

such that 

(a) C = U{fj(A): j = 0, 1, . . ,p - l}, 

(b) A f? fj(A) = 0, for j E 1,2,. . ,p - 1). 

(2) The number Ic E N that is minimal with respect to the property that X is the 

union of k-many closed sets of first type is called the genus of (X, f), and is denoted 

by g(X, f). The name “genus of f” is also used and when it is clear from the context 

what the map is then the name “genus of X” is used. 

The theorem of Liusternik and Schnirel’man can be reformulated as follows: the genus 

of the antipodal map on the n-dimensional sphere S” is equal to n + 1. It is not difficult 

to see that the first statement in Theorem 2 is equivalent to the following statement. 

Proposition 20. Let X be a paracompact Hausdorfspace with dim X < n and suppose 

that L is a fixed-pointfree involution of X. Then the genus of L is at most n + 1. 
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There exists a space KF with a Z&-action cp : K: + K: such that g(K,“, p) = n + 1. 

We mention that the space Kp has dimension n and for odd n: K: = 9, the n-sphere 

with the standard En-action. For more information see [9]. 

This space is universal with respect to the spaces of genus at most n + 1, because of 

the following property. 

Lemma 21 [9]. Let X be a compact space and f : X + X a free Z&-action with 

g(X, f) < n+ 1. Then f is weakly conjugated (or equivariant) to the map cp : K; -+ K,“, 

i.e., there exists a map h : X + K: such that ‘p Q h = h o f. 

Finally we mention a result by Krasnosel’ski, that generalizes the Liusternik- 

Schnirel’man theorem. 

Theorem 22 (Krasnosel’ski [7]). The genus of every free &-action f : S” -+ Sn on the 

n-dimensional sphere S” is at least n + 1. 

The application of our results is the following theorem. 

Theorem 23. Let X be a paracompact n-dimensional space and let f : X + X be a 

free i&-action on X. Then g(X, f) < n + 1. 

Proof. Case 1: p is odd, say p = 2k + 1. 

Claim: if A c X and fj(A) nA = 0, for j = l,...,lc then fj(A) nA = 0 for 

j = 1, . ,2k. This is easy to verify: A n fi(A) = 0 implies fPei(A) n A = 0, as 

fP = id. 

Consider the fixed-points free homeomorphismes 3 = {f, f*, . . . , f “}. According to 

Theorem 12 there exists a closed coloring 

A = {AI, A2,. . , &+2/c, &+2k+1 = An+,} 

of 3. 

Note that according to the claim, for all i, the sets f j (Ai) (j = 1, . . , p) are pairwise 

disjoint. Therefore, for all i, the sets 

Ci=U{fj(Ai): j=l,...,p} 

are of the first type. If suffices to show that X = Ct U. . .UC,+I. If not, then some z E X 

is not in ci U . . . U &+I and therefore {z, f(z), . . . , fp-’ (z)} n Cl U.. U C,+l = 8. 

The set {z:, f (xc), , f*-‘(z)} is contained in An+2 U . . . U An+p and therefore at 

least one of these Ai contains at least two points of the set (5, f(s), , fp-l(z)}. This 

is a contradiction, as the sets fj(Ai) (j = 1, . ,p) are pairwise disjoint. 

Case 2: p is even, say p = 2k. 
Claim: if A c X and fj(A) nA = 0, for j = l,...,lc, then fj(A) nA = 0 for 

j = 1,...,2k- 1. 

Consider the fixed-points free homeomorphismes 3 = {f, f*, . , f k}. Note that 

f” is an involution. According to Theorem 12 there exists a closed coloring A = 

{AI,. . > &+2(/4)+1+1 = An+,) of 3. 
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Note that according to the previous claim, for all i, the sets fJ (Ai) (j = 1, ,p) are 

pairwise disjoint. Next continue as in the previous case. 

Corollary 24. The genus of every free &-action f : S” + S” on the n-dimensional 

sphere Sn is equal to n + 1. 

We also conclude that the spaces I(,” are not only universal with respect to genus, but 

also with respect to dimension. 

Corollary 25. Let X be a compact space with dim X < n and let f : X + X he a free 

&-action. Then f is weakly conjugated to the map p : K: + K:. 

Remark. The proof of Theorem 23 shows that the spaces K; can be used to see that the 

upperbound n + 2e + k + 1 in Theorem 12 is the best upperbound for k = 0 and k = 1. 

For other k we do not have examples. The spaces Kp of even dimension can be used 

to see that the &-action on this space needs 2n, + 3 colors. Therefore, the number n + 3 

in Theorem 3 is the best upperbound, also for even n. (In [2] this was only observed for 

odd n.) 
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