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Abstract

We continue the study of the center problem for the ordinary differential equation v′ = ∑∞
i=1 ai(x)vi+1

started in [A. Brudnyi, An explicit expression for the first return map in the center problem, J. Differen-
tial Equations 206 (2004) 306–314; A. Brudnyi, On the center problem for ordinary differential equations,
Amer. J. Math. 128 (2006) 419–451; A. Brudnyi, An algebraic model for the center problem, Bull. Sci.
Math. 128 (2004) 839–857; A. Brudnyi, On center sets of ODEs determined by moments of their coeffi-
cients, Bull. Sci. Math. 130 (2006) 33–48; A. Brudnyi, Vanishing of higher-order moments on Lipschitz
curves, Bull. Sci. Math. 132 (3) (2008) 165–181]. In this paper we present the highlights of the algebraic
theory of centers.
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1. Introduction

In this paper we describe an algebraic approach to the center problem for the ordinary differ-
ential equation

dv

dx
=

∞∑
i=1

ai(x)vi+1, x ∈ IT := [0, T ], (1.1)
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with coefficients ai from the Banach space L∞(IT ) of bounded measurable complex-valued
functions on IT equipped with the supremum norm. Condition

sup
x∈IT , i∈N

i

√∣∣ai(x)
∣∣ < ∞ (1.2)

guarantees that (1.1) has Lipschitz solutions on IT for all sufficiently small initial values. By X

we denote the complex Fréchet space of sequences a = (a1, a2, . . .) satisfying (1.2). We say that
Eq. (1.1) determines a center if every solution v of (1.1) with a sufficiently small initial value
satisfies v(T ) = v(0). By C ⊂ X we denote the set of centers of (1.1). The center problem is:
given a ∈ X to determine whether a ∈ C. It arises naturally in the framework of the geometric
theory of ordinary differential equations created by Poincaré. In particular, there is a relation
between the center problem for (1.1) and the classical Poincaré Center–Focus problem for planar
polynomial vector fields

dx

dt
= −y + F(x, y),

dy

dt
= x + G(x,y), (1.3)

where F and G are polynomials of a given degree without constant and linear terms. This prob-
lem asks about conditions on F and G under which all trajectories of (1.3) situated in a small
neighborhood of 0 ∈ R

2 are closed. Passing to polar coordinates (x, y) = (r cosφ, r sinφ) in
(1.3) and expanding the right-hand side of the resulting equation as a series in r (for F , G with
sufficiently small coefficients) we obtain an equation of the form (1.1) whose coefficients are
trigonometric polynomials depending polynomially on the coefficients of (1.3). This reduces
the Center–Focus problem for (1.3) to the center problem for (1.1) with coefficients depending
polynomially on a parameter.

In this paper we continue the study of the center problem for Eq. (1.1) started in [6–10].
One of the basic objects of our approach is a metrizable topological group G(X) defined by the
coefficients of Eqs. (1.1) (the, so-called, group of paths in C

∞). Modulo the set of universal
centers U ⊂ C of (1.1), described explicitly in [7], the set of centers forms a normal subgroup
Ĉ ⊂ G(X). By Gf (X) and Ĉf we denote the groups of formal paths and of formal centers,
respectively, i.e., the completions of G(X) and Ĉ with respect to the metric on G(X). In this
paper we study the algebraic properties of Gf (X) and Ĉf . In particular, we describe Lie algebras
of these groups and prove that Gf (X) is the semidirect product of a naturally defined normal
subgroup of Ĉf and the subgroup Gf (X2) of formal paths in Gf (X) determined by coefficients
of Abel differential equations, i.e., Eqs. (1.1) with ak = 0 for all k � 3. Also, we show that Ĉf

contains a dense subgroup of centers generated by certain piecewise linear paths in C
∞.

The paper is organized as follows.
Section 2 is devoted to the study of the group Gf (X) of formal paths in C

∞.
In Section 2.1 we introduce a natural multiplication on the set X similar to the product of paths

in topology. Then we define the group of paths G(X) as the quotient of X by an equivalence
relation determined in terms of iterated integrals on X. We equip G(X) with a natural metric d

and define the group Gf (X) of formal paths in C
∞ as the completion of G(X) with respect to d .

The equivalence class U ⊂ X corresponding to 1 ∈ G(X) is called the set of universal centers
of Eq. (1.1). In Section 2.2 we present some results of [7] on the characterization of elements
from U .

Next, in Section 2.3 we will show how to embed Gf (X) in a group G of invertible formal
power series in t whose coefficients belong to the associative algebra with unit I of complex
non-commutative polynomials in I and free non-commutative variables Xi , i ∈ N.
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Identifying Gf (X) with its image in G we describe in Section 2.4 the Lie algebra LLie of
Gf (X) as the subset of Lie elements of the Lie algebra LG of G.

In Section 2.5 we prove some structural theorems for G(X) and Gf (X). Namely, we describe
the topological lower central series of these groups and their subgroups corresponding to closed
paths in C

∞ in terms of iterated integrals on Gf (X).
Finally, in Section 2.6 we describe some natural subgroups of Gf (X): the groups Gf (Xn)

generated by paths in C
n and G(XF) determined over a field F ⊂ C.

Section 3 is devoted to the study of the center problem for Eq. (1.1).
In Section 3.1 we gather some results from [6–8] on the explicit expression for the first return

map of (1.1).
Using this we define in Section 3.2 the group Ĉf ⊂ Gf (X) of formal centers of Eq. (1.1).
Then in Section 3.3 we give an explicit description of the Lie algebra of Ĉf and show that

Ĉf is the closure in Gf (X) of the group of centers Ĉ of (1.1). We also prove that Gf (X) is the
semidirect product of a naturally defined normal subgroup of Ĉf and the subgroup Gf (X2) of
formal paths in C

2 (i.e., determined by coefficients of Abel differential equations). At the end of
this section we briefly discuss the center problem over a field F ⊂ C.

Finally, in Section 3.4 we introduce the subgroup PL ⊂ Gf (X) of piecewise linear paths in
C

∞. We give a characterization of centers belonging to this group and show that the set of such
centers is dense in Ĉf .

2. Group of formal paths

2.1. Definition of the group of paths

2.1.1. Let us consider X as a semigroup with the operations given for a = (a1, a2, . . .) and
b = (b1, b2, . . .) by

a ∗ b = (a1 ∗ b1, a2 ∗ b2, . . .) ∈ X and a−1 = (
a−1

1 , a−1
2 , . . .

) ∈ X,

where for i ∈ N

(ai ∗ bi)(x) =
{

2bi(2x) if 0 � x � T/2,

2ai(2x − T ) if T/2 < x � T

and

a−1
i (x) = −ai(T − x), 0 � x � T .

Let C
∞ be the vector space of sequences of complex numbers (c1, c2, . . .) equipped with the

product topology. For a = (a1, a2, . . .) ∈ X by ã = (̃a1, ã2, . . .) : IT → C
∞, ãk(x) := ∫ x

0 ak(t) dt

for all k ∈ N, we denote a path in C
∞ starting at 0. The one-to-one map a �→ ã sends the product

a ∗ b to the product of paths ã ◦ b̃, that is, the path obtained by translating ã so that its beginning
meets the end of b̃ and then forming the composite path. Similarly, ã−1 is the path obtained by
translating ã so that its end meets 0 and then taking it with the opposite orientation.

2.1.2. For a ∈ X let us consider the basic iterated integrals

Ii1,...,ik (a) :=
∫

· · ·
∫

aik (sk) · · ·ai1(s1) dsk · · ·ds1 (2.1)
0�s1�···�sk�T
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(for k = 0 we assume that this equals 1). By the Ree shuffle formula [18] the linear space gen-
erated by all such functions on X is an algebra. The number k in (2.1) is called the order of the
iterated integral. Also, the basic iterated integrals satisfy the following equations (see, e.g., [15,
Propositions 2.9 and 2.12]):

Ii1,...,ik (a ∗ b) = Ii1,...,ik (a) +
k−1∑
j=1

Ii1,...,ij (a) · Iij+1,...,ik (b) + Ii1,...,ik (b). (2.2)

Ii1,...,ik (a
−1) = (−1)kIi1,...,ik (a). (2.3)

For a, b ∈ X we write a ∼ b if all basic iterated integrals vanish at a ∗ b−1. Eqs. (2.2) and
(2.3) imply that a ∼ b if and only if Ii1,...,ik (a) = Ii1...,ik (b) for all basic iterated integrals. In
particular, ∼ is an equivalence relation on X. By G(X) we denote the set of equivalence classes.
Then G(X) is a group with the product induced by the product ∗ on X. By π :X → G(X) we
denote the map determined by the equivalence relation. By the definition each iterated integral I·
is constant on fibres of π and therefore it determines a function Î· on G(X) such that I· = Î· ◦ π .
The functions Î· will be referred to as iterated integrals on G(X). These functions separate the
points on G(X).

Next, we equip G(X) with the weakest topology τ in which all basic iterated integrals Îi1,...,ik

are continuous. Then (G(X), τ ) is a topological group. Moreover, G(X) is metrizable: for g,h ∈
G(X) the formula

d(g,h) :=
∞∑

n=1

1

4n
·
( ∑

i1+···+ik=n

|Îi1,...,ik (g) − Îi1,...,ik (h)|
1 + |Îi1,...,ik (g) − Îi1,...,ik (h)|

)
(2.4)

determines a metric on G(X) compatible with topology τ (see [8, Theorem 2.4]). We mention
also that G(X) is contractible, residually torsion free nilpotent (i.e., finite-dimensional unipotent
representations of G(X) separate the points on G(X)) and is the union of an increasing sequence
of compact subsets (see [8]).

By Gf (X) we denote the completion of G(X) with respect to the metric d . Then Gf (X) is a
topological group which will be called the group of formal paths in C

∞.

2.2. Structure of the set of universal centers

By U ⊂ X we denote the set of elements a ∈ X such that all basic iterated integrals vanish
at a. According to (2.2), U is a sub-semigroup of X. It was shown in [7] that U ⊂ C, the set of
centers of Eq. (1.1). We call U the set of universal centers of (1.1). In this section we formulate
some results on the characterization of elements from U established in [7].

Let Xk := {a = (a1, a2, . . .) ∈ X: aj = 0 for all j > k}. By pk :X → Xk , (a1, a2, . . .) �→
(a1, . . . , ak,0,0, . . .), we denote the natural projection. Clearly a ∈ U if and only if pk(a) ∈ U
for all k ∈ N. Therefore it suffices to characterize elements from the sets Uk := U ∩ Xk .

For a = (a1, . . . , ak,0, . . .) ∈ Xk consider the Lipschitz curve Ak : IT → C
k determined by

the formula

Ak(x) :=
( x∫

0

a1(t) dt, . . . ,

x∫
0

ak(t) dt

)
, x ∈ IT . (2.5)

We set Γk := Ak(IT ).
Next, we require
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Definition 2.1. The polynomially convex hull K̂ of a compact set K ⊂ C
k is the set of points

z ∈ C
k such that if p is any holomorphic polynomial in k variables∣∣p(z)

∣∣ � max
x∈K

∣∣p(x)
∣∣.

It is well known (see, e.g., [3]) that K̂ is compact, and if K is connected then K̂ is connected.
The following basic result was proved in [7, Theorem 1.10].

Theorem 2.2. Suppose that a ∈ Uk . Then for any domain U ⊂ C
k containing Γ̂k the path

Ak : IT → U is closed and represents the unit element of the fundamental group π1(U) of U .

Since Ak is Lipschitz, Γk is of a finite linear measure. Then according to the result of Alexan-
der [1], Γ̂k \ Γk is a (possibly empty) pure one-dimensional complex analytic subset of C

k \ Γk .
In particular, since the covering dimension of Γk is 1, the covering dimension of Γ̂k is 2. There-
fore according to the Freudenthal expansion theorem [14], Γ̂k can be presented as an inverse
limit of a sequence of compact polyhedra {Qkj }j∈N with dimQkj � 2. Let πkj : Γ̂k → Qkj be
the continuous projections generated by the inverse limit construction. It is easy to check that
Theorem 2.2 is equivalent to the following statement: if a ∈ Uk , then for all j the continuous
paths πkj ◦ Ak : IT → Qkj are closed and represent unit elements of π1(Qkj ).

Let us formulate two corollaries of Theorem 2.2. In the first one we use the notion of a bor-
dered Riemann surface. This is a compact connected set which consists of a (possibly singular)
one-dimensional complex analytic space with a C2-boundary.

Corollary 2.3. Suppose that a ∈ Xk is such that the corresponding set Γ̂k belongs to a bordered
Riemann surface S ⊂ C

k . Then a ∈ Uk if and only if the path Ak : IT → S is closed and represents
the unit element of the fundamental group π1(S) of S.

The proof of Corollary 2.3 repeats literally the arguments of the proofs of [7, Corollary 1.17]
and [10, Corollary 3.7]. Using the covering homotopy theorem one obtains the following refor-
mulation of the above result.

Let π : S̃ → S be the universal covering of S. Under the hypotheses of Corollary 2.3, a ∈ Uk

if and only if there is a closed Lipschitz path Ãk : IT → S̃ such that Ak = π ◦ Ãk .

Example 2.4. (1) Suppose that Γk ⊂ Ck is the image of the unit circle under a holomorphic
embedding of its neighborhood. Then by the result of Wermer [19], Γ̂k belongs to a bordered
Riemann surface.

(2) The assumptions of Corollary 2.3 are also fulfilled if Γk belongs to a one-dimensional
complex analytic subset of a domain U ⊂ C

k such that U = ⋃
j Kj with Kj ⊂⊂ Kj+1 and

K̂j = Kj for all j ∈ N, cf. [7, Corollary 1.17]. In particular, this is valid for a convex U .

To formulate the second corollary of Theorem 2.2 we recall the definition of a Lipschitz
triangulable curve, see, e.g., [7].

Definition 2.5. A compact curve C ⊂ R
N is called Lipschitz triangulable if

1. C = ⋃s
j=1 Cj and for i �= j the intersection Ci ∩ Cj consists of at most one point;

2. There are Lipschitz embeddings fj : [0,1] → R
N such that fj ([0,1]) = Cj ;
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3. The inverse maps f −1
j :Cj → R are locally Lipschitz on Cj \ {fj (0) ∪ fj (1)}.

The following corollary extends one of the main results of Chen [13].

Corollary 2.6. Suppose that a ∈ Xk is such that Γk is a Lipschitz triangulable curve and Γ̂k = Γk .
Then a ∈ Uk if and only if the path Ak : IT → Γk is closed and represents the unit element of
π1(Γk).

Using the covering homotopy theorem one reformulates this corollary as follows:
Under the hypotheses of Corollary 2.6, a ∈ Uk if and only if there are a Lipschitz triangulable

curve T homeomorphic to a finite tree, a locally bi-Lipschitz map π :T → Γk and a closed
Lipschitz path Ãk : IT → T such that Ak = π ◦ Ãk .

Example 2.7. (1) The condition Γ̂k = Γk is fulfilled if, e.g., Γk belongs to a compact set K in a
C1-manifold M with no complex tangents such that K̂ = K (for the proof see, e.g., [3, Theorem
17.1]). For instance, one can take as such K any compact subset of M = R

k .
(2) Γk is a Lipschitz triangulable curve if, e.g., Ak : IT → C

k is non-constant analytic.

Corollaries 2.3 and 2.6 reveal a connection of the center problem for Eq. (1.1) with the so-
called composition condition whose role and importance was studied in [2,4,5,20] for the special
case of Abel differential equations.

2.3. Representation of paths by non-commutative formal power series

2.3.1. Let C〈X1,X2, . . .〉 be the associative algebra with unit I of complex non-commutative
polynomials in I and free non-commutative variables X1,X2, . . . (i.e., there are no nontrivial
relations between these variables). By C〈X1,X2, . . .〉[[t]] we denote the associative algebra of
formal power series in t with coefficients from C〈X1,X2, . . .〉. Also, by A ⊂ C〈X1,X2, . . .〉[[t]]
we denote the subalgebra of series f of the form

f = c0I +
∞∑

n=1

( ∑
i1+···+ik=n

ci1,...,ikXi1 · · ·Xik

)
tn (2.6)

with c0, ci1,...,ik ∈ C for all i1, . . . , ik, k ∈ N.

Remark 2.8. Let S ⊂ C〈X1,X2, . . .〉 be the multiplicative semigroup generated by I,X1,X2, . . . .

Consider a grading function w :S → Z+ determined by the conditions

w(I) = 0, w(Xi) = i, i ∈ N, and w(x · y) := w(x) + w(y) for all x, y ∈ S.

This splits S in a disjoint union S = ⊔∞
n=0 Sn, where Sn = {s ∈ S: w(s) = n}. Now, each f ∈A

is written as

f =
∞∑

n=0

fnt
n where fn ∈ Vn := spanC(Sn), n ∈ Z+. (2.7)

We equip A with the weakest topology in which all coefficients ci1,...,ik in (2.6) considered as
functions in f ∈ A are continuous. Since the set of these functions is countable, A is metrizable,
cf. (2.4). Moreover, if d is a metric on A compatible with the topology, then (A, d) is a complete
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metric space. Also, by the definition the multiplication · :A × A → A is continuous in this
topology.

Remark 2.9. A sequence {fk = ∑∞
n=0 fnkt

n: fnk ∈ Vn, n ∈ Z+}k∈N converges to f =∑∞
n=0 fnt

n, fn ∈ Vn, n ∈ Z+, in the topology of A if and only if each {fkn}k∈N converges to
fn in Vn naturally identified with the hermitian space C

d(n) where d(n) := #Sn.

By G ⊂ A we denote the closed subset of elements f of form (2.6) with c0 = 1. Then (G, ·)
is a topological group. Its Lie algebra LG ⊂ A consists of elements f of form (2.6) with c0 = 0.
(For f,g ∈ LG their product is defined by the formula [f,g] := f · g − g · f .) Also, the map
exp: LG → G, exp(f ) := ef = ∑∞

n=0
f n

n! , is a homeomorphism.

2.3.2. For an element a = (a1, a2, . . .) ∈ X let us consider the equation

F ′(x) =
( ∞∑

i=1

ai(x) t iXi

)
F(x), x ∈ IT . (2.8)

This can be solved by Picard iteration to obtain a solution Fa : IT → G, Fa(0) = I , whose
coefficients in expansion in X1,X2, . . . and t are Lipschitz functions on IT . We set

E(a) := Fa(T ), a ∈ X. (2.9)

By the definition, see Section 2.1.1, we have, cf. [11, Theorem 6.1],

E(a ∗ b) = E(a) · E(b), a, b ∈ X. (2.10)

Also, an explicit calculation leads to the formula

E(a) = I +
∞∑

n=1

( ∑
i1+···+ik=n

Ii1,...,ik (a)Xi1 · · ·Xik

)
tn. (2.11)

The last formula implies that the kernel of the homomorphism E :X → G is the set of univer-
sal centers U . In particular, there is a homomorphism Ê :G(X) → G such that E = Ê ◦ π , that
is,

Ê(g) = I +
∞∑

n=1

( ∑
i1+···+ik=n

Îi1,...,ik (g)Xi1 · · ·Xik

)
tn, g ∈ G(X). (2.12)

Formula (2.12) shows that Ê :G(X) → G is a continuous embedding. Moreover, one can
determine a metric d1 on A compatible with topology such that Ê : (G(X), d) → (G,d1) is an
isometric embedding, cf. (2.4). Therefore Ê is naturally extended to a continuous embedding
Gf (X) → G (denoted also by Ê). By the definition, Ê :Gf (X) → G is an injective homomor-
phism of topological groups and Ê(Gf (X)) is the closure of Ê(G(X)) in the topology of G.

In what follows we identify G(X) and Gf (X) with their images under Ê.

2.4. Lie algebra of the group of formal paths

2.4.1. Recall that each element g ∈ LG can be written as g = ∑∞
n=1 gnt

n, gn ∈ Vn, n ∈ N.
We say that such g is a Lie element if each gn belongs to the free Lie algebra generated by
X1, . . . ,Xn. In this case each gn has the form

gn =
∑

ci1,...,ik [Xi1, [Xi2, [ · · · , [Xik−1 ,Xik ] · · · ]]]. (2.13)

i1+···+ik=n
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with all ci1,...,ik ∈ C. (Here the term with ik = n is cnXn.)
Let Ln ⊂ Vn be the subspace of elements gn of form (2.13). It follows from [17, Theorem 3.2]

that

dimC Ln = 1

n

∑
d|n

(2n/d − 1) · μ(d) (2.14)

where the sum is taken over all numbers d ∈ N that divide n, and μ : N → {−1,0,1} is the
Möbius function defined as follows. If d has a prime factorization

d = p
n1
1 p

n2
2 · · ·pnq

q , ni > 0,

then

μ(d) =
{

1 for d = 1,

(−1)q if all ni = 1,

0 otherwise.

By LLie we denote the subset of Lie elements of LG. Then LLie is a closed (in the topology
of A) Lie subalgebra of LG.

Theorem 2.10. The exponential map exp :LG → G maps LLie homeomorphically onto Gf (X).

Thus LLie can be considered as the Lie algebra of Gf (X).

2.4.2. Proof of Theorem 2.10
Let log :G → LG, log(f ) = −∑∞

n=1
(I−f )n

n
, be the logarithmic map. By the definition it is

continuous and inverse to the exponential map exp. From [12, Theorem 4.2] and [18] follow
that log maps G(X) into LLie. Since LLie is a closed subspace of LG and log is continuous, it
maps Gf (X) into LLie, as well. In particular, Gf (X) ⊂ exp(LLie). Let us prove the converse
implication.

Let J ⊂ A be the two-sided ideal of elements f of form (2.6) with c0 = 0. By J l we denote the
lth power of J . Let ql :A →A/J l =: Al be the quotient homomorphism. We set Xs = ql(Xs · t s),
1 � s � l − 1. Then for f ∈ A of form (2.6) we have

ql(f ) := c0I +
l−1∑
n=1

( ∑
i1+···+ik=n

ci1,...,ikXi1 · · ·Xik

)
. (2.15)

(Here I is the unit of Al .) We naturally identify Al with the hermitian space C
n(k), n(k) =

dimC Al , so that ql is a continuous map. Then Gl := ql(G) ⊂ Al is a complex nilpotent Lie
group.

Further, let Xrect ⊂ X be the sub-semigroup of rectangular paths, i.e., elements a ∈ X whose
first integrals ã : IT → C

∞ are paths consisting of segments each going in the direction of some
particular coordinate. By G(Xrect) ⊂ G(X) we denote the subgroup generated by Xrect. Identi-
fying G(X) with its image in G by Ê we obtain from (2.11) that G(Xrect) is a subgroup of G

generated by elements ecnXntn , cn ∈ C, n ∈ N. (In particular, G(Xrect) is isomorphic to the free
product of countably many copies of C.)

Proposition 2.11. The images of G(Xrect), G(X) and Gf (X) in Gl coincide and form a complex
Lie subgroup of Gl .
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Proof. We set for brevity

Ql := ql

(
G(Xrect)

)
, Ql := ql

(
G(X)

)
, Q̃l := ql

(
Gf (X)

)
. (2.16)

For any c ∈ C, a = (a1, a2, . . .) ∈ X by ca we denote the element (ca1, c
2a2, . . .) ∈ X. Sup-

pose that S ⊂ X is a sub-semigroup such that for each s ∈ S and any c ∈ C elements s−1, cs

belong to S. Let Sl := (ql ◦ Ê ◦ π)(S) be the image of S in Gl . By the definition Sl is a subgroup
of Gl . We will use the following

Lemma 2.12. Sl is a complex Lie subgroup of Gl .

Proof. Let g ∈ G(X) ⊂ A be the image of an element a ∈ X. For any c ∈ C by cg ∈ G(X) we
denote the image of ca ∈ X. If g = ∑∞

n=0 gnt
n, gn ∈ Vn, see (2.7), then

ql(g) = I +
l−1∑
n=1

qn

(
gnt

n
)

and ql(cg) := I +
l−1∑
n=1

cn · qn

(
gnt

n
)
. (2.17)

We will naturally identify Gl with C
N where N := dimC Gl .

Let K = {g1, . . . , gk} ⊂ π(S) ⊂ G(X) be a finite set. We define a holomorphic polynomial
map FK : Ck → CN by the formula

FK(z1, . . . , zk) := ql

(
(z1g1) · · · (zkgk)

)
. (2.18)

Let ZK be the Zariski closure of FK(Ck) in C
N . Then ZK is an irreducible complex algebraic

subvariety of C
N and FK(Ck) contains an open dense subset of ZK (see, e.g., the book of Mum-

ford [16] for the basic facts of Algebraic Geometry). By the definition we have

FK1

(
C

#K1
) ⊂ FK2

(
C

#K2
)

and ZK1 ⊂ ZK2 for K1 ⊂ K2. (2.19)

Let Z := ⋃
K ZK where K runs over all finite subsets of Gl . Since dimC ZK � N and all ZK are

irreducible, (2.19) implies that there is a finite set K ⊂ π(S) such that ZK = Z. Observe that by
the definition the group Sl is dense in Z = ZK . Hence Z is the Zariski closure of Sl . In particular,
Z is a complex Lie subgroup of Gl . Also, from the identity Z = ZK it follows that Sl contains
an open dense subset of Z. Since the topologies of the groups Sl and Z are induced from that of
Gl , the latter implies that Sl = Z completing the proof of the lemma. �

Continuing the proof of the proposition we choose as the S in Lemma 2.12 semigroups Xrect

and X. Then we conclude that Ql ⊂ Ql are complex Lie subgroups of Gl (in particular, they are
closed subsets of Gl). Since Ql is dense in Q̃l , see Section 2.1.2, the latter implies that Ql = Q̃l .

Let LGl
be the Lie algebra of Gl . By the definition it consists of all elements of form (2.15)

with c0 = 0. Let exp :LGl
→ Gl , exp(f ) := ef , be the corresponding exponential map. Clearly

we have the following commutative diagram:

LG
exp

ql

G

ql

exp

(2.20)
LGl Gl.
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This implies that for each f ∈ Ql the element log(f ) := −∑l−1
n=1

(I−f )n

n
belongs to the free

nilpotent Lie algebra Ll
Lie ⊂ LGl

generated by elements X1, . . . ,Xl−1, i.e., each element g of
this algebra has the form

g =
l−1∑
n=1

( ∑
i1+···+ik=n

ci1,...,ik [Xi1, [Xi2, [ · · · , [Xik−1 ,Xik ] · · · ]]]
)

(2.21)

with all ci1,...,ik ∈ C, i1, . . . , ik ∈ {1, . . . , l − 1}. Thus the Lie algebra LQl
:= log(Ql) of Ql

is a subset of Ll
Lie. Next, the Lie algebra LQl

:= log(Ql) of Ql is a subset of Ll
Lie, as well.

Moreover, since Ql is generated by elements ecsXs , cs ∈ C, 1 � s � l − 1, its Lie algebra is
generated by elements Xs , 1 � s � l − 1, and therefore coincides with Ll

Lie. This implies that
LQl

= LQl
= Ll

Lie, and Ql = Ql .
The proof of the proposition is complete. �
Let us finish the proof of the theorem. Let g ∈ LLie. Consider the elements gl := ql(g) ∈ Ll

Lie,
l � 2. According to Proposition 2.11 there are elements fl ∈ G(Xrect) such that ql(fl) = egl .
Now, for m > l we have

ql(fm · f −1
l ) = ql(fm) · (ql(fl)

)−1 = ql

(
qm(fm)

) · e−gl = ql(e
gm) · e−gl = egl · e−gl = I.

Thus fm − fl ∈ J l . By the definition of the topology of G this implies that the sequence {fl}l�2
converges in G to an element f ∈ Gf (X), so that ql(f ) = egl , l � 2. Taking here the limit as l

tends to ∞ we get f = eg . This shows that exp(LLie) ⊂ Gf (X) and completes the proof of the
theorem. �
Remark 2.13. We also established in the proof that G(Xrect) is a dense subgroup of Gf (X).

2.4.3. Shuffles
Definition 2.14. A permutation σ of {1,2, . . . , r + s} is a shuffle of type (r, s) if

σ−1(1) < σ−1(2) < · · · < σ−1(r)

and

σ−1(r + 1) < σ−1(r + 2) < · · · < σ−1(r + s).

(The term “shuffle” is used because such permutations arise in riffle shuffling a deck of r + s

cards cut into one pile of r cards and a second pile of s cards.)
The following result is a corollary of Theorem 2.10.

Theorem 2.15. An element

f = I +
∞∑

n=1

( ∑
i1+···+ik=n

ci1,...,ikXi1 · · ·Xik

)
tn ∈ G

belongs to Gf (X) if and only if its coefficients satisfy the system of Ree shuffle relations:

ci1,...,ir · cir+1,...,ir+s =
∑
σ

ciσ(1),...,iσ (r+s)
, i1, . . . , ir+s ∈ N, (2.22)

where the sum is taken over the set of shuffles of type (r, s).
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Proof. According to the main result of Ree [18], log(f ) ∈ LLie for f ∈ G if and only if the
coefficients of f satisfy Eqs. (2.22). This and Theorem 2.10 imply the required result. �
2.5. Topological lower central series of some groups of paths

2.5.1. In the section we describe the topological lower central series of groups G(X) and
Gf (X).

Let G be a topological group. We set Gn := [G,Gn−1] and G1 = [G,G] (the commutator
subgroup of G). For H ⊂ G by H ⊂ G we denote the closure of H .

Definition 2.16. The sequence

G ⊃ G1 ⊃ G2 ⊃ · · ·
is called the topological lower central series of G.

Next, consider the family {Îi1,...,ik } of all basic integrals on G(X), see Section 2.1.2. By the de-
finition each function of this family admits a continuous extension to Gf (X). We retain the same
symbols for the extended functions and call them the basic iterated integrals on Gf (X). Observe
that if ci1,...,ik :A → C is the function whose value at f ∈ A is the coefficient corresponding to
the monomial Xi1 · · ·Xik in the series expansion (2.6) of f , then Îi1,...,ik = ci1,...,ik ◦ Ê.

Theorem 2.17. (1) An element g ∈ Gf (X) belongs to Gf (X)n if and only if all basic iterated
integrals of order � n vanish at g.

(2)

G(X)n = Gf (X)n ∩ G(X).

Let us recall that the order of a basic iterated integral is the number of its indices.

Proof. We use the notation of Section 2.4.2. Since the map ql :G(X) → Ql , see (2.16), is sur-
jective, ql(G(X)n) = (Ql)n. Moreover, since Ql is a complex nilpotent Lie group, (Ql)n is a
complex nilpotent Lie subgroup of Ql . In particular, ql(G(X)n) = (Ql)n (because ql(G(X)n)

is dense in ql(G(X)n)). Similarly, ql(Gf (X)n) = ql(Gf (X)n) = (Ql)n. Further, the Lie algebra
Ll

Lie of Ql is the free nilpotent Lie subalgebra of LGl
generated by elements X1, . . . ,Xl−1, see

(2.21). Then the nth term (Ll
Lie)n of the lower central series of Ll

Lie consists of the elements
of form (2.21) with all ci1,...,ik = 0 for k � n (i.e., the number of brackets in each term of this
formula must be � n). Since the exponential map exp maps (Ll

Lie)n surjectively onto (Ql)n, an
explicit computation shows that (Ql)n ⊂ Ql consists of elements of form (2.15) with c0 = 1 and
all ci1,...,ik = 0 for k � n.

Now, suppose that g ∈ Gf (X)n. Identifying Gf (X) with its image under Ê we have

g = I +
∞∑

n=1

( ∑
i1+···+ik=n

ci1,...,ik (g)Xi1 · · ·Xik

)
tn. (2.23)

Since ql(g) ∈ (Ql)n for any l, formula (2.15) and the above description of (Ql)n imply that
ci1,...,ik (g) = 0 for all k � n. Equivalently, all basic iterated integrals of order � n vanish at g.

Conversely, assume that g ∈ Gf (X) is of form (2.23) with ci1,...,ik (g) = 0 for all k � n.
Then from the description of (Ql)n and (2.15) we obtain that ql(g) ∈ (Ql)n for any l � 2.
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Since(Ql)n = ql(G(X)n), there are elements gl ∈ G(X)n, l � 2, such that ql(g
−1gl) = I . As

in the proof of Theorem 2.10 this implies that {gl}l�2 converges to g in the topology of Gf (X),
that is, g ∈ Gf (X)n. This proves (1).

Further, if g ∈ Gf (X)n ∩ G(X), then as above there is a sequence {gl}l�2 with gl ∈ G(X)n

such that liml→∞ gl = g. Thus g ∈ G(X)n. Since the implication G(X)n ⊂ Gf (X)n ∩ G(X) is
obvious, we obtain the proof of (2). �

2.5.2. By X∗ ⊂ X we denote the set of elements a ∈ X such that Is(a) = 0 for all s ∈ N, i.e.,
a ∈ X∗ if and only if its first integral ã : IT → C

∞ is a closed path. We call the image G(X∗) :=
π(X∗) ⊂ G(X) the subgroup of closed paths and its closure Gf (X∗) in Gf (X) the subgroup of
formal closed paths. According to Theorem 2.17, G(X∗) = G(X)1 and Gf (X∗) = Gf (X)1. In
this section we describe the topological lower central series of G(X∗) and Gf (X∗).

Given a = (a1, a2, . . .) ∈ X we define

ãi (x) :=
x∫

0

ai(s) ds, x ∈ IT . (2.24)

By P(X) we denote the set of functions on X × IT of the form(̃
ai1(x)

)n1 · · · (̃aik (x)
)nk · aik+1(x), i1, . . . , ik+1 ∈ N, n1, . . . , nk ∈ Z+. (2.25)

Definition 2.18. A moment of order k on X is an iterated integral of the form

m(a) :=
∫

· · ·
∫

0�s1�···�sk�T

pk(a; sk) · · ·p1(a; s1) dsk · · ·ds1 (2.26)

where each pj ∈P(X), 1 � j � k.

Moments of the first order play an important role in the study of the center problem for Abel
differential equations (see, e.g., [2,4,5,20]). Also, it was proved in [9, Theorem 2.1] that such
moments determine centers of Eqs. (1.1) whose coefficients are either polynomials in e±2πix/T

or in x, a result on complexity of the set of centers for these equations. (E.g., this class contains
equations obtained from the Poincaré Center–Focus problem, see the Introduction.)

According to the Ree shuffle formula (2.22) each moment m is a linear combination with
natural coefficients of some basic iterated integrals. In particular, there is a continuous function
m̂ on G(X) from the vector space generated by all basic iterated integrals on G(X) such that
m = m̂ ◦ π . Thus, every such m̂ admits a continuous extension (denoted by the same symbol) to
Gf (X). The extended function will be called a moment on Gf (X). By the definition the order
of m̂ is the order of the moment m on X representing m̂.

Theorem 2.19. (1) An element g ∈ Gf (X∗) belongs to Gf (X∗)n if and only if all moments of
order � n vanish at g.

(2) G(X∗)n = Gf (X∗)n ∩ G(X∗).

Proof. We first prove the particular case of (1) for g ∈ G(X∗). Namely we will prove

Proposition 2.20. An element g ∈ G(X∗) belongs to G(X∗)n if and only if all moments of order
� n vanish at g.
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Proof. This result was stated in [10, Theorem 3.2]. In its proof given in [10] some details were
omitted. Here we will give the complete proof of this fact.

First, assume that g ∈ G(X∗)n. Since g represents a closed path in C
∞ all moments of order

� n vanish at g (see, e.g., [15] for properties of iterated integrals over closed paths). Since each
moment is a continuous function on G(X∗), by continuity we obtain also that for g ∈ G(X∗)n all
moments of order � n vanish at g. Thus we must prove a converse statement.

So assume that g ∈ G(X∗) is such that all moments of order � n vanish at g. We will prove
that g ∈ G(X∗)n.

For an element p = ã
n1
i1

· · · ãnk

ik
· aik+1 ∈ P(X) the number i1n1 + · · · + iknk + ik+1 will be

called the degree of p. Next, for a moment m on X its degree deg(m) is the maximum of degrees
of elements pj ∈P(X) in its definition, see (2.26). In turn, the degree of the moment m̂ on G(X)

representing m is defined as deg(m̂) := deg(m).
We retain the notation of Section 2.4.2. Also, for Ql := ql(G(X)) ⊂ Gl we set Rl := [Ql,Ql].

Our proof is based on the following

Lemma 2.21. Suppose that g ∈ G(X∗) is such that all moments of order � n and of degree
� l − 1 vanish at g. Then ql(g) ∈ (Rl)n.

Proof. Let a = (a1, a2, . . .) ∈ X be such that π(a) = g. By the definitions of E, see Section
2.3.2, and of ql , see (2.15), ql(g) is the monodromy of the equation

H ′(x) =
(

l−1∑
i=1

ai(x)Xi

)
H(x), x ∈ IT . (2.27)

This equation can be solved by Picard iteration to obtain a solution Ha : IT → Gl , Ha(0) = I ,
whose coefficients in expansion in X1, . . . ,Xl−1 are Lipschitz functions on IT . Then ql(g) :=
Ha(T ). We write

Ha = H1 · · ·Hl−1 · Hl where Hi := eãiXi , 1 � i � l − 1, (2.28)

see (2.24). Since g ∈ G(X∗), Hi(T ) = I for 1 � i � l − 1. This implies that ql(g) = Ha(T ) =
Hl(T ). From (2.28) follows that Hl satisfies the equation

H ′
l = ω · Hl where

ω := F−1 ·
(

l−1∑
i=1

ai Xi

)
· F − F−1 · F ′, F := H1 · · ·Hl−1. (2.29)

Claim 2.22. ω is a function on IT with values in the Lie algebra LRl
of Rl .

Indeed, the first term in the definition of ω is the logarithm of

F−1(x) · exp

(
l−1∑

ai(x)Xi

)
· F(x), x ∈ IT .
i=1
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By the definition of F for any x ∈ IT each term of this product belongs to Ql (see Section 2.4.2
after formula (2.21)). Thus its logarithm belongs to the Lie algebra LQl

of Ql . Next, the second
term in the definition of ω is equal to(

l−1∑
s=2

H−1
l−1(x) · · ·H−1

s (x) · ãs−1(x)Xs−1 · Hl−1(x) · · ·Hs(x)

)
+ ãl−1(x)Xl−1, x ∈ IT .

By the same reason as above, for any x ∈ IT each term of this sum belongs to LQl
. Thus ω(x) ∈

LQl
for any x ∈ IT . Observe also that from (2.29) follows that ω(x) considered as a polynomial

in Xi , 1 � i � l − 1, does not contain linear terms. Then by the definition of Rl , see also the
proof of Theorem 2.17, ω(x) ∈ LRl

.
This completes the proof of the Claim.
An explicit computation of ω based on the Campbell–Hausdorff formula shows that

ω(x) =
l−1∑
n=1

( ∑
i1+···+ik=n

ci1,...,ik (x) [Xi1, [Xi2, [ · · · , [Xik−1 ,Xik ] · · · ]]]
)

(2.30)

where each ci1,...,ik ∈ spanQ(P(X)). Moreover, each term of P(X) in the definition of ci1,...,ik is
of degree i1 + · · · + ik .

We set

S := { [Xi1, [Xi2, [ · · · , [Xik−1,Xik ] · · · ]]] �= 0: i1 + · · · + ik = n, 1 � n � l − 1
}
,

and arrange S into a sequence {vi}1�i�N , N := #S. Then ω can be written as

ω(x) =
N∑

i=1

fi(x) vi, x ∈ IT ,

where fi ∈ spanQ(P(X)) and each term of P(X) in the definition of fi is of degree � l − 1.
Let C[[X1, . . . ,XN ]] be the associative algebra with unit I of non-commutative formal power

series in free variables X1, . . . ,XN . Then there is a homomorphism φ : C[[X1, . . . ,XN ]] → A,
where A is the associative complex subalgebra of Al (see Section 2.4.2) generated by I and
v1, . . . , vn, determined by φ(Xi) = vi , 1 � i � N , φ(I) = I .

Next, consider the equation

G′(x) =
(

N∑
i=1

fi(x)Xi

)
G(x), x ∈ IT .

Solving this equation by Picard iteration we get a solution G : IT → C[[X1, . . . ,XN ]], G(0) =
I , whose coefficients in expansion in X1, . . . ,XN are Lipschitz functions on IT . Also, by the
definition we have φ(G(T )) = Hl(T ) = ql(g). Observe now that

G(T ) = I +
∞∑

k=1

( ∑
1�i1,...,ik�N

Ii1,...,ik (f )Xi1 · · ·Xik

)
,

cf. (2.11), where f = (f1, . . . , fN ,0, . . .) ∈ X. By the definition, each basic iterated integral
Ii1,...,ik (f ) in this formula is a linear combination of moments of order k and of degree � l − 1
on X. In particular, by the hypothesis of the lemma, Ii1,...,ik (f ) = 0 for all k � n, i.e., the first sum
in the definition of G(T ) can be considered for k � n + 1 only. Further, by the Ree theorem [18]
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log(G(T )) is a Lie element in C[[X1, . . . ,XN ]]. Since the degree of each monomial in G(T ) is
greater than n,

log
(
G(T )

) =
∞∑

k=n+1

( ∑
1�i1,...,ik�N

gi1,...,ik [Xi1, [Xi2, [ · · · , [Xik−1,Xik ] · · · ]]]
)

.

This implies that

φ
(
log

(
G(T )

)) = log
(
φ
(
G(T )

)) = log
(
ql(g)

)
=

∞∑
k=n+1

( ∑
1�i1,...,ik�N

gi1,...,ik [vi1, [vi2, [ · · · , [vik−1, vik ] · · · ]]]
)

,

that is, log(ql(g)) ∈ (LRl
)n. Since the exponential map exp maps (LRl

)n surjectively onto (Rl)n,
ql(g) ∈ (Rl)n.

The proof of the lemma is complete. �
Let us finish the proof of the proposition.
For an element g ∈ G(X∗) such that all moments of order � n vanish at g by Lemma 2.21

we have ql(g) ∈ (Rl)n for all l � 2. Since ql maps G(X∗) surjectively onto Rl (see the proof of
Theorem 2.10), there are elements gl ∈ G(X∗)n, l � 2, such that ql(g

−1 · gl) = I for all l. As in
the proof of Theorem 2.17 this implies that liml→∞ gl = g. Thus g ∈ G(X∗)n. This completes
the proof of the proposition. �

Using Proposition 2.20 we prove now Theorem 2.19.
Assume that g ∈ Gf (X∗)n. Since Gf (X∗) is the closure in Gf (X) of G(X∗), Gf (X∗)n is

the closure in Gf (X) of G(X∗)n. In particular, all moments of order � n vanish at g (see the
beginning of the proof of Proposition 2.20).

Conversely, suppose that g ∈ Gf (X∗) is such that all moments of order � n vanish at g. We
will prove first that ql(g) ∈ (Rl)n, for all l � 2.

By the Ree shuffle formula, given l � 2 each moment m̂ of order � n and of degree � l − 1
on Gf (X∗) can be presented as a linear combination with natural coefficients of basic iterated
integrals Îi1,...,ik (on Gf (X)) of order k � l + n − 1 with 1 � i1, . . . , ik � l − 1. We set s :=
(l +n− 1) · (l − 1)+ 1 and consider Qs := qs(G(X)) = qs(Gf (X)) (cf. the proof of Proposition
2.11). By the definitions of Ê and qs , see (2.12) and (2.15), we have

qs(g) = I +
s−1∑
m=1

( ∑
i1+···+ik=m

Îi1,...,ik (g)Xi1 · · ·Xik

)
.

Since Rs := [Qs,Qs] = qs(G(X∗)) = qs(Gf (X∗)) and g ∈ Gf (X∗), there is g̃ ∈ G(X∗) such
that qs(g) = qs(g̃). In particular,

Îi1,...,ik (g) = Îi1,...,ik (g̃) for all i1 + · · · + ik = m, 1 � m � s − 1.

From this by the above description of moments of order � n and of degree � l −1 we obtain that
for each such a moment m̂ on Gf (X∗), m̂(g) = m̂(g̃). Since m̂(g) = 0 by our hypothesis, m̂(g̃) =
0, as well. Hence g̃ satisfies the conditions of Lemma 2.21. According to this lemma, ql(g̃) ∈
(Rl)n. But by our construction ql(g) = ql(g̃). That is, ql(g) ∈ (Rl)n. Using this and arguing as
in the proof of Proposition 2.20 we find a sequence {gl}l�2 ⊂ G(X∗)n such that liml→∞ gl = g.
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In particular, g ∈ Gf (X∗)n. This completes the proof of part (1) of Theorem 2.19. The second
statement of this theorem follows from the first one and from Proposition 2.20. �

In conclusion let us mention that in [10, Section 3.3] a topological characterization of paths
representing elements of G(X∗)n is given, similar to that for elements of the set of universal
centers U , cf. Section 2.2.

2.6. Subgroups of the group of formal paths

2.6.1. By Xk ⊂ X we denote the subset of elements a = (a1, . . . , ak,0,0, . . .) ∈ X. Then
Xk is a sub-semigroup of X. The first integrals of elements of Xk are paths in C

k . We set
G(Xk) := π(Xk) ⊂ G(X) and let Gf (Xk) be the closure of G(Xk) in Gf (X). The group
Gf (Xk) will be called the group of formal paths in C

k . Let pk :X → Xk , pk(a1, a2, . . .) :=
(a1, . . . , ak,0,0, . . .), be the natural projection. It induces a surjective homomorphism of topo-
logical groups p̂k :Gf (X) → Gf (Xk). In particular, Gf (X) is the semidirect product of groups
Ker p̂k and Gf (Xk). In turn, the homomorphism p̂k determines a continuous Lie algebra ho-
momorphism φk :LLie → LLie where LLie is the Lie algebra of Gf (X), see Section 2.4.1. It is
determined by the conditions

φk(Xs) :=
{

Xs if 1 � s � k,

0 if s > k.

The image of φk is a closed Lie subalgebra Lk
Lie of LLie consisting of Lie elements in variables

X1, . . . ,Xk and t . Identifying Gf (X) with its image under map Ê, see Section 2.3.2, we obtain
the commutative diagram

LLie
exp

φk

Gf (X)

p̂k

Lk
Lie

exp
Gf (Xk).

(2.31)

Thus Lk
Lie can be regarded as the Lie algebra of Gf (Xk).

Also, analogs of Theorems 2.17 and 2.19 are valid for topological lower central series of
Gf (Xk) and Gf (Xk∗) (the group of formal closed paths in C

k) where in these results we consider
basic iterated integrals and moments on Gf (Xk), respectively.

2.6.2. Let F ⊂ C be a field. By XF ⊂ X we denote the subset of elements a ∈ X such that
I (a) ∈ F for all basic iterated integrals on X. Formulas (2.2) and (2.3) imply that XF is a sub-
semigroup of X. By G(XF) := π(XF) we denote the subgroup of Gf (X) generated by XF. The
homomorphism Ê, see (2.12), embeds G(XF) into the subalgebra AF of A, see Section 2.3.1, of
formal power series whose coefficients in expansion in I,X1,X2, . . . and t belong to F. We will
identify G(XF) with its image under Ê.

Next, by JF ⊂ AF we denote the two-sided ideal of elements f whose series expansions do
not contain terms with I . By J k

F
we denote the kth power of JF. Let us introduce the JF-adic

topology on AF, i.e., a sequence {fi}i∈N ⊂ AF converges in this topology to f ∈ AF if and
only if for any l ∈ N there is a natural number Nl such that for all n � Nl the images of fn and
f in the quotient algebra AF/J l

F
coincide. Observe that AF is complete in this topology. By

Gf (XF) ⊂ AF we denote the completion of G(XF) in the JF-adic topology. We call it the group
of formal paths over F.
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Let [XF]rect be a sub-semigroup of the semigroup of rectangular paths Xrect generated by
elements ai = (a1i , a2i , . . .) where aki = 0 for k �= i and aii = ci/T , ci ∈ F. Then G([XF]rect)

is the subgroup of G(Xrect) generated by elements eciXi t
i
, ci ∈ F, i ∈ N. Based on the results

of Sections 2.4.1 and 2.4.2 one obtains that G([XF]rect) is dense in Gf (XF). Moreover, the Lie
algebra LLie(F) ⊂ LLie of Gf (XF) consists of all Lie elements with coefficients from F.

In the same way one can formulate analogs of Theorems 2.17 and 2.19 for topological
lower central series of G(XF) and Gf (XF) in terms of basic iterated integrals and moments
on Gf (XF), respectively. (We leave the details to the reader.)

2.6.3. In the sequel we will use the following result.
Let R ⊂ LLie be a subset. By AR ⊂ LLie we denote the minimal closed Lie subalgebra con-

taining R. Consider the subgroup HR ⊂ Gf (X)(⊂ G) generated by elements ecr for all possible
r ∈ R and c ∈ C. By HR we denote the closure of HR in Gf (X).

Proposition 2.23. We have

log(HR) = AR.

Moreover, HR is a normal subgroup of Gf (X) if and only if AR is a normal Lie subalgebra of
LLie.

Proof. We retain the notations of Section 2.4.2.
Consider the image (HR)l := ql(HR) ⊂ Ql := ql(Gf (X)). Then, (HR)l is a complex Lie

subgroup of Ql . It can be shown similarly to the statement of Lemma 2.12 where instead of
the map FK given by (2.18) we determine now a new map FK : Ck → C

N , N := dimC Ql , with
K = {r1, . . . , rk} ⊂ R by the formula

FK(z1, . . . , zk) := ql(e
z1r1 · · · ezkrk ).

Then, as in the proof of the lemma, FK is a holomorphic polynomial map. Applying now the
arguments of Lemma 2.12 to the family of such maps FK , we finally get the required: (HR)l is a
complex Lie subgroup of Ql . In particular, we also have (HR)l := ql(HR) = (HR)l .

From the above statement we obtain that log((HR)l) ⊂ Ll
Lie is the Lie algebra of (HR)l (cf.

(2.21)). Since log((HR)l) contains ql(R) and (HR)l is generated by elements ecql(r) for all pos-
sible r ∈ R and c ∈ C, the Campbell–Hausdorff formula implies that

log
(
(HR)l

) = log
(
(HR)l

) = ql(AR). (2.32)

Assume now that h ∈ log(HR). According to (2.32) there is a sequence {hl}l�2 ⊂ AR such
that ql(h − hl) = 0 for all l. This implies that liml→∞ hl = h, that is, log(HR) ⊂ AR . The in-
clusion AR ⊂ log(HR) is obtained similarly using the fact that log(HR) is a closed subset of
LLie.

Now, if HR is a normal subgroup of Gf (X), then (HR)l is a normal Lie subgroup of Ql .
This and (2.32) imply that ql(AR) is a normal Lie subalgebra of Ll

Lie (the standard fact of the
theory of finite-dimensional complex Lie groups). Thus, if a ∈ LLie, h ∈ AR , then ql([a,h]) =
[ql(a), ql(h)] ∈ ql(AR) for all l. As above, the latter implies that liml→∞ gl = [a,h] for some
{gl}l�2 ⊂ AR , i.e., [a,h] ∈ AR . Hence, AR is a normal subalgebra of Ll

Lie. The converse state-
ment can be obtained in the same way (we leave the details to the reader). �
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Remark 2.24. The above result can be proved by means of the Campbell–Hausdorff formula
only. This method of the proof works also to establish a similar result for R ⊂ LLie(F) and HR ⊂
Gf (XF) generated by elements ecr for all possible r ∈ R and c ∈ F.

3. Center problem for ODEs

3.1. An explicit expression for the first return map

3.1.1. Let C[[z]] be the algebra of formal complex power series in z. By D, L : C[[z]] →
C[[z]] we denote the differentiation and the left translation operators defined on f (z) =∑∞

k=0 ckz
k by

(Df )(z) :=
∞∑

k=0

(k + 1)ck+1z
k, (Lf )(z) :=

∞∑
k=0

ck+1z
k. (3.1)

Let A(D,L) be the associative algebra with unit I of complex polynomials in I , D and L. By
A(D,L)[[t]] we denote the associative algebra of formal power series in t with coefficients from
A(D,L). Also, by G0(D,L)[[t]] we denote the group of invertible elements of A(D,L)[[t]]
consisting of elements whose expansions in t begin with I .

Further, consider Eq. (1.1) corresponding to an a = (a1, a2, . . .) ∈ X:

dv

dx
=

∞∑
i=1

ai(x)vi+1, x ∈ IT . (3.2)

Using the method of linearization of (3.2) from [6] we associate to this equation the following
system of ODEs:

H ′(x) =
( ∞∑

i=1

ai(x)DLi−1t i

)
H(x), x ∈ IT . (3.3)

Solving (3.3) by Picard iteration we obtain a solution Ha : IT → G0(D,L)[[t]], Ha(0) = I ,
whose coefficients in the series expansion in D,L and t are Lipschitz functions on IT . It was es-
tablished in [7, Theorem 1.1] that (3.2) determines a center (i.e., a ∈ C) if and only if Ha(T ) = I .
This implies the following result (see [10, Proposition 2.1]).

Theorem 3.1.

a ∈ C ⇐⇒
∑

i1+···+ik=i

pi1,...,ik Ii1,...,ik (a) ≡ 0 for all i ∈ N, (3.4)

where pi1,...,ik is a polynomial of degree k defined by

pi1,...,ik (t) = (t − i1 + 1)(t − i1 − i2 + 1)(t − i1 − i2 − i3 + 1) · · · (t − i + 1),

t ∈ C. (3.5)

3.1.2. Let G[[r]] be the set of formal complex power series f (r) = r + ∑∞
i=1 dir

i+1. Let
di :G[[r]] → C be such that di(f ) is the (i + 1)st coefficient in the series expansion of f . We
equip G[[r]] with the weakest topology in which all di are continuous functions and consider
the multiplication ◦ on G[[r]] defined by the composition of series. Then G[[r]] is a separable
topological group. Moreover, it is contractible and residually torsion free nilpotent. By Gc[[r]] ⊂
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G[[r]] we denote the subgroup of power series locally convergent near 0 equipped with the
induced topology. Next, we define the map P :X → G[[r]] by the formula

P(a) := r +
∞∑
i=1

( ∑
i1+···+ik=i

pi1,...,ik (i) · Ii1,...,ik (a)

)
ri+1, (3.6)

see (3.5). It follows from [8] that P(a ∗ b) = P(a) ◦ P(b) and P(X) = Gc[[r]]. Moreover, let
v(x; r;a), x ∈ IT , be the Lipschitz solution of Eq. (3.2) with initial value v(0; r;a) = r . Clearly
for every x ∈ IT we have v(x; r;a) ∈ Gc[[r]]. It was proved in [6] that P(a) = v(T ; · ;a) (i.e.,
P(a) is the first return map of (3.2)). In particular, we have

a ∈ C ⇐⇒
∑

i1+···+ik=i

pi1,...,ik (i) · Ii1,...,ik (a) ≡ 0 for all i ∈ N. (3.7)

Also, (3.6) implies that there is a continuous homomorphism P̂ :G(X) → G[[r]] such that
P = P̂ ◦ π (where π :X → G(X) is the quotient map). We extend it by continuity to Gf (X)

retaining the same symbol for the extension.

3.2. Group of formal centers

3.2.1. Let C〈X1,X2〉 be the associative algebra with unit I of complex polynomials in I and
free non-commutative variables X1, X2. Consider a homomorphism φ : C〈X1,X2〉 → A(D,L)

defined by conditions: φ(X1) := D, φ(X2) := L. Then Kerφ ⊂ C〈X1,X2〉 is a two-sided ideal
generated by the element X1X2 − X2X1 + X2

2, see [7, Proposition 2.2]. In particular, see [7,
Lemma 2.4], each p ∈A(D,L) is uniquely presented as

p(D,L, I) = a0I +
n∑

k=1

Fk(D,L) where Fk(D,L) =
k∑

i=0

aik−i,kD
iLk−i (3.8)

with all a0, aij,k ∈ C.
We say that such p has degree n if the polynomial p(x, y,1) in commutative variables x, y

has degree n. By Pn ⊂ A(D,L) we denote the complex vector space of polynomials of degree
� n. We naturally identify Pn with the hermitian space C

k(n) where k(n) = dimC Pn.
Let A∗ ⊂ A(D,L)[[t]] be the subalgebra of series

f =
∞∑

n=0

fnt
n with fn ∈ Pn, n ∈ Z+. (3.9)

We equip A∗ with the weakest topology in which all coefficients fn in expansion (3.9) considered
as functions in f are continuous maps of A∗ into C

k(n), n ∈ Z+. Since the set of such maps is
countable, A∗ is metrizable, cf. (2.4). Moreover, if d is a metric on A∗ compatible with topology,
then (A∗, d) is a complete metric space (i.e., a sequence {fk = ∑∞

n=0 fnkt
n}k∈N ⊂ A∗ such

that each {fnk}k∈N ⊂ Pn is a Cauchy sequence converges to f = ∑∞
n=0 fnt

n ∈ A∗ where fn =
limk→∞ fnk , n ∈ Z+).

By G∗ ⊂ G0(D,L)[[t]] we denote the subgroup of elements f ∈ A∗ with f0 = I equipped
with the induced topology. Then (G∗, d) is a complete metric space.

Next, consider an algebra homomorphism Ψ :A →A∗ determined by conditions

Ψ (Xi) := DLi−1, i ∈ N. (3.10)
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(Recall that A ⊂ C〈X1,X2, . . .〉[[t]] is defined by (2.6).) By the definition for

f = c0I +
∞∑

n=1

( ∑
i1+···+ik=n

ci1,...,ikXi1 · · ·Xik

)
tn ∈ A

we have

Ψ (f ) := c0I +
∞∑

n=1

( ∑
i1+···+ik=n

ci1,...,ikDLi1−1 · · ·DLik−1
)

tn ∈ A∗.

Expressing each DLi1−1 · · ·DLik−1 in the form (3.8) (using identity DL − LD = −L2), we
conclude that Ψ is a continuous homomorphism of topological algebras. Moreover, Ψ |G :G →
G∗ is a continuous homomorphism of topological groups. (Recall that G is the subset of elements
of A whose expansions in t begin with I .)

Observe that Ψ transfers Eq. (2.8) (determining E :X → G, see (2.9)) to Eq. (3.3). In partic-
ular, we have

Ψ
(
E(a)

) = Ha, a ∈ X.

The last identity gives rise to the formula

Ψ
(
Ê(g)

) = I +
∞∑

n=1

( ∑
i1+···+ik=n

Îi1,...,ik (g)DLi1−1 · · ·DLik−1
)

tn, g ∈ Gf (X). (3.11)

(Here, as before, we regard the basic iterated integrals Î· as continuous functions on Gf (X)

extending them by continuity from G(X).)

3.2.2. Let us observe that the Lie algebra LG∗ of G∗ consists of elements of A∗ of form
(3.9) with f0 = 0. As usual, for f,g ∈ LG∗ their product is defined by the formula [f,g] :=
f · g − g · f . Also, the map exp :LG∗ → G∗, exp(f ) := ef , is a homeomorphism.

The group homomorphism Ψ : G → G∗ determines a continuous homomorphism of the cor-
responding Lie algebras such that the following diagram is commutative:

LG
exp

Ψ

G

Ψ

LG∗
exp

G∗.

(3.12)

By LS ⊂ LG∗ we denote the image under Ψ of the Lie algebra LLie of the group Ê(Gf (X))(∼=
Gf (X)), see Section 2.4.1.

In our calculations we will use the following result.

Lemma 3.2.

[DLi,DLj ] = (i − j)DLi+j+1.

Proof. It suffices to check the identity for elements zn ∈ C[[z]] with n � i + j + 2. Then we
have

(DLiDLj )(zn) = (n − j − i − 1)(n − j)zn−j−i−2,

(DLjDLi)(zn) = (n − i − j − 1)(n − i)zn−i−j−2, and

(i − j)(DLi+j+1)(zn) = (i − j)(n − i − j − 1)zn−i−j−2.
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These identities imply the required result. �
Now, for an element

g =
∞∑

n=1

( ∑
i1+···+ik=n

ci1,...,ik [Xi1, [Xi2, [ · · · , [Xik−1 ,Xik ] · · · ]]]
)

tn ∈ LLie

we have

Ψ (g) :=
∞∑

n=1

( ∑
i1+···+ik=n

ci1,...,ik [DLi1−1, [DLi2−1, [ · · · , [DLik−1−1,DLik−1] · · · ]]]
)

tn.

Simplifying the right-hand side by Lemma 3.2 we finally obtain

Ψ (g) =
∞∑

n=1

( ∑
i1+···+ik=n

ci1,...,ik · γi1,...,ikDLn−1
)

tn (3.13)

where γn = 1 and

γi1,...,ik := (−1)k−1(ik − ik−1)(ik−1 + ik − ik−2) · · · (i2 + · · · + ik − i1) for k � 2.

Proposition 3.3. The following is true:

LS =
{

g ∈ LG∗ : g =
∞∑

n=1

gn DLn−1tn, gn ∈ C, n ∈ N

}
. (3.14)

Proof. By V we denote the vector space on the right-hand side of (3.14). According to
Lemma 3.2, V is a closed Lie subalgebra of LG∗ . Moreover, by (3.13) LS ⊂ V .

The converse implication is obvious: for an element g = ∑∞
n=1 gnDLn−1tn ∈ V consider

g̃ := ∑∞
n=1 gnXnt

n ∈ LLie. Then Ψ (g̃) = g, i.e., g ∈ LS . �
From Proposition 3.3 and diagram (3.12) we immediately obtain:

S := (Ψ ◦ Ê)
(
Gf (X)

)
is a closed subgroup of G∗ with the Lie algebra LS.

3.2.3. According to (3.11) the normal subgroup Ker(Ψ ◦ Ê) ⊂ Gf (X) consists of elements
g such that∑

i1+···+ik=n

Îi1,...,ik (g)DLi1−1 · · ·DLik−1 = 0 for all n ∈ N.

Repeating literally the arguments of the proof of [10, Proposition 2.1] we obtain

g ∈ Ker(Ψ ◦ Ê) ⇐⇒
∑

i1+···+ik=i

pi1,...,ik Îi1,...,ik (g) ≡ 0 for all i ∈ N, (3.15)

where pi1,...,ik is the polynomial defined in (3.5).
Next, recall that the homomorphism P̂ :Gf (X) → G[[r]] is determined by

P̂ (g) := r +
∞∑( ∑

pi1,...,ik (i) · Îi1,...,ik (g)

)
ri+1, (3.16)
i=1 i1+···+ik=i
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see Section 3.1.2. Then from (3.15) we obtain that

Ker(Ψ ◦ Ê) ⊂ Ker P̂ .

This implies that there is a homomorphism Φ :S → G[[r]] such that

P̂ = Φ ◦ Ψ ◦ Ê. (3.17)

Proposition 3.4. Φ :S → G[[r]] is an isomorphism of topological groups.

Proof. Suppose that

s := exp

( ∞∑
n=1

snDLn−1tn

)
∈ S. (3.18)

Then, from (3.16), (3.17) we obtain

Φ(s) = r +
∞∑
i=1

( ∑
i1+···+ik=i

pi1,...,ik (i) · si1 · · · sik · T k

k!
)

ri+1. (3.19)

Since the map log :S → LS , log(f ) := −∑∞
i=1

(I−f )i

i
, is a homeomorphism, formula (3.19) and

the definitions of topologies on S and G[[r]] imply that Φ is a continuous homomorphism.
Further, the expression in the brackets of (3.19) can be written in the form siT +

pi(s1T , . . . , si−1T ) where pi is a polynomial of degree i with rational coefficients on R
i−1.

In particular, for any sequence {di}i∈N ⊂ C one can solve consequently the equations

siT + pi(s1T , . . . , si−1T ) = di, i ∈ N,

to get an element s of form (3.18) such that Φ(s) = r + ∑∞
i=1 dir

i+1. Moreover, each si in
the definition of s is a polynomial in variables d1, . . . , di . This implies that Φ has a continuous
inverse Φ−1 :G[[r]] → S and completes the proof of the proposition. �
Remark 3.5. The Lie algebra LS is isomorphic to the algebra W1(1), the nilpotent part of the
Witt algebra of formal vector fields on R, which is known to be the Lie algebra of G[[r]]. Recall
that W1(1) has the natural basis ei := ri+1 d

dr
, i ∈ N. Then the isomorphism w :LS → W1(1)

is given by w(DLi−1) = −ei , i ∈ N. Identifying LS with W1(1) by w we can regard the map
Φ ◦ exp as an exponential map W1(1) → G[[r]].

According to (3.17) and Proposition 3.4 we have

Ker(Ψ ◦ Ê) = Ker P̂ .

This group is denoted by Ĉf and called the group of formal centers of Eq. (1.1). By the definition
Ĉf is a closed normal subgroup of Gf (X). Moreover, Ĉf contains the subgroup Ĉ := π(C) ⊂
G(X), the group of centers of Eq. (1.1).

3.3. Properties of the group of formal centers

3.3.1. In what follows we identify Gf (X) and G(X) with their images under Ê.
Formulas (3.15), (3.16) imply, cf. Section 3.1:
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g ∈ Ĉf ⇐⇒
∑

i1+···+ik=i

pi1,...,ik Îi1,...,ik (g) ≡ 0 for all i ∈ N

⇐⇒
∑

i1+···+ik=i

pi1,...,ik (i) · Îi1,...,ik (g) = 0 for all i ∈ N, (3.20)

where pi1,...,ik (t) = (t − i1 + 1)(t − i1 − i2 + 1) · · · (t − i + 1).
In turn, (3.12) and (3.13) imply that the Lie algebra LĈf

⊂ LLie of Ĉf consists of elements

∞∑
n=1

( ∑
i1+···+ik=n

ci1,...,ik [Xi1, [Xi2, [ · · · , [Xik−1,Xik ] · · · ]]]
)

tn

such that ∑
i1+···+ik=n

ci1,...,ik · γi1,...,ik = 0 for all n ∈ N where γn = 1 and

γi1,...,ik := (−1)k−1(ik − ik−1)(ik−1 + ik − ik−2) · · · (i2 + · · · + ik − i1) for k � 2. (3.21)

(In particular, the map exp :LĈf
→ Ĉf is a homeomorphism.)

Further, by the definition we have

Ĉ = Ĉf ∩ G(X). (3.22)

Proposition 3.6. Ĉ is a dense subgroup of Ĉf .

Proof. According to [8, Theorem 2.10] there exists a continuous embedding T :Gc[[r]] →
G(X) such that P̂ ◦ T = id. Moreover, T̃ :Gc[[r]] × Ĉ → G(X), T̃ (s, g) := T (s) · g is a home-
omorphism. We can extend T by continuity to a map Tf :G[[r]] → Gf (X) using formula (4.1)
for the definition of T from [8]. Since P̂ ◦ T = id, similarly we have P̂ ◦ Tf = id. In particular,
Tf is an embedding.

Let cl(Ĉ) be the closure of Ĉ in Ĉf . We can extend the map T̃ by continuity to a map
T̃f :G[[r]] × cl(Ĉ) → Gf (X). Then, T̃f (s, g) := Tf (s) · g. Next, since T̃ is a homeomorphism
and G(X) is dense in Gf (X), the map T̃f is a homeomorphism, as well (by the above definition
of T̃ the inverse T̃ −1

f of T̃f is the extension by continuity of T̃ −1 which can be expressed explic-

itly). In particular, for g ∈ Ĉf we have g = Tf (s) · h for some s ∈ G[[r]], h ∈ cl(Ĉ). This implies

1 = P̂ (g) = P̂
(
Tf (s) · h) = P̂

(
Tf (s)

) · P̃ (h) = s.

Hence, g = h ∈ cl(Ĉ). �
3.3.2. By L ⊂ LLie we denote the closed subspace of elements g = ∑∞

n=1 gnXnt
n,

gn ∈ C, n ∈ N. Then there is a continuous linear isomorphism A :LS → L determined by
A(DLn−1tn) := Xnt

n, n ∈ N. Thus, Ψ ◦A = id. The map Π := A◦Ψ :LLie → L is a continuous
linear projection onto L. Moreover, id−Π :LLie → LĈf

is a continuous linear projection onto
LĈf

. Hence Π ⊕ (id−Π) :LLie → L ⊕LĈf
is an isomorphism. Also, every element g ∈ LĈf

is
presented in the form

g =
∞∑

n=1

( ∑
i1+···+ik=n, k�2

ci1,...,ik vi1,...,ik

)
tn where

vi ,...,i := [Xi , [Xi , [ · · · , [Xi ,Xi ] · · · ]]] − γi ,...,i Xn. (3.23)
1 k 1 2 k−1 k 1 k
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Recall that elements {vi1,...,ik : i1 + · · · + ik = n, k � 2} are not linearly independent, cf. (2.14).
The number of linearly independent elements in this set is

1

n

(∑
d|n

(2n/d − 1) · μ(d)

)
− 1.

Proposition 3.7. Ĉf is the closure in Gf (X) of the group H generated by elements
exp(ci1,...,ik vi1,...,ik t

i1+···+ik ) for all possible vi1,...,ik and ci1,...,ik ∈ C.

Proof. According to Proposition 2.23, log(H) is the minimal closed Lie subalgebra of LLie
containing all possible elements vi1,...,ik t

i1+···+ik . By (3.23) this subalgebra coincides with LĈf
.

Thus, H = Ĉf . �
Question 1. Is it true that every nontrivial element exp(ci1,...,ik vi1,...,ik t

i1+···+ik ) belongs to
Gf (X) \ G(X), i.e., it cannot be presented by an element from X?

3.3.3. Let us consider a continuous homomorphism π2 : LLie → LLie determined by the
conditions

π2(Xi) :=
{

Xi for i = 1,2,
1

i−2 · [π2(Xi−1),X1] for i � 3.
(3.24)

From this definition we get

π2(Xi) = (−1)i

(i − 2)! · [X1, [X1, [· · · , [X1,X2] · · ·]]]︸ ︷︷ ︸
(i−2)-brackets

for i � 3. (3.25)

Therefore π2 maps LLie surjectively onto L2
Lie, the Lie algebra of the group Gf (X2) of formal

paths in C2, see Section 2.6.1.

Proposition 3.8. The kernel Ker(π2) is a subalgebra of LĈf
. It is the minimal normal closed Lie

subalgebra N of LLie containing elements {si t i}i�3 where

si := Xi − 1

i − 2
· [Xi−1,X1], i � 3.

Proof. By the definition each si t
i ∈ Ker(π2). Since π2 is continuous, N ⊂ Ker(π2). Next, con-

sider an element

g =
∞∑

n=1

( ∑
i1+···+ik=n

ci1,...,ik [Xi1, [Xi2, [ · · · , [Xik−1 ,Xik ] · · · ]]]
)

tn =
∞∑

n=1

gnt
n ∈ LLie.

Using (3.25) one can represent each gn as fn + hn where fnt
n ∈ N ∩ (Ln · tn) and hnt

n ∈
L2

Lie ∩ (Ln · tn) (here Ln is the complex vector space generated by all possible gn, see (2.14)).
Then we have

g = f + h where f :=
∞∑

n=1

fnt
n ∈N and h :=

∞∑
n=1

hnt
n ∈ L2

Lie.

In particular, π2(g) = h. Thus g ∈ Ker(π2) if and only if h = 0, i.e., g ∈ N .
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Further, each si t
i ∈ LĈf

, see (3.21). Hence Ker(π2) = N ⊂ LĈf
. �

In the proof we have established also the natural decomposition

LLie = N ⊕L2
Lie. (3.26)

Taking the exponential map in (3.26) we obtain the following result.

Proposition 3.9. The group Gf (X) is the semidirect product of the normal subgroup exp(N ) ⊂
Ĉf and Gf (X2). Moreover, exp(N ) is the minimal normal closed subgroup of Gf (X) containing
elements exp(cisi t

i) for all possible si and ci ∈ C.

Proof. From the Campbell–Hausdorff formula for elements of Gf (X) using the fact that N ⊂
LLie is a closed ideal we obtain for a ∈N , b ∈ L2

Lie:

ea+b = eaebec1 = ea(ebec1e−b)eb = (eaec2)eb = ec3eb

for some c1, c2, c3 ∈N . This and (3.26) give the first statement of the proposition.
The second statement is the direct consequence of Proposition 2.23 applied to elements of

R := {log(eaesi t
i
e−a) = easi t

ie−a ∈ N : a ∈ LLie, i ∈ N}. �
Remark 3.10. By the definition of si each formal path ecisi t

i
, ci ∈ C, belongs to the subgroup of

formal paths in the subspace Wi ⊂ C
∞ where

Wi := {
(z1, z2, . . .) ∈ C

∞: zk = 0 for all k /∈ {1, i − 1, i}} ∼= C
3.

In particular, there exist elements γl ∈ X with first integrals γ̃l : IT → Wi , l ∈ N, such that
the sequence {π(γl)}l∈N ⊂ G(X) converges to ecisi t

i
. (Recall that we identify Gf (X) with

Ê(Gf (X)).)

Let

Ψ2 := Ψ |Gf (X2) :Gf (X2) → S
(∼= G[[r]]) and P̂2 := P̂ |Gf (X2) :Gf (X2) → G[[r]].

Then we have, cf. (3.17),

P̂2 = Φ ◦ Ψ2. (3.27)

Next, we extend the homomorphism π2 determined by (3.24) to a continuous endomorphism
of the associative algebra A, see (2.6). We retain the same symbol for the extension. Then
π2 maps Gf (X) surjectively onto Gf (X2). Moreover, by Proposition 3.9, Ker(π2|Gf (X)) =
exp(N ).

Proposition 3.11. The following identity is valid:

Ψ (g) = (Ψ2 ◦ π2)(g) for all g ∈ Gf (X).

Proof. Since for h ∈ LLie we have

Ψ (eh) = eΨ (h) and (Ψ2 ◦ π2)(e
h) = e(Ψ2◦π2)(h),

it suffices to check the identity of the proposition for elements of LLie. Moreover, it suffices to
check it for elements Xi , i ∈ N (because {Xit

i}i∈N are generators of LLie). In this case we have
by the definitions of Ψ and π2 and by Lemma 3.2
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Ψ (Xi) = DLi−1 and (Ψ2 ◦ π2)(Xi) = DLi−1 for i = 1,2,

(Ψ2 ◦ π2)(Xi) = (−1)i

(i − 2)! · [D, [D, [ · · · , [D,DL] · · · ]]]︸ ︷︷ ︸
(i−2)-brackets

= DLi−1 for i � 3.

This completes the proof of the proposition. �
From this proposition, (3.17) and (3.27) we obtain that

P̂ = P̂2 ◦ π2. (3.28)

In particular, the homomorphism P̂2 :Gf (X2) → G[[r]] corresponding to the first return maps
of “generalized” Abel equations is surjective. Moreover, Proposition 3.9 implies that Cf is the
semidirect product of exp(N ) and Ĉ 2

f := Ĉf ∩ Gf (X2) (the group of formal centers of Abel
differential equations).

3.3.4. It has been shown above that there is a reduction of the center problem for Gf (X) to
that for Gf (X2). In this part we prove some results on the structure of the group Ĉ 2

f .

First, observe that Ĉ 2
f ⊂ Gf (X2) is determined by systems of equations of form (3.20) in

which all il ∈ {1,2}, l ∈ N. In turn, the Lie algebra LĈ 2
f

of Ĉ 2
f is determined by the system of

equations of form (3.21) in which also all il ∈ {1,2}, l ∈ N.
By L2 ⊂ L2

Lie we denote the closed subspace of elements g = ∑∞
n=1 gnrnt

n, gn ∈ C, n ∈ N,
where r1 = X1, r2 = X2 and

rn := (−1)n

(n − 2)! · [X1, [X1, [ · · · , [X1,X2] · · · ]]]︸ ︷︷ ︸
(n−2)-brackets

for n � 3. (3.29)

By the definition, Ψ2(rn) = DLn−1. Then there is a continuous linear isomorphism A2 :LS →
L2 determined by A2(DLn−1tn) := rnt

n, n ∈ N, such that Ψ2 ◦ A2 = id. The map Π2 := A2 ◦
Ψ2 :L2

Lie → L2 is a continuous linear projection onto L2. Moreover, id−Π2 :L2
Lie → LĈ 2

f
is a

continuous linear projection onto LĈ 2
f

. Hence,

Π2 ⊕ (id−Π2) :L2
Lie → L2 ⊕LĈ 2

f
is an isomorphism. (3.30)

This implies that every element g ∈ LĈ 2
f

is presented in the form

g =
∞∑

n=1

( ∑
i1+···+ik=n, n�5

ci1,...,ik li1,...,ik

)
tn where all is ∈ {1,2}, s ∈ N, and

li1,...,ik := [Xi1, [Xi2, [ · · · , [Xik−1,Xik ] · · · ]]] − γi1,...,ik rn. (3.31)

The elements {li1,...,ik : i1 + · · · + ik = n, n � 5, is ∈ {1,2}} are not linearly independent. It
follows from [17, Theorem 3.1] that the number of linearly independent elements in this set is

1

n

(∑
d|n

(
λ

n/d

1 + λ
n/d

2

) · μ(d)

)
− 1 (3.32)

where λ1 = 1+√
5

2 , λ2 = 1−√
5

2 , μ is the Möbius function, see Section 2.4.1, and the sum ranges
over all integers which divide n.

Further, similarly to Proposition 3.7 from (3.30) and (3.31) we get
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Proposition 3.12. (1) There is a continuous map T 2
f :G[[r]] → Gf (X2) such that P̂2 ◦ T 2

f = id.

Moreover, the map T̃ 2
f :G[[r]] × Ĉ 2

f → Gf (X2) defined by T̃ 2
f (s, g) = T 2

f (s) · g is a homeomor-
phism.

(2) The group Ĉ 2
f is the closure in Gf (X2) of the group H2 generated by elements

exp(ci1,...,ik li1,...,ik t
i1+···+ik ) for all possible li1,...,ik and ci1,...,ik ∈ C with i1, . . . , ik ∈ {1,2}.

Proof. (1) We define the map T 2
f by the formula

T 2
f := exp◦A2 ◦ log◦Φ−1. (3.33)

Then T 2
f :G[[r]] → Gf (X2) is continuous as the composite of continuous maps. Also, from

(3.27) by the properties of A2 we get

P̂2 ◦ T 2
f = Φ ◦ Ψ2 ◦ exp◦A2 ◦ log◦Φ−1 = Φ ◦ exp◦Ψ2 ◦ A2 ◦ log◦Φ−1

= Φ ◦ exp◦ id◦ log◦Φ−1 = Φ ◦ Φ−1 = id .

Now, for the map T̃ 2
f :G[[r]] × Ĉ 2

f → Gf (X2), T̃ 2
f (s, g) = T 2

f (s) · g, we define the map

Q : Gf (X2) → G[[r]] × Ĉ 2
f by the formula

Q(h) := (
P̂2(h),

[
(T 2

f ◦ P̂2)(h)
]−1 · h)

. (3.34)

The second term here belongs to Ĉ 2
f because

P̂2
[(

T 2
f

(
P̂2(h)

))−1 · h] = [(
P̂2 ◦ T 2

f ◦ P̂2
)
(h)

]−1 · P̂2(h) = [
P̂2(h)

]−1 · P̂2(h) = 1.

Clearly, both T̃ 2
f and Q are continuous maps. Moreover,(

Q ◦ T̃ 2
f

)
(s, g) = Q

(
T 2

f (s) · g) = (
P̂2

(
T 2

f (s) · g)
,
[
(T 2

f ◦ P̂2)
(
T 2

f (s) · g)]−1 · T 2
f (s) · g)

= (
s,

[
T 2

f (s)
]−1 · T 2

f (s) · g) = (s, g).

Thus Q is the inverse map to T̃ 2
f , i.e., T̃ 2

f is a homeomorphism.
(2) This statement is proved similarly to the proof of Proposition 3.7. �

Question 2. Is it true that there is a continuous map T 2 :Gc[[r]] → G(X2) such that P̂2 ◦ T 2 =
id?

The affirmative answer to this question will show that each locally convergent series from
Gc[[r]] can be obtained as the first return map of an Abel differential equation. Moreover, as
in the proof of Proposition 3.6 we will get that the group of centers Ĉ 2 := Ĉ 2

f ∩ G(X2) of

Abel differential equations is dense in the group of formal centers Ĉ 2
f . Also, G(X2) will be

homeomorphic to Gc[[r]] × Ĉ 2.

3.3.5. In this section we briefly discuss the center problem over a field F ⊂ C.
Let GF[[r]] ⊂ G[[r]] be the subgroup of formal power series with coefficients from F. Let I k

F

be the normal subgroup of GF[[r]] consisting of elements f of the form f (z) := z+dk+1z
k+1 +

dk+2z
k+2 +· · ·. We equip GF[[r]] with {I k

F
}k∈N-adic topology, i.e., a sequence {fi}i∈N ⊂ GF[[r]]

converges to f ∈ GF[[r]] if and only if for any k ∈ N there is a number Nk ∈ N such that for all
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n � Nk the images of fn and f in the quotient group GF[[r]]/I k
F

coincide. By Gc,F[[r]] ⊂
GF[[r]] we denote the subgroup of locally convergent power series in GF[[r]] equipped with the
induced topology.

Further, consider the groups G(XF) ⊂ Gf (XF) of paths and formal paths over F, see Sec-
tion 2.6.2. According to (3.16) the homomorphism P̂ (corresponding to the first return maps
of Eqs. (1.1)) maps G(XF) and Gf (XF) into Gc,F[[r]] and GF[[r]], respectively. Also, by the
definition of topologies on Gf (XF) and GF[[r]], P̂ :Gf (XF) → GF[[r]] is a continuous homo-
morphism of topological groups. We set ĈF := G(XF) ∩ Ĉ and (ĈF)f := Gf (XF) ∩ Ĉf . These
groups are referred to as the groups of centers and formal centers over F. Then similarly to the
results of the previous sections one can prove the following statements.

(1) g ∈ (ĈF)f if and only if the element g ∈ Gf (XF) satisfies Eqs. (3.20).
(2) The Lie algebra L(ĈF)f

⊂ LLie(F) of (ĈF)f consists of elements

∞∑
n=1

( ∑
i1+···+ik=n

ci1,...,ik [Xi1, [Xi2, [ · · · , [Xik−1,Xik ] · · · ]]]
)

tn

with all ci1,...,ik ∈ F satisfying Eqs. (3.21). In particular the exponential map exp : L(ĈF)f
→

(ĈF)f is a homeomorphism.
(3) ĈF is a dense subgroup of (ĈF)f .

The last statement is proved similarly to Proposition 3.6 using Theorem 2.12 of [8]. This result
asserts that there is a continuous embedding TF :Gc,F[[r]] → G(XF) such that P̂ ◦ TF = id. In
particular, from here we obtain that G(XF) is homeomorphic to ĈF × Gc,F[[r]] and Gf (XF) is
homeomorphic to (ĈF)f × GF[[r]].

Further, one can prove a version of Proposition 3.7 (see Remark 2.23):

(4) (ĈF)f is the closure in Gf (XF) of the group HF generated by elements
exp(ci1,...,ik vi1,...,ik t

i1+···+ik ) for all possible vi1,...,ik determined by (3.23) and ci1,...,ik ∈ F.

For the group N := Ker(π2), see Section 3.3.3, we set NF := N ∩ LLie(F). Then repeating
word-for-word the proof of Proposition 3.8 we obtain that

(5) NF is the minimal normal closed Lie subalgebra of LLie(F) containing elements si t
i = (Xi −

1
i−2 · [Xi−1,X1])t i , i � 3. Moreover, NF ⊂ L(ĈF)f

and

LLie(F) = NF ⊕L2
Lie(F)

where L2
Lie(F)

is the Lie algebra of Gf (X2
F
) := Gf (XF) ∩ Gf (X2).

From here as in the proof of Proposition 3.9 we obtain

(6) The group Gf (XF) is the semidirect product of the normal subgroup exp(NF) ⊂ (ĈF)f
and Gf (X2

F
). Moreover, exp(NF) is the minimal closed subgroup of Gf (XF) containing

elements exp(cisi t
i) for all possible si and ci ∈ F.

Finally, using the methods of the proof of Proposition 3.12 one can prove similar statements
for the group (Ĉ 2)f := (ĈF)f ∩ Gf (X2):
F F
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(7) There is a continuous map (T 2
F
)f :GF[[r]] → Gf (X2

F
) such that P̂2 ◦ (T 2

F
)f = id. The map

(T̃ 2
F
)f :GF[[r]] × (Ĉ 2

F
)f → Gf (X2

F
) defined by (T̃ 2

F
)f (s, g) = (T 2

F
)f (s) · g is a homeomor-

phism.
(8) (Ĉ 2

F
)f is the closure in Gf (X2

F
) of the group (HF)2 generated by elements

exp(ci1,...,ik li1,...,ik t
i1+···+ik ) for all possible li1,...,ik defined by (3.31) and ci1,...,ik ∈ F,

i1, . . . , ik ∈ {1,2}.

The main point of the proofs of (4)–(6) and (8) is that all elements vi1,...,ik t
i1+···+ik , si t

i and
li1,...,ik t

i1+···+ik belong to LLie(Q) (and therefore to LLie(F) for any field F ⊂ C).

3.4. Group of piecewise linear paths

Consider elements g ∈ Gf (X) of the form

g = eh where h =
∞∑
i=1

ciXit
i , ci ∈ C, i ∈ N. (3.35)

By PL ⊂ Gf (X) we denote the group generated by all such g. It will be called the group of
piecewise linear paths in C

∞.

Remark 3.13. We can naturally extend the semigroup X considering the set X̃ := (L∞(IT ))N

of all possible sequences a = (a1, a2, . . .), ai ∈ L∞(IT ), i ∈ N, with the multiplication defined
in Section 2.1.1. We consider each L∞(IT ) with the weak∗ topology defined by L1(IT ) (recall
that L∞(T ) = (L1(IT ))∗) and equip X̃ with the corresponding product topology. Then X is a
dense subset of X̃. Moreover, according to [8, Lemma 3.2] the quotient map π :X → Gf (X) is
continuous and so is extended to a continuous map X̃ → Gf (X) (denoted also by π ). Identifying
Gf (X) with its image under Ê, see (2.21), we obtain that PL is the image under π of the sub-
semigroup X̃PL of X̃ generated by elements c = (c1, c2, . . .), ci ∈ C, i ∈ N. In turn, first integrals
of elements of this sub-semigroup are piecewise linear paths in C

∞. This motivates the above
definition.

The group PL contains the subgroup of rectangular paths G(Xrect), see Section 2.4.2. In par-
ticular, PL is a dense subgroup of Gf (X), see also Proposition 2.23. One can also show (using,
e.g., Theorem 2.2) that PL is isomorphic to the free R-product of groups C (i.e., the set of gen-
erators of this product has the cardinality of the continuum).

By ĈPL := Ĉf ∩ PL we denote the group of formal centers in PL. Then ĈPL is the image in
Gf (X) of the semigroup CPL ⊂ X̃PL consisting of all elements a = (a1, a2, . . .) ∈ X̃PL such that
monodromies of the equations

H ′(x) =
( ∞∑

i=1

ai(x)DLi−1t i

)
H(x), x ∈ IT ,

are trivial.
Further, recall that there exist a continuous embedding A :LS → L, L := {c ∈ LLie: c =∑∞
i=1 ciXit

i , ci ∈ C, i ∈ N}, defined by A(DLn−1tn) := Xnt
n, so that Ψ ◦ A = id, see Section

3.3.2. For elements a, b ∈ L we set

s(a, b) := (A ◦ Ψ ◦ log)(ea · eb) ∈ L. (3.36)
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Assume that

a =
∞∑
i=1

aiXit
i , b =

∞∑
i=1

biXit
i , ai, bi ∈ C, i ∈ N.

Using the Campbell–Hausdorff formula we have

log(ea · eb) =
∞∑

n=1

( ∑
i1+···+ik=n

si1,...,ik (a, b)[Xi1 , [Xi2, [ · · · , [Xik−1,Xik ] · · · ]]]
)

tn

where each si1,...,ik is a universal polynomial with rational coefficients in variables ai1, . . . , aik ,

bi1, . . . , bik such that si1,...,ik (a
i1
i1

, . . . , a
ik
ik

, b
i1
i1
, . . . , b

ik
ik
) is a homogeneous polynomial of degree

i1 + · · · + ik . Then from (3.23), (3.21) we obtain

s(a, b) =
∞∑

n=1

( ∑
i1+···+ik=n

γi1,...,ik · si1,...,ik (a, b)

)
Xnt

n. (3.37)

In general, the complex vector space spanned by a, b and s(a, b) is 3-dimensional.
Next, formula (3.17) implies that P̂ (es(a,b)) = P̂ (ea) ◦ P̂ (eb). In particular, ea · eb ·

e−s(a,b) ∈ ĈPL.
Let us define a continuous embedding TPL :G[[r]] → PL by the formula

TPL := exp◦A ◦ log◦Φ−1,

cf. (3.33). Then, P̂ ◦ TPL = id.

Proposition 3.14. (1) The map T̃PL :G[[r]] × ĈPL → PL defined by T̃PL(s, g) = TPL(s) · g is a
homeomorphism.

(2) ĈPL is generated by elements ea · eb · e−s(a,b) for all possible a, b ∈ L.
(3) ĈPL is a dense subgroup of Ĉf .

Proof. (1) The proof repeats literally the proof of Proposition 3.12(1).
(2) It follows easily from the definition of TPL and P̂ , see (3.17), that

TPL
(
P̂ (ea · eb)

) = es(a,b), a, b ∈ L. (3.38)

Suppose that g = g1 · · ·gn ∈ ĈPL where gi = eai , ai ∈ L, 1 � i � n. We set

fi := P̂ (g1 · · ·gi), 1 � i � n,

where by the definition fn = 1. We also set for brevity

c(h1, h2) := h1 · h2 · e−s(log(h1),log(h2)), h1, h2 ∈ PL.

Then using (3.38) we obtain

g = c
(
TPL(f1), g2

) · c(TPL(f2), g3
) · · · c(TPL(fn−1), gn

) · TPL(fn).

Since TPL(fn) = 1, this implies the required statement.
(3) The proof repeats word-for-word the second part of the proof of Proposition 3.6 and is

based on the fact that PL is dense in Gf (X). �
Question 3. Are there nontrivial elements in the group Ĉ n

PL := Ĉn
f ∩PL of piecewise linear centers

in Cn? Here Ĉn
f := Ĉf ∩ Gf (Xn).

We will return to this question in a forthcoming paper.
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