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We show that for n � 3 the following equivalence problems are essentially the same:
the equivalence problem for Lagrangians of order n with one dependent and one
independent variable considered up to a contact transformation, a multiplication by a
nonzero constant, and modulo divergence; the equivalence problem for the special class of
rank 2 distributions associated with underdetermined ODEs z′ = f (x, y, y′, . . . , y(n)); the
equivalence problem for variational ODEs of order 2n. This leads to new results such as
the fundamental system of invariants for all these problems and the explicit description
of the maximally symmetric models. The central role in all three equivalence problems
is played by the geometry of self-dual curves in the projective space of odd dimension
up to projective transformations via the linearization procedure (along the solutions of
ODE or abnormal extremals of distributions). More precisely, we show that an object from
one of the three equivalence problems is maximally symmetric if and only if all curves in
projective spaces obtained by the linearization procedure are rational normal curves.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction: three equivalence problems

The main goal of this paper is to establish a tight relationship between the following three local equivalence problems
in differential geometry:

(1) equivalence of variational problems of order � 3 with one dependent and one independent variable considered up to a
contact transformation, a multiplication by a constant, and modulo divergence;

(2) equivalence of variational ODEs of order � 6 up to contact transformations. By a variational ODE (called also variational
with multiplier) we mean an ODE which is contact equivalent to an Euler–Lagrange equation for some Lagrangian;

(3) equivalence of rank 2 distributions and in particular rank 2 distributions associated with underdetermined ODEs z′ =
f (x, y, y′, . . . , y(n)), n � 3.

In particular, we shall show that equivalence problems (1), (2), and the equivalence problem for the particular class of rank 2
distributions mentioned in item (3) are essentially the same. In particular, there is a one-to-one correspondence between
equivalence classes of objects in all these problems.

This one-to-one correspondence (up to above equivalence relation) between Lagrangians of order n � 2 and their Euler–
Lagrange equations was already established earlier in works of M. Fels [15] for n = 2 and M. Juráš [19] for n � 3. It is based
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on the characterization of variational ODEs in terms of the variational bicomplex given in [3]. We extend this correspondence
to underdetermined ODEs and the corresponding rank 2 vector distributions in the case n � 3. This allows us to apply the
results of our previous works [13,14], where more general rank 2 distributions are treated, for the description of the unique
maximally symmetric Lagrangian up to the considered equivalence relation (see also the discussions on various equivalence
relations for variational problems at the end of Section 1.1). Note that the one-to-one correspondence between equivalence
problems (1) and (2) does not hold for n = 2. For example, the Lagrangian (y′′)1/3 dx is not equivalent to the most symmetric
one (y′′)2 dx, but the corresponding underdetermined ODEs and rank 2 distributions are equivalent and have 14-dimensional
Lie algebra G2 as their symmetry.

The common feature of all three problems above is that they admit linearization, which reduces them in essence to
the problem of equivalence of self-dual curves in odd-dimensional projective spaces up to projective transformations. The
invariants of these curves in projective spaces, the Wilczynski invariants [30], produce the invariants of the original problem.
The latter are called the generalized Wilczynski invariants.

In this work we exploit an alternative (a Hamiltonian) point of view on the variational problems, which comes from the
Pontryagin Maximum Principle in Optimal Control. This point of view provides us with the Hamiltonian form of the Euler–
Lagrange equation and allows to construct a (generalized) Legendre transform that takes extremals of the Lagrangian (or, in
other words, the solutions of the corresponding Euler–Lagrange equation) to the abnormal extremals of the corresponding
optimal control problem. This immediately shows that the solution space of any variational ODE carries a natural symplectic
structure ω. We show that the conformal class of this symplectic structure (i.e., all 2-forms f ω for non-vanishing functions
f ) can be recovered only from the self-duality of all linearizations of the given ODE along its solutions. This, in its turn, can
be reformulated by vanishing of the generalized Wilczynski invariants (see [30]) of odd order. It is easy to see that for n � 2
there is at most one (up to constant) closed 2-form in any given conformal class of non-degenerate 2-forms on a smooth
manifold. This gives a ‘naive’ proof that any variational ODE of order � 4 admits at most one Lagrangian up to a constant
and divergence terms.

Another question we try to answer in this paper is whether invariants of the above three equivalence problems derived
from the Wilczynski invariants of self-dual projective curves, provide the complete system of fundamental invariants. It has
been known from [11,12] that the answer to the similar question for arbitrary non-linear ODEs is negative. Namely, there
exist non-trivial ODEs (i.e., equations, not equivalent to y(n) = 0 via contact transformations) such that all their linearizations
are trivial and, thus, all their Wilczynski invariants vanish. However, surprisingly, for variational ODEs the answer is positive:
a variational ODE is trivializable if and only if all its Wilczynski invariants vanish identically.

We show that for variational ODEs the generalized Wilczynski invariants of even order (Wilczynski invariants of odd
order automatically vanish due to the self-duality of the linearization) form a fundamental set of contact invariants in the
following sense. Vanishing of this fundamental set of invariants implies that any other relative differential invariant of the
variational equation vanishes identically and the equation is contact equivalent to the trivial one. We note that for n = 3
and 4 these invariants do not generate the complete differential algebra of invariants by only differentiation and algebraic
operations. In particular, for n = 3 (or 6-th order variational ODEs y(6) = F (x, y, y′, . . . , y(5))) the differential invariant I =
F45 satisfies a non-trivial cubic equation, whose coefficients are certain derivatives of the generalized Wilczynski invariant
of order 4.

To summarize vanishing of generalized Wilczynski invariants of even order gives an explicit characterization of the most
symmetric models in all three equivalence problems provided that n � 3:

(1) all variational ODEs with vanishing generalized Wilczynski invariants are contact equivalent to the trivial equation
y(2n) = 0;

(2) all Lagrangians with vanishing generalized Wilczynski invariants are equivalent to (y(n))2 dx modulo constant multiplier,
contact transformations and divergence terms;

(3) all underdetermined ODEs with vanishing generalized Wilczynski invariants equivalent to z′ = (y(n))2.

Let us we briefly outline each of equivalence problems (1)–(3).

1.1. Equivalence of variational problems

This paper deals with variational problems in one dependent and one independent variable of arbitrary order. A varia-
tional problem is defined by a Lagrangian L = f (x, y, y′, . . . , y(n))dx or the corresponding functional

∫
f (x, y, y′, . . . , y(n))dx.

Let us recall basic definitions from the geometry of variational problems. Let J∞ = J∞(R,R) be an infinite jets of smooth
functions y(x). We shall use the standard coordinate system (x, y = y0, y1, y2, . . .) on J∞ . Denote by θi = dyi − yi+1 dx,
i � 0, the basis of so-called contact forms on J∞ . The set of all exterior forms Λ( J∞) is naturally turned into the bi-graded
algebra with:

Λp(
J∞) = Λ0,p ⊕ Λ1,p−1, where Λ0,p = 〈θi1 ∧ · · · ∧ θip 〉, p � 0;

Λ1,p−1 = 〈θi ∧ · · · ∧ θi ∧ dx〉, p � 1.
1 p−1
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The exterior derivative d : Λp( J∞) → Λp+1( J∞) naturally splits into the sum d = dH + dV , where for ω ∈ Λp( J∞) we have
dH (ω) ∈ Λ1,p and dV (ω) ∈ Λ0,p+1.

We consider variational problems
∫

f (x, y, y′, . . . , y(n))dx of arbitrary order n up to the divergence equivalence and
constant multiplier. Namely, we say that two Lagrangians L1 = f1(x, y, y′, . . . , y(n))dx and L2 = f2(x, y, y′, . . . , y(n))dx are
equivalent if there exists a contact transformation φ : J 1(R,R) → J 1(R,R) with the prolongation Φ : J∞(R,R) → J∞(R,R),
such that

Φ∗(L2) = αL1 + dH (μ) mod 〈θi | i � 0〉 (1.1)

for some constant nonzero α ∈ R and function μ on J∞(R,R). We shall always assume that all our Lagrangians are non-
degenerate, i.e., they are non-linear in the highest derivative. It follows from [19] that two Lagrangians are equivalent under
the above equivalence relation if and only if their Euler–Lagrange equations are contact equivalent.

The variational equivalence problem was treated in a number of papers using both naive approach and Cartan’s equiva-
lence method [4,8,16,20–23]. See also [26] for the symmetry classification of higher order Lagrangians.

We note that usually slightly different equivalence notion of divergence equivalence is considered, where the constant
α above is equal to 1 identically. The upper bound for the variational symmetry algebra in case of n-order Lagrangian was
proved to be equal to 2n + 3 for n � 2 in the work of Gonzalez-Lopez [16]. Note that this upper bound is achieved in
case of a family of non-equivalent Lagrangians, which is different from most of the classical local equivalence problems in
differential geometry. We show in this paper, that adding this constant α in the definition (1.1) of the divergence equivalence
changes this patten. In this case we get a slightly higher upper bound equal to 2n + 5 with a unique maximally symmetric
Lagrangian equivalent to L = (y(n))2 dx.

1.2. Equivalence of rank 2 vector distributions

By a rank 2 vector distribution on a smooth manifold M we understand a two-dimensional subbundle D of the tangent
vector bundle TM. We define its (small) derived flag {Di} as follows:

D1 = D, Di+1 = Di + [
D, Di], i � 1,

and assume that the distribution D is regular in a sense that all Di are smooth subbundles of the tangent bundle TM.
We shall also assume in the sequel that the distribution D is completely non-holonomic, i.e. Dμ = TM for some sufficiently
large μ.

We say that two such distributions D and D ′ on manifolds M and M ′ are (locally) equivalent if there exists a (local)
diffeomorphism φ : M → M ′ , such that φ∗(D) = D ′ .

Equivalence problem for non-holonomic distributions is an old problem, which goes back to the end of 19th century and
was studied by various mathematicians including Lie, Goursat, Darboux, Engel, Elie Cartan and others. Except for several
cases such as rank 2 distributions on 3- and 4-dimensional manifolds, generic rank 2 distributions have functional, and, thus,
non-trivial differential invariants. In his classical paper [5] Elie Cartan associates a (2,5)-distribution to a system of partial
differential equations of second order and constructs a canonical coframe for non-degenerate distributions of this type. This
is a first example of an explicit solution for the equivalence problem of vector distributions with non-trivial functional
invariants. Remarkably, the most symmetric (2,5)-distributions form one equivalence class and have an exceptional Lie
algebra G2 as their symmetry algebra.

The obvious (but very rough in the most cases) discrete invariant of a distribution D at a point q is the so-called small
growth vector (s.g.v.) at q. This vector is defined as {dim D j(q)} j∈N . Furthermore, at each point q ∈ M , where dim D j is
locally constant for any j, we can consider the graded space mq = ∑

i�1 D j+1(q)/D j(q). It can be naturally equipped with
a structure of a graded nilpotent Lie algebra and it is called a symbol of the distribution D at a point q. The notion of
symbol is extensively used in works of N. Tanaka and his school [24,28,29,31] who systematized and generalized the Cartan
equivalence method.

However, all constructions of Tanaka theory strongly depend on the algebraic structure of the symbol and they were
carried out under the very restrictive assumption that symbol algebras are isomorphic at different points. An alternative
approach for studying rank 2 distributions was presented by the authors in [13,14]. It is based on the ideas of the geometric
control theory and uses a symplectification of the problem by lifting the distribution D to the cotangent bundle. This
provides an effective way to construct a canonical coframe and, thus, solve equivalence problem for rank 2 distributions of
so-called maximal class (this notion is defined in Section 4.4).

Rank 2 distributions of a special type are naturally associated with Lagrangians. Namely, to a variational problem with a
Lagrangian f (x, y, y′, . . . , y(n))dx one can assign the following (affine) control system:

ẋ(t) = 1, ẏi(t) = yi+1(t), 0 � i � n − 1,

ẏn(t) = u(t), ż(t) = f
(
x(t), y0(t), y1(t), . . . , yn(t)

)
, (1.2)

on Jn(R,R) × R with coordinates (x, y0, . . . , yn, z), where u(·) is a control function belonging say to the space L∞ . To any
point q0 ∈ Jn(R,R)×R and a control function u(·) consider the trajectory of the system (1.2) started at q0. Such trajectory is
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called an admissible trajectory of control system (1.2) and its velocity at q0 is called an admissible velocity of control system (1.2)
at q0. Taking the linear span of all admissible velocities of (1.2) we get the rank 2 distribution on Jn(R,R) × R generated
by the following two vector fields:

X1 = ∂

∂x
+ y1

∂

∂ y0
+ · · · + yn

∂

∂ yn−1
+ f

(
x, y, y′, . . . , y(n)

) ∂

∂z
, X2 = ∂

∂ yn
. (1.3)

We say that this rank 2 distribution is associated with the Lagrangian f (x, y, y′, . . . , y(n))dx or with the underdetermined differ-
ential equation

z′ = f
(
x, y, y′, . . . , y(n)

)
(1.4)

on two unknown functions y(x) and z(x). Such underdetermined ODEs and the related geometric structures have been
extensively studied in [2,9,17,18,25].

It is easy to see that if ∂2 f
∂(y(n))2 �= 0 (i.e. the Lagrangian satisfies the Legendre condition), then dim D2 = 3, dim Di = i + 2

for i = 3, . . . ,n + 1. The case, when f is linear with respect to y(n) is special, since in this case we can reduce the
corresponding underdetermined equation to the equation of the same type, but of lower order. Indeed, suppose that
f = f0 + f1 y(n) , where f0 and f1 depend only on x and the derivatives of the function y(x) up to order n − 1. Then
the substitution z = z̃ + g(x, y, y′, . . . , y(n−1)) with the function g satisfying ∂ g

∂ y(n−1) = f1 reduces Eq. (1.4) to the underde-

termined ODE on functions y(x), z̃(x), where the right-hand side does not depend on y(n) .
In the following we shall call the Lagrangian f (x, y, y′, . . . , y(n))dx and the corresponding equation (1.4) non-degenerate

if ∂2 f
∂(y(n))2 �= 0. In the sequel we shall always assume that all Lagrangians and the underdetermined ODEs are non-degenerate.

Note that all corresponding rank 2 distributions are of maximal class (see Proposition 4.2 below).
Finally we cite the main result of [13,14] that will be needed in the sequel:

Theorem 1.1. For any (2,n + 3)-distribution, n > 2, of maximal class there exists a canonical frame on a (2n + 5)-dimensional bundle
over M. The group of symmetries of such distribution is at most (2n + 5)-dimensional. Any (2,n + 3)-distribution of maximal class
with (2n + 5)-dimensional group of symmetries is locally equivalent to the distribution, associated with the Lagrangian (y(n)(x))2 .
The algebra of infinitesimal symmetries of this distribution is isomorphic to a semidirect sum of gl(2,R) and (2n + 1)-dimensional
Heisenberg algebra n2n+1 .

1.3. Equivalence of ordinary differential equations

We shall also consider the equivalence problem of scalar ordinary differential equations of the form

y(N+1) = F
(
x, y, y′, . . . , y(N)

)
. (1.5)

Each such equation can be considered as a hypersurface E in the jet space J N+1(R,R). We shall always assume that
our equations are solved with respect to the highest derivative, so that the restriction of the natural projection πN+1,N :
J N+1(R,R) → J N (R,R) to the hypersurface E is a diffeomorphism.

Two such equations E and E ′ are said to be contact equivalent, if there exists a contact transformation Φ : J 1(R,R) →
J 1(R,R) with a prolongation ΦN+1 to J N+1(R,R) such that ΦN+1(E ) = E ′ .

The equivalence problem of ordinary differential equations under contact and point transformations is yet another clas-
sical subject going back to the works of Lie, Tresse, Elie Cartan [6], Chern [7], M. Fels [15] and others. The existence of
the canonical Cartan connection associated with any system of ODEs was proved in [10] based on the Tanaka theory of
geometric structures on filtered manifolds [24,28,29].

Explicit formulas for the so-called fundamental contact invariants of a single ODE of arbitrary order were computed by
B. Doubrov [11]. In particular, a part of these invariants comes from the linearization of the given ODE. In fact, they coincide
with classical Wilczynski invariants of linear differential equations formally applied to the linearization of a non-linear ODE.
See [12] for more details.

In this paper we are mainly interested in a special class of ordinary differential equations, consisting of equation which
are contact equivalent to Euler–Lagrange equations of variational problems. Such equations are usually called variational
(with multiplier) and have been studied in many papers [3,15,19].

From the general result of Anderson and Thompson [3, Theorem 2.6] it is known that a scalar ordinary differential
equation of order 2n is variational, if and only if there exists a closed 2-form:

ω =
n−1∑
i=0

2n−i−1∑
j=i+1

Ai, jθi ∧ θ j, (1.6)

where An−1,n �= 0 and θi = dyi − yi+1 dx are contact forms on the jet space J 2n(R,R) restricted to the equation E = {y2n =
F (x, y0, . . . , y2n−1)}.
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1.4. Equivalence of curves in projective spaces

Surprisingly, the central role in all three equivalence problems is played by the geometry of self-dual curves in the
projective space of odd dimension up to projective transformations.

Let γ ⊂ P N be an arbitrary curve in the projective space. We shall always assume that γ is strongly regular, i.e. its flag
of osculating spaces does not have any singularities. In particular, γ itself does not lie in any proper linear subspace of the
projective space. We shall not assume any distinguished parameter on γ , though there is always a distinguished family of
so-called projective parameters on γ .

Let t be an arbitrary parameter on γ and let e0(t) be such a curve in R
N+1 that γ (t) = Re0(t). Define ei(t) = e(i)

0 (t).
Then i-th osculating space γ (i)(t) of the curve γ at a point γ (t) is defined as:

γ (i)(t) = 〈
e0(t), . . . , ei(t)

〉
, i = 0, . . . , N. (1.7)

It is easy to see that it does not depend on the choice of the parameter t and the curve e0(t). The (N − 1)-st osculating
spaces γ (N−1) define the curve in the dual projective space P N,∗ , which is called a dual curve and is denoted by γ ∗ . We
shall call a curve γ self-dual, if there exists a projective mapping P N → P N,∗ that maps γ to γ ∗ so that any point x ∈ γ is
mapped to the point in P N,∗ annihilating the (N − 1)-st osculating space γ (N−1) to γ at x. We summarize the properties of
self-dual curves in the following proposition. For the proofs we refer to the classical book of Wilczynski [30]:

Proposition 1.1.

(1) If the mapping P N → P N,∗ sending γ to γ ∗ exists, then it is unique, up to a constant nonzero factor. It defines, a unique, up to
a constant nonzero factor, non-degenerate bilinear form β on the vector space R

N+1 . Moreover, this form is necessarily skew-
symmetric if N is odd and symmetric, if N is even.

(2) In case of odd N the curve γ is self-dual if and only if there exists a non-degenerate skew-symmetric (i.e. symplectic) form on
R

N+1 such that all osculating spaces γ (N+1)/2(t) are Lagrangian with respect to this form.

The invariants of projective curves (up to projective transformations) were also described by Wilczynski [30]. The algebra
of all invariants admits a basis of so-called fundamental invariants W3, . . . , W N+1 of order 3, . . . , N + 1 respectively. They
can be constructed as follows. As above, let e0(t) be a curve in R

N+1 such that γ = Re0(t). If the curve γ is strongly
regular, then the vectors ei(t) = e(i)

0 (t), i = 0, . . . , N , form a so-called moving frame along γ . Then the next derivative

e′
N(t) = e(N+1)

0 (t) can be uniquely expressed as a linear combination of vectors in this frame. In other words, we have a
well-defined linear homogeneous differential equation on e0(t):

e(N+1)
0 = pN(t)e(N)

0 + · · · + p0(t)e0. (1.8)

Since e0(t) is defined up to a scale, we can always fix this scaling factor by the condition pN (t) = 0. It is easy to see that this
defines e0(t) uniquely up to a contact nonzero scale. Next, by reparametrizing the curve et(0), i.e., by changing t to t̄ = λ(t)
we can also achieve pN (t) = pN−1(t) = 0. This fixes a parameter t up to projective reparametrizations t̄ = (at + b)/(ct + d).
Wilczynski proves that taking linear combinations of the derivatives of the remaining coefficients pi(t), i = 0, . . . , N − 2, we
can form (N − 2) (relative) invariants of the curve γ under the group of projective transformations:

Wk =
k−2∑
j=1

(−1) j+1 (2k − j − 1)!(N − k + j)!
(k − j)!( j − 1)! p( j−1)

N−k+ j, k = 3, . . . , N + 1.

Following Wilczynski, we shall say that an invariant W i has order i, i = 3, . . . , N + 1. Wilczynski proves that any other
projective invariant of γ can be expressed as a function of invariants W i and their derivatives. He also shows that in case
of odd N the curve γ is self-dual if and only if all invariants of odd order vanish identically. Note also that all Wilczynski
invariants of a curve γ ⊂ P N vanish if and only if γ is a rational normal curve, i.e. it can be represented as t → [1 : t : . . . : tN ]
in some homogeneous coordinates of P N .

Self-dual curves γ in odd-dimensional projective spaces appear naturally in the above equivalence problems via the
linearization procedure (see Section 4 for more detail). The linearization of ODE along a solution assigns a curve in projective
space to the solution via identification of linear equations with curves in projective space. If the ODE is variational, then
the corresponding curves in projective space are self-dual. In the case of rank 2 distributions it is not immediately clear
what is the analog of solutions and what is the linearization procedure. This becomes clear if one considers distributions as
the constraints for a variational problem and use the Pontryagin Maximum Principle: the analogs of solutions of ODE’s are
so-called abnormal extremals of the distribution and the linearization of the flow of abnormal extremal leads to the notion
of Jacobi curves introduced in [13,14,34], which essentially are (or generated by) self-dual curves in a projective space. In
particular, the invariants of these curves define the invariants of the original equivalence problems. For example, as shown
in [35], the fundamental invariant W4 of self-dual curves in RP

3 can be identified with the so-called fundamental tensor of
rank 2 vector distributions in 5-dimensional spaces discovered by E. Cartan [5].
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2. Variational problems and rank 2 vector distributions

The aim of this section is to establish the correspondence between variational problems of order n � 3 and special rank 2
vector distributions associated with the underdetermined ordinary differential equations (1.4) of order n.

Lemma 2.1. Let D be the rank 2 distribution associated with to the non-degenerate underdetermined z′ = f (x, y, y′, . . . , y(n)) of
order n � 3. Then the space of all infinitesimal symmetries of D lying in D3 is one-dimensional (over R) and is generated by the vector
field Z = ∂

∂z .

Proof. Let us show that sym(D) ∩ D3 is one-dimensional (over R) and is generated by the vector field ∂
∂z . Indeed, it is easy

to check that the space D3 is generated by the vector fields:

X1 = ∂

∂x
+ y1

∂

∂ y0
+ · · · + yn

∂

∂ yn−1
+ f

∂

∂z
,

X2 = ∂

∂ yn
, X3 = ∂

∂ yn−1
, X4 = ∂

∂ yn−2
, X5 = ∂

∂z
.

Let Y = ∑5
i=1 ai Xi be an arbitrary vector field lying in D3. Then we have

[X1, Y ] =
[

X1,

5∑
i=2

ai Xi

]
mod D

= (
X1(a3) − a2

) ∂

∂ yn−1
+ (

X1(a4) − a3
) ∂

∂ yn−2
− a4

∂

∂ yn−3
+ X1(a5)

∂

∂z
mod D.

Thus, the condition Y ∈ sym(D) implies that a2 = a3 = a4 = 0 and X1(a5) = 0. Further, we have

[X2, Y ] = X2(a5)
∂

∂z
− a1

∂

∂ yn−2
mod D.

Again, the condition Y ∈ sym(D) implies that a1 = 0 and X2(a5) = 0. In particular, we see that the function a5 is a first
integral of the distribution D . But since D is completely non-holonomic, a5 should be a constant. This completes the proof
of the lemma. �
Corollary 2.1. Let z′ = f i(x, y, y′, . . . , y(n)), i = 1,2, be two non-degenerate underdetermined differential equations of order n � 3,
and let Di , i = 1,2, be the corresponding rank 2 vector distributions on R

n+3 . Suppose that distributions D1 and D2 are locally
equivalent. Then the equivalence mapping φ maps vector field ∂

∂z to c ∂
∂z for some constant c ∈ R

∗ .

Let us identify the space R
n+3 with the direct product of Jn(R,R) with the coordinates (x, y0, . . . , yn) and R with the

coordinate z and consider any equivalence mapping φ as a mapping from Jn(R,R) × R to itself. Then Lemma 2.1 implies
that any such mapping φ has the form

φ : Jn(R,R) × R → Jn(R,R) × R, (p, z) → (
ψ(p),αz + μ(p)

)
, (2.1)

where ψ : Jn(R,R) → Jn(R,R), α ∈ R
∗ and μ is a smooth function on Jn(R,R).

Lemma 2.2. Mapping ψ is a contact transformation and the function μ does not depend on yn, i.e., it is a pull-back of the function on
Jn−1(R,R).

Proof. Since ∂
∂z is a symmetry of both distributions D1 and D2, we can consider the direct images of these distributions

with respect to the natural projection Jn(R,R) × R → Jn(R,R). It is easy to see that in both cases these images coincide
with the contact distribution on Jn(R,R). This proves that ψ is a contact transformation.

The second statement of the lemma on the function μ follows immediately from the fact that both D1 and D2 contain
the vector field ∂

∂ yn
. �

Note that Lemma 2.2 can be considered as a particular case of [2], where symmetries of more general classes of under-
determined ODEs are treated.

Theorem 2.1. Suppose that n � 3. Two vector distributions D1 and D2 associated with non-degenerate Lagrangians Li =
f i(x, y, y′, . . . , y(n))dx, i = 1,2, for n � 3 are equivalent if and only if the Lagrangians L1 and L2 are equivalent.
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Proof. It is easy to see that the transformations (2.1) with mappings ψ and μ satisfying Lemma 2.2 induce the same
equivalence relation on distributions D1 and D2 as the equivalence relation on Lagrangians L1 and L2 given by Eq. (1.1). �

As a direct consequence of Theorems 1.1 and 2.1 we get:

Theorem 2.2. The dimension of the group of variational symmetries of a non-degenerate Lagrangian of order n � 3 does not exceed
2n + 5. Any non-degenerate Lagrangian with (2n + 5)-dimensional group of variational symmetries is equivalent to the Lagrangian
(y(n))2 . The algebra of infinitesimal symmetries of the latter Lagrangian is isomorphic to a semidirect sum of gl(2,R) and (2n + 1)-
dimensional Heisenberg algebra n2n+1 .

From the proof of Lemma 2.2 it follows that rank 2 distribution associated with some non-degenerate Lagrangian
f (x, y, y′, . . . , y(n))dx can be described in the following coordinate free way:

Proposition 2.1. A rank 2 distribution D is associated with a non-degenerate Lagrangian f (x, y, . . . , y(n))dx in a neighborhood of a
generic point if and only if

(1) dim D3 = 5;
(2) There exists an infinitesimal symmetry X of D lying in D3 such that the factorization by the foliation of integral curves of X sends

D to the Goursat distribution on the quotient manifold.

3. Two points of view on extremals of variational problems

In this section we introduce abnormal extremals of rank 2 distributions and show how the flow of abnormal extremals
of a distribution associated with a Lagrangian L = f (x, y, y′, . . . , y(n))dx can be related to the flow of extremals of the
corresponding variational problems. Speaking informally, this relation is the relation between the Hamiltonian and the
Lagrangian approach to variational problems and it is given by a kind of Legendre transform. The material of this section is
pretty standard but, as we shall see in the next sections, it is very useful for the equivalence problem for Lagrangians and
to our knowledge it was never used before in this kind of problems.

3.1. Hamiltonian form of Euler–Lagrange equation

Recall that extremals of the Lagrangian L are critical points of the corresponding functional L = ∫
f (x, y, y′, . . . , y(n))dx.

That is they are solutions of the Euler–Lagrange equation

f y0 − d

dx
( f y1) + · · · + (−1)n dn

dxn
( f yn) = 0. (3.1)

If one takes a little bit more general point of view (that is standard in the Optimal Control Theory), then the extremals
can be also described using the notion of the end-point mappings associated with the corresponding control system (1.2).
Fix a point q0 ∈ Jn(R,R)× R and a time T > 0. The endpoint map Fq0,T is the map from the space L∞[0, T ] to Jn(R,R)× R

sending a control function u(t) to the point of the corresponding admissible trajectory of the system (1.2) at time T .
Then y(t) is an extremal of the Lagrangian L if and only if the corresponding control ū(t) = y(n+1)(t) is a critical point of the
endpoint map Fq0,T for some T > 0 (and therefore for any T > 0 as long the corresponding trajectory is defined on [0, T ]),
where q0 = (0, y(0), . . . , yn(0), z0) and z0 is an arbitrary constant. Take the admissible trajectory q(t) of (1.2) corresponding
to the control ū(t) and starting at q0. Then this trajectory can be lifted to the cotangent bundle T ∗( Jn(R,R) × R) by
choosing for any t ∈ [0, T ] an appropriately normalized covectors p(t) ∈ T ∗

q(t)( Jn(R,R) × R) that annihilates the image of
the differential dFq0,t(ū(·)) of the endpoint map Fq0,t at ū(·). This lifting constitutes one of the main fundamental ideas
behind the Pontryagin Maximum Principle in Optimal Control [1,27]. As a matter of fact, the curve (p(t),q(t)) is an abnormal
extremal of the affine control system (1.2) and also of the distribution associated with the Lagrangian L. This establish in
essence the relation between extremals of the Lagrangian and the abnormal extremals of the corresponding distributions.

More precisely, the coordinates q = (x, y0, . . . , yn, z) in Jn(R,R) × R induce the coordinate system

(p,q) = (λ, ξ0, . . . , ξn, ν; x, y0, . . . , yn, z) (3.2)

in T ∗( Jn(R,R) × R) such that the covector p ∈ T ∗
q ( Jn(R,R) × R) has the form p = λdx + ∑n

i=0 ξi dyi + ν dz. Define the
following families of scalar functions (Hamiltonians) Hu on T ∗( Jn(R,R) × R):

Hu(p,q) = λ +
n−1∑
i=0

ξi yi+1 + ξnu + ν f (x, y0, y1, . . . , yn). (3.3)

According to the weak form of the Pontryagin Maximum Principle (where the maximality condition is replaced by the
stationarity condition) on has the following
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Proposition 3.1. A function y(t) is an extremal of the Lagrangian L if and only if for the admissible trajectory q(t) of (1.2) corresponding
to the control ū(t) = y(n+1)(t) and starting at the point q0 = (0, y(0), . . . , y(n)(0), z0), where z0 is an arbitrary constant, there exists
a curve of nonzero covectors p(t) ∈ T ∗

q(t)( Jn(R,R) × R) such that

∂

∂u
Hu

(
p(t),q(t)

)∣∣
u=ū(t) = 0 a.e. ⇔ ξn(t) ≡ 0 (the stationarity condition), (3.4)

Hū(t)
(

p(t),q(t)
) ≡ 0 (the transversality condition), (3.5)

ṗ(t) = − ∂

∂q
Hū(t)

(
p(t),q

)∣∣
q=q(t) (the adjoint equation). (3.6)

Note that another part of the Hamiltonian system

q̇(t) = ∂

∂ p
Hū(t)

(
p,q(t)

)∣∣
p=p(t) (3.7)

is exactly the system (1.2) with u(t) = ū(t) i.e. it holds automatically. So Eqs. (3.4)–(3.7) can be considered as the Hamiltonian
form of the Euler Lagrange equation. The curve (p(t),q(t)) ⊂ T ∗( Jn(R,R) × R) satisfying Proposition 3.1 is called an abnormal
extremal of affine control system (1.2). The term “abnormal” comes again from the Pontryagin Maximum Principle applied to
a functional defined on the set of admissible trajectories of system (1.2): abnormal extremals are exactly the Pontryagin
extremals of this problem with vanishing Lagrange multiplier near the functional [1,27]. Roughly speaking, the extremals
of our original variational problem given by the Lagrangian L become abnormal extremals of the system (1.2), because we
include the Lagrangian L into this system so that it appears as a part of the constraints.

Let us analyze Eq. (3.6) in coordinates (3.2). First of all, since the Hamiltonians (3.3) do not depend on z we have ν̇ = 0,
i.e. ν is constant along an abnormal extremal. If ν ≡ 0, then from other equations of (3.6) and Eq. (3.5) it follows that
p(t) ≡ 0 but p(t) cannot vanish by Proposition 3.1. So the case ν ≡ 0 is impossible. Now assume that ν �= 0. From the
homogeneity of Eq. (3.6) with respect to p it follows that it is enough to consider the case when ν ≡ −1. Then, combining
the stationarity condition (3.4) with the equation from (3.6) regarding ξ̇n we will get that

ξn−1 = f yn . (3.8)

Writing equations for others ξ j from (3.6) we get

ξ̇0 = f y0;
ξ̇ j = f y j − ξ j−1, j = 1, . . . ,n − 1. (3.9)

Combining (3.8) and the equation in (3.9) corresponding j = n − 1 we get ξn−2 = fn−1 − d
dx ( fn). Then using the second line

of (3.9) by induction with respect to j in the decreasing order, we get

ξ j−1 =
n∑

k= j

(−1)k− j dk− j

dxk− j
( f yk ), 1 � j � n − 1. (3.10)

Finally substituting (3.10) with j = 1 into the first line of (3.9) we get the Euler–Lagrange equation (3.1), as expected.
If X is a vector field without stationary points or a line distribution, denote by Fol(X) the one-dimensional foliation

of integral curves of X . Consider a codimension 4 submanifold H of T ∗( Jn(R,R) × R) given by Eqs. (3.4), (3.5), (3.8),
and ν = −1. It is foliated by abnormal extremals of system (1.2) with ν = −1. Besides by constructions the group of
translations along z-axis, z → z + c, preserves this foliation. Therefore this foliation induces the one-dimensional foliation
on the quotient manifold H/ Fol( ∂

∂z ) by the foliation Fol( ∂
∂z ) or, equivalently, on the manifold of the orbits of the group of

these translations. The tuple (x, y0, . . . , yn, ξ0, . . . , ξn−2) constitute a coordinate system on the manifold H/ Fol( ∂
∂z ). On the

other hand, the Euler–Lagrange equation (3.1) defines a codimension one submanifold E (L) of J 2n(R,R) foliated by a one-
dimensional foliation of prolongations of its solutions to J 2n(R,R), and the tuple (x, y0, . . . , y2n−1) constitute a coordinate
system on E (L). This foliation is called the foliation of solutions of the Euler–Lagrange equation.

By above, the map L : E (L) → H/ Fol( ∂
∂z ), defined by

(x, y0, . . . , y2n−1) → (x, y0, . . . , yn, ξ0, . . . , ξn−2), (3.11)

with ξ j satisfying (3.10), sends the one-dimensional foliation on E (L) to the one-dimensional foliation on H/ Fol( ∂
∂z ). In

other words, this map transforms the extremals of our variational problem obtained in the Lagrangian form to the extremal
obtained in the Hamiltonian form. Therefore we call it the (generalized) Legendre transform. Note that the Legendre transform
depend on the choice of coordinates on J 0(R,R) = R

2, which induces the coordinates on J 2n(R,R). Once we use the
Legendre transform in the sequel it will mean that such choice is already done.
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3.2. Abnormal extremals of rank 2 distributions

Now we are going to describe abnormal extremals for a distribution D on a manifold M . We shall use more geometric
language. Let π̃ : T ∗M → M be the canonical projection. For any λ ∈ T ∗M , λ = (p,q), q ∈ M , p ∈ T ∗

q M , let s(λ)(·) = p(π̃∗·)
be the tautological Liouville 1-form and σ = ds be the standard symplectic structure on T ∗M . Denote by (Dl)⊥ ⊂ T ∗M the
annihilator of the lth power Dl , namely(

Dl)⊥ = {
(q, p) ∈ T ∗M: p · v = 0, ∀v ∈ Dl(q)

}
. (3.12)

Finally let S0 be the zero section of T ∗M . With this notation the Pontryagin Maximum Principle in the coordinate-free form
[1] implies immediately the following description of abnormal extremals of the distribution D:

Definition 3.1. An absolutely continuous curve γ ⊂ T ∗M is an abnormal extremal of a distribution D if the following two
conditions hold:

1. γ ⊂ D⊥\S0,
2. γ̇ (t) belongs to Ker(σ |D⊥ ) a.e., i.e., to the kernel of the restriction of the canonical symplectic form σ to the annihilator

D⊥ of D .

From now on we will consider only rank 2 distributions. From direct computations [32, Proposition 2.2] it follows that
Ker(σ (λ)|D⊥ ) �= 0 if and only if λ ∈ (D2)⊥ . This implies the following characterization of abnormal extremals of rank 2
distribution.

Proposition 3.2. An absolutely continuous curve γ ⊂ T ∗M is abnormal extremal of a rank 2 distribution D with dim D2 = 3 if and
only if the following two conditions hold:

1. γ ⊂ (D2)⊥\S0 ,
2. γ̇ (t) belongs to Ker(σ |(D2)⊥ ) a.e., i.e., to the kernel of the restriction of the canonical symplectic form σ to the annihilator (D2)⊥

of D2 .

Further, if λ ∈ (D2)⊥\(D3)⊥ then Ker(σ |(D2)⊥ ) is one-dimensional. These kernels form a special line distribution on

λ ∈ (D2)⊥\(D3)⊥ , called the characteristic distribution. It will be denoted by C̃ . The abnormal extremals of D , lying in λ ∈
(D2)⊥\(D3)⊥ , are smooth and they are exactly the integral curves of the line distribution C (in some literature these
abnormal extremals are called regular).

Remark 3.1. For any λ ∈ (D2)⊥\(D3)⊥ let

J̃ (λ) = {
v ∈ Tλ

(
D2)⊥

: π̃∗v ∈ D
(
π̃ (λ)

)}
. (3.13)

A simple count shows that dim J̃ (λ) = n + 2. Then from constructions it follows immediately that the restriction of the
form σ(λ) to J (λ) is identically equal to zero.

Now consider the distribution D on M = Jn(R,R) × R associated with the Lagrangian L = f (x, y, y′, . . . , y(n))dx with
∂2 f
∂ y2

n
�= 0. We would like to rewrite the constructions of the end of the previous subsection in more geometric form. First of

all in the considered case D⊥ is a codimension 2 submanifold of T ∗M given by Eqs. (3.4) and (3.5), (D2)⊥ is a codimension 1
submanifold of D⊥ satisfying in additional equation (3.8), and (D3)⊥ is a codimension 2 submanifold of (D2)⊥ satisfying to
additional equations ν = 0 and ξn−2 = 0.

Further, given a vector field X on M denote by H X : T ∗M → R the corresponding quasi-impulse

H X (p,q) = p
(

X(q)
)
, q ∈ M, p ∈ T ∗

q M, (3.14)

and by �H X the corresponding Hamiltonian vector field on T ∗M , i.e. the vector field satisfying i �H X
σ = −dH X . It is clear that

if X is an infinitesimal symmetry of the distribution D , then the flow et �H X , generated by �H X , sends an abnormal extremal
of D to an abnormal extremal of D . Moreover, any abnormal extremal lies on a level set of the function H X .

In particular, let as in Lemma 2.1 Z be the infinitesimal symmetry of D lying in D3. The submanifold H introduced
in the previous subsection is equal to {H Z = −1} ∩ (D2)⊥ and the abnormal extremals of the distribution D lying on H
coincide (as unparametrized curves) with the abnormal extremals of system (1.2) having ν = −1. The distribution C̃ induces
a rank 1 distribution C̄ on the quotient manifold H/ Fol( �H Z ), where as before Fol(H Z ) is the foliation of integral curves of
the field �H Z . A Legendre transform L : E (L) → H/ Fol( �H Z ), defined in the previous subsection, sends the one-dimensional
foliation of solutions of Euler–Lagrange equations to the one-dimensional foliation of the integral curves of distribution C̄ .
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Remark 3.2. The Legendre transform L satisfies another important property. To describe it in geometric terms let πi, j :
J i(R,R) → J j(R,R), where i > j, and

π̄ : T ∗( Jn(R,R) × R
) → Jn(R,R) × R

denote the canonical projections. The mapping π̄ induces the mapping

πZ : T ∗( Jn(R,R) × R
)
/ Fol( �H Z ) → (

Jn(R,R) × R
)
/ Fol(Z) ∼ Jn(R,R)

in the obvious way. If the submanifolds E (L) and H/ Fol( �H Z ) are considered as fiber bundles over Jn(R,R) with the
projections π2n,n|E (L) and πZ |H/et �H Z

, respectively, then from (3.11) it follows immediately that the Legendre transform L is

fiberwise mapping over the identity on the base manifold Jn(R,R).

Remark 3.3. The tautological Liouville 1-form s and the standard symplectic structure σ on T ∗( Jn(R,R) × R) induce the
1-form s̄ and the closed 2-form σ̄ = ds̄, respectively, on H/ Fol( �H Z ). By constructions, the rank 1 distribution C̄ satisfies
C̄ = Ker σ̄ . Besides, using condition (3.5) it is easy to show that

s̄ = L +
n−2∑
i=1

ξiθi + f ynθn−1 (3.15)

in the coordinates (x, y0, . . . , yn, ξ0, . . . , ξn−2) on H/ Fol( �H Z ), where, as before, θi = dyi − yi+1 dx. Finally, for any λ ∈
H/ Fol( �H Z ) we denote

J̄ (λ) = {
v ∈ TλH/ Fol( �H Z ): (πZ )∗v ∈ D

(
π̃ (λ)

)}
. (3.16)

Then from the last sentence of Remark 3.1 the restriction of the form σ̄ (λ) to the subspace J̄ (λ) is identically equal to zero.

4. Linearization of variational ODEs and Jacobi curves of rank 2 distribution

Let us outline the content of this section. As was mentioned before both in the equivalence problem for variational
ODEs and in the equivalence problem for rank 2 distributions self-dual curves in a projective space play a crucial role. They
appear via the linearization along the “flow” of solutions in the first case and along the “flow” of abnormal extremals in the
second case. Using the Legendre transform introduced in Section 3.1 we show that the self-dual curves in a projective space
obtained by the linearization along a solution of the Euler–Lagrange equations of a Lagrangian and by the linearization along
the corresponding abnormal extremal of the associated rank 2 distribution are actually isomorphic. This observation leads
to the description of the fundamental system of invariants for rank 2 distributions associated with Lagrangians given in the
next section.

4.1. General linearization procedure

Let us first clarify what do we mean by the linearization procedure in a general geometric setting. Let M be an arbitrary
smooth manifold, let G and V be a pair of vector distributions on M of rank l and k, respectively, where one of them, say
G , is integrable and V ∩ G is a distribution of rank r.

Similarly to above, let Fol(G) be a foliation of M by maximal integral submanifolds of G . Then we can define the
linearization of the distribution V along the foliation Fol(G) in the following way. Locally we can assume that there exists
a quotient manifold M/ Fol(G), whose points are leaves of Fol(G). Let Γ by any such leaf. Then we define the map φ

of Γ into the Grassmannian Grk−r(TΓ (M/ Fol(G))) of (k − r)-dimensional subspaces of (M/ Fol(G)) or, under additional
regularity assumptions, an l-dimensional submanifold of Grk−r(TΓ (M/ Fol(G))) as follows: φ(x) = pr∗(Vx), x ∈ Γ , where
pr : M → M/ Fol(G) is a natural projection. The map φ or its image in Grk−r(TΓ (M/ Fol(G))) is called the linearization of
the distribution V along the foliation Fol(G) at the leaf Γ or the linearization of the distribution V along the leaf Γ (of Fol(G)). In
the cases under consideration l = 1 so that the linearizations are curves in projective spaces.

The main idea of using the linearization procedure in the equivalence problem for the structures given by the pair of
distribution (V , G) on M with respect to the action of group of diffeomorphisms of M is that it allows to construct the
invariants of such structures from invariants of submanifold in an appropriate Grassmannian with respect to the natural
action of the General Linear Group on this Grassmannian.

4.2. Linearization procedure for ODEs

As in Section 1.3 an ODE of order N + 1, resolved with respect to the highest derivative, is given by a hypersurface
E in the jet space J N+1(R,R) so that the restriction of the natural projection πN+1,N : J N+1(R,R) → J N (R,R) to the
hypersurface E is a diffeomorphism. Further, the Cartan distribution of J N+1(R,R) (i.e. the rank 2 distribution defined by
contact forms θi = dyi − yi+1dx, i = 0, . . . , N , in the standard coordinates (x, y0, . . . , yN+1) in J N+1(R,R)) defines the line
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distribution S on E . This distribution is obtained by the intersection of the Cartan distribution with the tangent space to
E at every point of E . Note that the corresponding foliation Fol(S) is the foliation of solutions of our ODE (more precisely,
the foliation of the prolongations of the solutions to J N (R,R)). If the hypersurface E has the form (1.5) in coordinates
(x, y0, . . . , yN+1) on J N+1(R,R), then in the coordinates (x, y0, . . . , yN) on E :

S =
〈

∂

∂x
+

N−1∑
i=1

yi+1
∂

∂ yi
+ F (x, y0, y1, . . . , yN)

∂

∂ yN

〉
. (4.1)

The distribution S will play the role of the distribution G from the previous subsection.
Further let, as before, πN+1,N−i : J N+1(R,R) → J N−i(R,R) be the canonical projection. For any ε ∈ E we can define the

filtration {V i
ε}N

i=0 of Tε E as follows:

V i
ε = ker dεπN+1,N−i ∩ Tε E . (4.2)

Then V i is a rank i distribution on E . In the coordinates (x, y0, . . . , yN) on E we have

V i =
〈

∂

∂ yN−i+1
, . . . ,

∂

∂ yN

〉
. (4.3)

Let Sol denote the quotient manifold E / Fol(S), i.e. the manifold of solutions of the equation E . Fix a point Γ ∈ Sol.
In other words, Γ is a leaf of Fol(S) or a solution of the equation E . Consider the linearization Lini

Γ of the distribution
V i along Γ . It is a curve in Gri(TΓ Sol). In particular, Lin1

Γ is a curve in the projective space P(TΓ Sol). Moreover, if Γ is
considered as the leaf of Fol(S), then from (4.1) and (4.2) one gets immediately the following

Lemma 4.1. For any ε ∈ Γ the i-dimensional subspace Lini
Γ (ε) of TΓ Sol is exactly the i-th osculating space of the curve Lin1

Γ at ε
(as defined in (1.7)).

The Wilczynski invariants of the linearizations Lin1
Γ taken for every solution Γ define the invariants of the original ODE

E under the group of contact transformations (see [11]). We call these invariants the generalized Wilczynski invariants of E
and denote them also by W i , i = 3, . . . , N + 1.

4.3. The case of variational ODEs

Now assume that E is a variational ODE, E = E (L) for some Lagrangian L. Let σ̄ be the closed 2-form on H/ Fol( �H Z )

introduced in Remark 3.3 and let L : E (L) → H/ Fol( �H Z ) be a Legendre transform. Then we can define the closed 2-form ω
on E (L) as follows:

ω = L∗σ̄ . (4.4)

Note that from relation (4.3) and Remark 3.2 it follows that the distribution J̄ defined by (3.16) satisfies

J̄ = L∗(Vn) ⊕ C̄. (4.5)

From this and Remark 3.3 it follows that the form ω satisfies the following two properties:

(1) Kerω = S , where, as before, S is the rank 1 distribution generating the foliation of solutions of E (L);
(2) The restriction of ω to the distribution V n vanishes.

From property (1) it follows that ω induces the symplectic form ω̄ on the manifolds Sol of solutions of E (L). Moreover
from the property (2) it follows that

(2′) For any Γ ∈ E (L) the linearization Linn
Γ of the distribution V n along G is the curve of Lagrangian subspaces with

respect to the symplectic form ω(Γ ).

From item (2) of Proposition 1.1 we get immediately the following

Corollary 4.1. For a variational ODE the linearizations Lin1
Γ along any solution Γ is a self-dual curve in the corresponding projective

space.

Further, as an immediate consequence of item (1) of Proposition 1.1 and the fact that ω is closed, we get
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Proposition 4.1. For a variational ODE E (L) there exists a unique, up to a constant nonzero factor, closed 2-form ω on E (L) satisfying
conditions (1) and (2) above or, equivalently, a unique, up to a constant nonzero factor, symplectic structure ω̄ on the manifold of
solutions Sol, satisfying condition (2′) above.

Remark 4.1. It is easy to see that this symplectic structure ω̄ from Proposition 4.1 is exactly the 2-form ω given by (1.6)
and prescribed by Theorem 2.6 of [3]. Indeed, the condition dω = 0 implies dHω = 0. In particular, this means that ω
projects to the solution space of the equation E (L). Proposition gives an alternative construction for this 2-form based on
the generalized Legendge transform.

Now we are ready to prove the following theorem (which is also proved in [15, Theorem 5.1] in the case n = 2 and in
[19, Corollary 2.6] for n � 3):

Theorem 4.1. Lagrangians are equivalent if and only if their Euler–Lagrange equations are contact equivalent.

Proof. If Lagrangians L1 and L2 are equivalent then directly from (1.1) it follows that their Euler–Lagrange equations are
contact equivalent.

In the other direction let ψ be the mapping establishing the equivalence of two Euler–Lagrange equations E1 and E2. Let
ω1 and ω2 be the closed 2-forms from Proposition 4.1, corresponding to E1 and E2, respectively. Then by this proposition
there exists a constant α �= 0 such that

ψ∗ω2 = αω1. (4.6)

Now assume that s̄1 and s̄2 are 1-forms from Remark 3.3 corresponding to Lagrangians L1 and L2, respectively. Assume
that Li are the corresponding Legendre transforms and let ρi = (Li)

∗si , i = 1,2. Then by construction ωi = dρi . Hence from
(4.6) there exists a function μ on E1 such that

ψ∗ρ2 = αρ1 + dμ.

Taking into account the coordinate expressions for the forms s̄i given by (3.15), we get immediately that the last relation is
equivalent to (1.1), i.e. the Lagrangians L1 and L2 are equivalent. �
4.4. Linearization procedure for rank 2 distributions: Jacobi curves

The presentation of this subsection is rather closed to our previous works [13,14] but it is considered here in relation
with the linearization procedure of ODE’s from Section 4.2. Let D be an arbitrary rank 2 vector distribution on an (n + 3)-
dimensional manifold M . We shall assume that D is completely non-holonomic and that dim D3 = 5. It is more convenient
to work with the projectivization of PT ∗M rather than with T ∗M . Here PT ∗M is the fiber bundle over M with the fibers
that are the projectivizations of the fibers of T ∗M . The canonical projection Π : T ∗M → PT ∗M sends the characteristic
distribution C̃ on (D2)⊥\(D3)⊥ to the line distribution C on P(D2)⊥\P(D3)⊥ , which will be also called the characteristic dis-
tribution of the latter manifold. The manifold P(D2)⊥\P(D3)⊥ and the distribution C play the role of M and G , respectively,
from the general linearization procedure of Section 4.1.

Further note that the corank 1 distribution on T ∗M\S0 annihilating the tautological Liouville form s on T ∗M induces a
contact distribution on PT ∗M , which in turns induces the even-contact (quasi-contact) distribution � on P(D2)⊥\P(D3)⊥ .
The characteristic line distribution C is exactly the Cauchy characteristic distribution of �, i.e. it is the maximal subdistri-
bution of � such that

[C,�] ⊂ �. (4.7)

Now let J̃ be as in (3.13). Let J (λ) = Π∗J̃ and define a sequence of subspaces J (i)(λ), λ ∈ P(D2)⊥\P(D3)⊥ , by the
following recursive formulas:

J (i)(λ) := J (i−1)(λ) + [
C, J i−1](λ). (4.8)

By [34, Proposition 3.1], we have dim J (1)(λ) − dim J (λ) = 1, which implies easily that

dim J (i)(λ) − dim J (i−1)(λ) � 1, ∀i ∈ N.

Besides, from (4.7) it follows that J (i) ⊂ � for all natural i. Simple counting of dimensions implies that rank � = 2n + 1 so
that dim J (i)(λ) � 2n + 1.

Note that for any λ ∈ P(D2)⊥\P(D3)⊥ the subspace �(λ) is equipped canonically, up to a constant nonzero factor, with
a skew-symmetric form with the kernel equal to C(λ): for this take the restriction to �(λ) of the differential of any 1-form
annihilating �. For a given subspace W of �(λ) denote by W

�
the skew-symmetric complement of W with respect to this

form. Note that by Remark 3.1 (J (0))
� = J (0) . Then set
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J (−i)(λ) = (
J (i)(λ)

) �
for any i > 0. (4.9)

The sequence of subspaces {J (i)(λ)}i∈Z defines the filtration of �(λ).
Further, define the following two integer-valued functions:

ν(λ) = min
{

i ∈ N: J (i+1)(λ) = J (i)(λ)
}
, m(q) = max

{
ν(λ): λ ∈ (

D2)⊥
(q)\(D3)⊥

(q)
}
, q ∈ M.

The number m(q) is called the class of distribution D at the point q. By above, 1 � m(q) � n. It is easy to show that germs of
(2,n + 3)-distributions of the maximal class n are generic (see [34, Proposition 3.4]). The following proposition shows that all
distributions associated with Lagrangians are of maximal class:

Proposition 4.2. A rank 2 distribution associated with the non-degenerate underdetermined differential equation

z′ = f
(
x, y, y′, . . . , y(n)

)
(4.10)

is of maximal class at any point.

Proof. Let X1 and X2 be the basis of our distribution as in (1.3). Define recursively

Xi+1 = [X1, Xi], i = 2, . . . ,n + 1,

Y = [X2, X3]. (4.11)

Then D2 = span{X1, X2, X3}, Di = span{X1, . . . , Xi+1, Y }, i = 1, . . . ,n + 1, and Dn+1 = TM (here M = Jn(R,R) × R). Note

that Y = − ∂2 f
∂ y2

n

∂
∂z . Further, let

ui = H Xi , i = 1, . . . ,n + 1,

v = HY (4.12)

be the corresponding quasi-impulses (see (3.14)). Let π : PT ∗M → M be the canonical projection. First, from direct compu-
tations [34, Proposition 3.1] it follows that

C̃ = R(u4�u2 − v�u1), (4.13)

J (1)(λ) = {
w ∈ Tλ

(
PD2)⊥

: π∗w ∈ D2(π(λ)
)}

. (4.14)

Further, let Π : T ∗M → PT ∗M be the canonical projections. For any λ ∈ P(D2)⊥\P(D3)⊥ take λ̃ ∈ (D2)⊥\(D3)⊥ such that
Π(̃λ) = λ. Then by direct computations one can get from (4.8) and (4.13) that

J (2)(λ) = J (1)(λ) + {
w ∈ Tλ

(
PD2)⊥

: π∗w ∈ R
(
u4(̃λ)Y

(
π(λ)

) − v (̃λ)X4
(
π(λ)

))}
, (4.15)

Note that formulas (4.13)–(4.15) are valid for any rank 2 distributions generated by some vector fields X1 and X2 (with
the notations as in (4.11) and (4.12)) and not only for distributions, generated by (1.3). Finally, using (1.3), for any λ ∈
P(D2)⊥\P(D3)⊥ and λ̃ ∈ (D2)⊥\(D3)⊥ such that Π(̃λ) = λ one gets by straightforward computations that

J (i+1)(λ) = J (i)(λ) + {
w ∈ Tλ

(
PD2)⊥

: π∗w ∈ Rv (̃λ)Xi+3
(
π(λ)

)}
, i = 2, . . . ,n − 1.

Hence if v (̃λ) �= 0 then dim J i+1 − dim J i = 1 for i = 0, . . . ,n − 1 and therefore ν(λ) = n. So, the distribution D is of
maximal class at any point. �
Remark 4.2. The same result with literally the same proof holds for distributions associated with any underdetermined

ordinary differential equation z′ = f (x, y, y′, . . . , y(n), z) with ∂2 f
∂(y(n))2 �= 0.

From now on we assume that D is a (2,n + 3)-distribution of maximal constant class m = n. Let R = {λ ∈
P(D2)⊥\P(D3)⊥: ν(λ) = n}. Then on λ ∈ R the subspaces J (i) form a distribution of rank (i + n + 1) for all integer i
between −n and n (in particular J (n) = �). If we denote by Abn the quotient of manifold P(D2)⊥\P(D3)⊥ by Fol(C) then
the distribution � induces the distribution �̄ on Abn equipped with the canonical, up to a constant nonzero factor, sym-
plectic form. Given any segment Υ of abnormal extremal (a leaf of Fol(C)) consider the linearization J (i)

Υ of the distribution

J (i) along Υ . It is a curve in Grn+i(�̄(Υ )). In particular, J (1−n)
Υ is a curve in the projective space P(�̄(Γ )). The curve J (0)

Υ is
called the Jacobi curve along the abnormal extremal Γ . By Remark 3.1 it is the curve of Lagrangian subspaces of �̄. Further,
it is not hard to see [34] that for any λ ∈ Γ the (n + i)-dimensional subspace J (i)

Υ (λ) of TΥ Abn is exactly the (i + n − 1)-st

osculating space of the curve J (1−n) at λ (as defined in (1.7)). So, by item (2) of Proposition 1.1, the curve J (1−n) is self-dual.
Υ Υ
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Remark 4.3. It can be shown [33] that J (1−n)
Υ is the only curve in P(�̄(Υ )) such that the Jacobi curve at λ ∈ Υ is its

(n − 1)-st osculating space at λ.

The Wilczynski invariants of the linearizations J (1−n)
Υ taken for every abnormal Υ define the invariants of the distri-

bution D . The latter invariants are called the generalized Wilczynski invariants of E . The Jacobi curve along the abnormal
extremal is called flat if the corresponding curve J (1−n)

Υ is a rational normal curve in P(�̄(Υ )) or, equivalently, all Wilczyn-

ski invariants of J (1−n)
Υ vanish identically. For the maximally symmetric (2,n + 3)-distribution of maximal class which is

locally equivalent to the distribution associated with the Lagrangian (y(n))2 dx (Theorem 1.1) all Jacobi curves are flat or,
equivalently, all generalized Wilczynski invariants vanish. The general question is

Question. Is it true that if all generalized Wilczynski invariants of (2,n + 3)-distribution of maximal class vanish or, equiv-
alently, all its Jacobi curves are flat, then the distribution is locally equivalent to the distribution associated with the
Lagrangian (y(n))2 dx?

Since, as was shown in [35], in the case n = 2 the generalized Wilczynski invariant coincides with Cartan’s covariant
binary biquadratic form introduced in [5], then the fact that this form is the fundamental invariant of a (2,5)-distribution
(proved in [5] as well) gives the positive answer to our question in this case. We show in the next section that for n � 3
the answer to this question is positive if we restrict ourselves to distributions associated with Lagrangians (see Theorem 5.1
below). Note that this class of distributions is rather restrictive and the general question for n � 3 remains open.

Assume that the distribution D is associated with some Lagrangian L with ∂2 f
∂ y2

n
�= 0. Then from the proof of Proposi-

tion 4.2 it follows that

R = Π
({̃

λ ∈ (
D2)⊥\(D3)⊥

: v (̃λ) �= 0
})

.

It implies that the manifold H introduced in Section 3 can be identified with R. Let φZ : H Z → H Z / Fol( �H Z ) be the
canonical projection. Then, as was already mentioned in Section 3.2 the characteristic distribution C̃ is reduced to the
line distribution C̄ = (φZ )∗C on H/ Fol( �H Z ). Moreover, the filtration {J (i)}i∈Z on H induces the filtration {J̄ (i)}i∈Z on
H/ Fol( �H Z ). Note that in this notation the distribution J̄ (0) coincides with J̄ defined by (3.16). If Υ1 and Υ2 are two
abnormal extremals on H such that φZ (Υ1) = φZ (Υ2), then the curves J (1−n)

Υ1
and J (1−n)

Υ2
coincide up to a projective trans-

formation. As a matter of fact they coincide, up to a projective transformation, with the linearization of the distribution
J̄ (1−n) along Ῡ = (φZ )∗Υ1 on H/ Fol( �H Z ). From this, Lemma 4.1, Remark 4.3, and (4.5) we have the following

Proposition 4.3. Given a solution Γ of the Euler–Lagrange equation E (L) and the abnormal extremal Υ such that φZ (Υ ) = L(Γ ),
where L is a Legendre transform, the curves Lin1

Γ and J (1−n)
Υ coincide up to a projective transformation.

5. Fundamental invariants for our equivalence problems

Now we are ready to prove the following

Theorem 5.1. For any n � 3 a (2,n + 3)-distribution D associated with a non-degenerate Lagrangian f (x, y, y′, . . . , y(n))dx (or the
Lagrangian L itself ) is locally equivalent to the distribution associated with the Lagrangian (y(n))2 dx if and only if any of the following
two equivalent conditions are satisfied:

(1) all Jacobi curves of the distribution D are flat;
(2) all generalized Wilczynski invariants of D vanish identically.

The proof of the theorem immediately follows from Theorem 4.1 and the following

Theorem 5.2. Let y(2n) = F (x, y, y′, . . . , y(2n−1)) be the Euler–Lagrange equation of the non-degenerate Lagrangian L = f (x, y, y′,
. . . , y(n))dx. This equation is contact equivalent to the trivial equation y(2n) = 0 if and only if all its generalized Wilczynski invariants
W4, W6, . . . , W2n vanish identically.

Proof. In the sequel we will denote by Fi the partial derivative F yi . The higher order derivatives of F will be denoted in
a similar way. According to [11], any ordinary differential equation of order 2n, n � 3, is trivializable if and only if all its
generalized Wilczynski invariants vanish identically and, in addition, the following conditions hold:

F55 = F45 = 0, for n = 3; (5.1)

F2n−1,2n−1 = F2n−1,2n−2 = F2n−2,2n−2 = 0, for n � 4. (5.2)
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Since our equation is variational, its generalized Wilczynski invariants of odd degree vanish automatically. The generalized
Wilczynski invariants of even degree vanish by assumption of the lemma. So, we need to prove that the above conditions
also hold.

Since the equation y(2n) = F (x, y, y′, . . . , y(2n−1)) is variational, then according to [3] F is a polynomial in y(n+1), . . . ,

y(2n−1) of weighted degree � n, where these derivatives have weights 1, . . . ,n − 1 respectively. In particular, we see that
the polynomials (y(2n−1))2, y(2n−1) y(2n−2) , (y(2n−2))2 have weighted degree 2n − 2, 2n − 3 and 2n − 4 respectively. Assume
that n � 5. Then 2n − 4 > n, and these terms cannot appear in F . Thus, the condition (5.2) holds automatically for n � 5. So,
it remains to consider only the cases n = 3,4.

Let n = 3. Then the term y(5) has weighted degree 2, while the function F is of weighted degree � 3. So, we see that
F55 = 0. Let us prove that the condition W4 = 0 implies also that F45 = 0. The direct computation shows that I = F45 =
−3 f333/ f33. Let us denote W4 simply by W . From [11] we have:

W = − 5

36
F5xxx + 2

21
F4 F55 − 5

12
F3x + 1

3
F4xx + 5

18
F5 F5xx + 5

36
F3 F5 − 5

21
F 2

5 F5x − 37

126
F4 F5x

+ 5

252
F 4

5 + 37

630
F 2

4 + 25

84
F 2

5x + 5

18
F2 − 5

18
F5 F4x,

where Fi denotes the partial derivative by y(i) and Fx denotes the total derivative. Then the direct computation shows that:

W55 = 1

35

57 f 2
333 − 35 f33 f3333

f 2
33

;

W355 = − 1

35

35 f33 f33333 − 149 f33 f333 f3333 + 144 f 2
333

f 3
33

;

W445 = − 2

35

35 f33 f33333 − 162 f33 f333 f3333 + 135 f 2
333

f 3
33

,

and we have the following syzygy:

210W355 − 105W445 + 26I W55 − 4

105
I3 = 0.

In particular, if W = 0 we get I3 = 0 and hence I = 0. In particular, the function f is actually quadratic in the highest
derivative. This proves the case n = 3.

For n = 4, we see that F77 = F76 = 0 due to the weighted degree argument. So, it remains to prove that I = F66 =
−6 f444/ f44 vanishes if all generalized Wilczynski invariants vanish identically. Again, denote by W = W4 the first non-
trivial Wilczynski invariant for Euler–Lagrange equation. Then we have:

W = 35

528
F5 F7 + 49

176
F7 F7xx + 7

22
F6xx − 35

176
F7 F6x − 1127

6336
F 2

7 F7x + 161

3168
F6 F 2

7 + 931

3168
F 2

7x + 7

66
F4

+ 47

1584
F 2

6 + 1127

101376
F 4

7 − 329

1584
F6 F7x − 49

264
F7xxx.

Again, direct computation shows that:

W75 = − 7

66

8 f44 f4444 − 13 f 2
444

f 2
44

;

W66 = − 1

198

252 f44 f4444 − 437 f 2
444

f 2
44

,

and we have the following syzygy:

3W75 − 2W66 + 5

648
I2 = 0.

Hence, the equality W = 0 implies also that I = 0. Again, we see that vanishing of the first non-trivial generalized Wilczynski
invariant implies that the function f is actually quadratic in the highest derivative. This completes the case n = 4 and the
proof of the lemma. �
Remark 5.1. Note that for n = 2 Theorem 5.2 does not hold. In particular, the Lagrangian L = (y′′)1/3 dx has trivial Wilczynski
invariants, but the associated Euler–Lagrange equation 3y′′ y(4) − 5(y′′′)2 = 0 is not trivializable and has only 6-dimensional
contact symmetry group consisting of all affine transformations on the plane (see [26, Chapter 6]). On the other hand,
Theorem 5.1 is valid for n = 2 and not only for distributions associated with second order Lagrangians but for any rank 2
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distribution in R
5 with the small growth vector (2,3,5). The rank 2 distributions D corresponding to the equations z′ =

(y′′)1/3 and z′ = (y′′)2 are equivalent and have the 14-dimensional symmetry algebra, which is the maximal possible algebra
for distributions under the consideration.

Remark 5.2. Direct analysis of the symmetry classification of all ordinary differential equations (see [26]) shows that all
Euler–Lagrange equations of order 2n with the symmetry algebra of dimension at least 2n + 1 are exhausted (modulo
contact transformations) by the following ones:

Equation E Lagrangian L dim sym(E )

y2n = 0 y2
n dx 2n + 4

y2
n + ∑n−1

i=0 ci y2i = 0 (y2
n + ∑n−1

i=0 ci y2
i )dx 2n + 2

9y2
3 y6 − 45y3 y4 y5 + 40y3

4 = 0 y1/3
3 dx 7

Note also that we always have dim sym(L) = dim sym(E ) + 1.

Acknowledgements

We would like to thank Andrei Agrachev, Ian Anderson, Mark Fels, Eugene Ferapontov for valuable discussions on the
subject of this paper.

References

[1] A. Agrachev, Yu. Sachkov, Control Theory from the Geometric Viewpoint. Control Theory and Optimization, II, Encyclopaedia of Mathematical Sciences,
vol. 87, Springer-Verlag, Berlin, 2004, xiv+412 pp.

[2] I. Anderson, B. Kruglikov, Rank 2 distributions of Monge equations: symmetries, equivalences, extensions, arXiv:0910.5946v1.
[3] I. Anderson, G. Tompson, The inverse problem of the calculus of variations for ordinary differential equations, Mem. Amer. Math. Soc. 98 (1992).
[4] R. Bryant, On notions of equivalence of variational problems with one independent variable, in: Differential Geometry: The Interface Between Pure and

Applied Mathematics, San Antonio, Tex., 1986, in: Contemp. Math., vol. 68, Amer. Math. Soc., Providence, RI, 1987, pp. 65–76.
[5] E. Cartan, Les systemes de Pfaff a cinque variables et les equations aux derivees partielles du second ordre, Ann. Sci. Ec. Norm. 27 (1910) 109–192;

See also E. Cartan, Oeuvres Completes, Partie II, vol. 2, Gautier–Villars, Paris, 1953, pp. 927–1010.
[6] E. Cartan, Sur les variétés à connexion projective, Bull. Soc. Math. France 52 (1924) 205–241.
[7] S.-S. Chern, The geometry of the differential equation y′′′ = F (x, y, y′, y′′), Sci. Rep. Nat. Tsing Hua Univ. 4 (1950) 97–111.
[8] J. Chrastina, On the equivalence of variational problems. I, J. Differential Equations 98 (1992) 76–90.
[9] J. Chrastina, The Formal Theory of Differential Equations, Masaryk University, Brno, 1998.

[10] B. Doubrov, B. Komrakov, T. Morimoto, Equivalence of holonomic differential equations, Lobachevskij J. Math. 3 (1999) 39–71.
[11] B. Doubrov, Contact trivialization of ordinary differential equations, in: Differential Geometry and Its Applications, Proc. Conf., Opava (Czech Republic),

Silestian University, Opava, 2001, pp. 73–84.
[12] B. Doubrov, Generalized Wilczynski invariants for non-linear ordinary differential equations, in: Symmetries and Overdetermined Systems of Partial

Differential Equations, in: IMA, vol. 144, Springer, New York, 2008, pp. 25–40.
[13] B. Doubrov, I. Zelenko, A canonical coframe of non-holonomic rank two distributions of maximal class, C. R. Acad. Sci. Paris, Ser. I 342 (8) (2006)

589–594.
[14] B. Doubrov, I. Zelenko, On local geometry of nonholonomic rank 2 distributions, J. Lond. Math. Soc. 80 (3) (2009) 545–566.
[15] M. Fels, The inverse problem of the calculus of variations for scalar fourth-order ordinary differential equations, Trans. Amer. Math. Soc. 348 (1996)

5007–5029.
[16] A. Gonzalez-Lopez, Symmetry bounds of variational problems, J. Phys. A 27 (1994) 1205–1232.
[17] E. Goursat, Lecons sur le problem de Pfaff, Hermann, Paris, 1923.
[18] D. Hilbert, Über den Begriff der Klasse von Differentialgleichungen, Math. Ann. 73 (1912) 95–108.
[19] M. Juráš, The inverse problem of the calculus of variations for sixth- and eighth-order scalar ordinary differential equations, Acta Appl. Math. 66 (2001)

25–39.
[20] N. Kamran, P. Olver, Equivalence of higher order Lagrangians. I. Formulation and reduction, J. Math. Pures Appl. 70 (1991) 369–391.
[21] L. Hsu, N. Kamran, P. Olver, Equivalence of higher-order Lagrangians. II. The Cartan form for particle Lagrangians, J. Math. Phys. 30 (1989) 902–906.
[22] N. Kamran, P. Olver, Equivalence of higher-order Lagrangians. III. New invariant differential equations, Nonlinearity 5 (1992) 601–621.
[23] A. Moor, Über äquivalente Variationsprobleme erster und zweiter Ordnung, J. Reine Angew. Math. 223 (1966) 131–137.
[24] T. Morimoto, Geometric structures on filtered manifolds, Hokkaido Math. J. 22 (1993) 263–347.
[25] P. Nurowski, Differential equations and conformal structures, J. Geom. Phys. 55 (2005) 19–49.
[26] P.J. Olver, Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, 1995.
[27] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mischenko, The Mathematical Theory of Optimal Processes, Wiley, New York, 1962.
[28] N. Tanaka, On differential systems, graded Lie algebras and pseudo-groups, J. Math. Kyoto Univ. 10 (1970) 1–82.
[29] N. Tanaka, On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J. 6 (1979) 23–84.
[30] E.J. Wilczynski, Projective Differential Geometry of Curves and Ruled Surfaces, Teubner, Leipzig, 1905.
[31] K. Yamaguchi, Differential systems associated with simple graded lie algebras, Adv. Stud. Pure Math. 22 (1993) 413–494.
[32] I. Zelenko, Nonregular abnormal extremals of 2-distributions: existence, second variation, and rigidity, J. Dyn. Control Syst. 5 (1999) 347–383.
[33] I. Zelenko, Complete systems of invariants of rank 1 curves in Lagrange Grassmanians, in: Differential Geom. Application, Proc. Conf. Prague, 2005,

pp. 365–379.
[34] I. Zelenko, Variational approach to differential invariants of rank 2 vector distributions, Differential Geom. Appl. 24 (2006) 235–259.
[35] I. Zelenko, Fundamental form and Cartan’s tensor of (2,5)-distributions coincide, J. Dyn. Control Syst. 12 (2) (2006) 247–276.


	Equivalence of variational problems of higher order
	Introduction: three equivalence problems
	Equivalence of variational problems
	Equivalence of rank 2 vector distributions
	Equivalence of ordinary differential equations
	Equivalence of curves in projective spaces

	Variational problems and rank 2 vector distributions
	Two points of view on extremals of variational problems
	Hamiltonian form of Euler-Lagrange equation
	Abnormal extremals of rank 2 distributions

	Linearization of variational ODEs and Jacobi curves of rank 2 distribution
	General linearization procedure
	Linearization procedure for ODEs
	The case of variational ODEs
	Linearization procedure for rank 2 distributions: Jacobi curves

	Fundamental invariants for our equivalence problems
	Acknowledgements
	References


