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Abstract

We discuss the recovery of some parameters in an elliptic boundary value problem, which models a specific
stationary flow problem in drainage basins, by using the measured values of the hydraulic head in discrete
points through the physical domain. The underlying direct problem is the one considered by Toth (J. Geophys.
Res. 67 (1962) 4375; 67 (1963) 4795), among others. The inverse problem is solved by means of the
Levenberg—Marquardt method (in: G.A. Watson (Ed.), Numerical Analysis, Lecture Notes in Mathematics,
Vol. 630, Springer, Berlin, New York, 1977, pp. 105-116). We also show how the infinite element method
allows the identification of the far field value of the hydraulic head.
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1. Introduction

In this paper, we deal with the problem of parameter identification in stationary groundwater
flow in small drainage basins in the absence of sources. The direct problem, i.e., the boundary
value problem with given data, has been presented first in [6] and theoretically analysed in [7]. The
basin has vertical impenetrable boundaries because of symmetry considerations. The longitudinal
component can be neglected as in most small basins the slopes of the valley flanks greatly exceed
the longitudinal slopes of the valley floors. Therefore, a two-dimensional model can be adopted
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in (x,z) coordinates, with x the horizontal coordinate along the valley flank and z the depth. The basin
furthermore has the special property that the water table follows the surface, which is possible when
the aquifer has a low conductivity and there is abundant rainfall. Finally, the domain is bounded on
top by a sloping sinusoidal curve. Toth [6,7], studied the problem for the hydraulic head ¢(x,z) in
a finite, saturated and isotropic region with a constant hydraulic conductivity. He approximates the
problem by reducing the domain to a rectangle with the given top boundary values projected onto
the top of the rectangle. In [5], Shivakumar et al. have taken the top boundary condition into account
exactly, but assumed the region to be semi-infinite in the z direction. The hydraulic conductivity
is taken to be decreasing exponentially with depth, i.e., K(z) = ce®?, which is supported by some
experimental data. Their assumption of the region to be semi-infinite gives reliable results for deep
basins but not for the standard basin of depth from 600 up to 1000 ft as studied by Toth.

To solve the direct problem, in [3] we first extended the semi-analytical method of [5], allowing
for both a nonpermeable base (homegeneous Neumann boundary condition) and a given profile of
the hydraulic head at the basis (inhomogeneous Dirichlet BC). The procedure can be extended to the
case of other curved boundaries on top than the sinusoidal one by means of numerical integration.
Moreover, we also implemented a standard Galerkin finite element method. Furthermore, an infinite
element method was developed to reduce the CPU-time needed when dealing with deep drainage
basins.

In the present paper, we first discuss the recovery of unknown parameters entering the boundary
value problem considered, viz. the coefficient d, appearing in the hydraulic conductivity, and a
parameter in the prescribed profile of the hydraulic head at the basis. To this end the measured
values of the hydraulic head at a moderate number of discrete points throughout the physical domain
are used. To solve these inverse problems, we will use the Levenberg—Marquardt method, which, of
course, leans upon solving a small number of direct problems.

In this paper, we also show how the infinite element method allows for the identification of the
far field value of the hydraulic head.

2. The direct problem
2.1. Mathematical model for a region with sinusoidal top

As in [7,5,3], we consider the following governing differential equation for the hydraulic head
¢(x,z) in the stationary regime in the absence of sources:

V- (e“Vd(x,z))=0 inQ. (1)

The hydraulic conductivity is K = ce? (¢ a positive constant, d > 0). The domain Q under consid-
eration is given by (see Fig. 1)

2
0<x<L and—T<z<g(x)E—[aLx+Vsin< nLnx)}’ (2)

where L >0, T' >0, a > 0, and V' are constants and # is a fixed positive integer.
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Fig. 1. The domain.

The boundary conditions are given by

%H:%H:O’ (3)

d(x,z)=z on z=gx) 0<x<L (4)
and

O )
or

¢ )1 = f(x). (6)

Here, as in [5], g is defined by (2). Moreover, f is a piecewise smooth function on [0,L]. We recall
that in [5], the depth T of the soil layer is taken to be infinity, the boundary condition being that ¢
is bounded for z — —oo.

2.2. Numerical algorithms and examples

As shown in [3], for the boundary value problem above a semi-analytical approximation can be
developed and implemented in a standard mathematical package. The procedure for a sinusoidal top,
z=g¢g(x), g given by (2), can be extended to other surfaces by means of numerical integration.

A more straightforward approach is to construct a finite element algorithm (FEM). This method is
general and fast, and has no restrictions on the geometry of the domain. For the FEM we consider
a regular triangulation of the domain, in which the curved boundary is approximated by piecewise
linear functions.

The results of the FEM are found to be in full agreement with those of the semi-analytical
procedure. Actually, the equipotential lines obtained with both methods are nearly identical.

However, the FEM does require more CPU-time with increasing depth of the basin. Moreover,
it cannot be applied to the BVP in [5] on a semi-infinite region (i.e., 7 = —o0). In [3] we cope
with this difficulty by setting up an infinite element method. The hydraulic head is obtained for a
semi-infinite region by using a small number of elements in the mesh, leading to minimal CPU-time.

We give some numerical results. In Fig. 2 we present to the left a result with the same data as in
[7], i.e., for a Neumann BC at the base. The equipotential lines are in full agreement with those of
[7]. They are obtained over the entire domain, in contrast with [7]. Note that the flow lines of the
groundwater flow are perpendicular to these equipotential lines. In the left part of Fig. 2 we have
regional flow, that is flow from the highest part towards the lowest part of the region.
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Fig. 2. Equipotential lines (in the xz-cross section) in case of a Neumann BC. Data in left part: a/L=0.05, '=50, d =0,
n=4, L=20,000, T =2000. Data in right part: a/L =0.02, V' =50, d = 0.00235, n =4, L = 20,000, T = 1400.

M= 29w

Fig. 3. Equipotential lines (in the xz-cross section) in case of a Dirichlet BC at the base for a/L = 0.02, V =50, n =4,
L =20,000, T = 1400, u = —50/L, v = —250. Left: d = 0.00235. Right: d = 0.0.

We may also present results in a shallow basin with decreasing conductivity and an impermeable
base. In the right part of Fig. 2 we show the equipotential lines for d = 0.00235.

Next, we consider a flow problem with a Dirichlet BC at the base. We take the function f
appearing in (6) to be

f(x)=ux+v, wuandvconstant. (7)

This BC can be interpreted as corresponding to an underlying, highly conductive aquifer. The function
f then represents the Dupuit—Forcheimer flow (see [2]) in this aquifer. The resulting equipotential
lines are depicted in Fig. 3 for 2 specific choices of the data.

When 7T > a/2, the numerical results for the equipotential lines are found to be in good agreement
with those from [5], as it should.

3. Parameter identification
3.1. The far field hydraulic head
In the infinite element algorithm (IFEM), see e.g. [1] or [8], the identification of the hydraulic

head at great depth comes out naturally. Comparison with the FEM shows that both results are in
close agreement when T > a/2.
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Fig. 4. The mapping of the infinite rectangular elements.

The IFEM is developed with a constant but unknown far field value of the hydraulic head for
z — —o0, which replaces the boundedness assumption in [5].

Let Q be the semi-infinite region shown in Fig. 4. The boundary parts are denoted by I'y and
I, with I'y N I, = (. For simplicity we assume that I'; are vertical lines extending to —oo. The
boundary conditions are

o _
on

¢=¢g on I,,¢—>cg as z— —oo, ¢ constant,

0 on I},

where ¢ is a given sufficiently smooth function defined on I';, where I'; is assumed to be Lipschitz
continuous. The far field value of the hydraulic head, cg, is unknown.

We construct a mesh for Q. Here, Q, is a semi-infinite polygonal domain that approximates €,
with boundary I'; U I'5,, where the polygonal line I'y, piecewise linearly interpolates the curved
boundary I'; of 2. The domain € is splitted into a bounded part Qg, and an unbounded part Q¢
by means of the horizontal line I';, z= —T. For Qg, we consider a regular triangulation t;, while
on Qi we consider a mesh p;, of semi-infinite rectangles matching perfectly with the elements of
15, see Fig. 4. For the IFEM we take globally continuous, elementwise polynomials of degree 1
on Qg,. On Q¢ we use globally continuous functions, which are defined in a generic semi-infinite
rectangular element K by the images of the bilinear polynomials on the master square K under a
suitable mapping of K onto K. The details of the construction of a proper infinite element space
and its cardinal basis can be found in [3]. In the numerical method we use the piecewise linear
Lagrange-interpolant g;, of g on I'y.

The results of the IFEM are found to be in full agreement with those from [5]. If we set for
example L = 8000, a/L = 0.1, V=280, d = 0.00235, T'=3000 and o = —12,000, and divide the
domain in 3025 triangles and 40 semi-infinite rectangles, we obtain a far field value cg =—411.971,
which corresponds with the far field value that we obtained with the semi-analytical method from
[5], namely cg = —411.868.
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3.2. The inverse method

In the direct problem above, all parameters where given: the constant d in (1) or the coefficients
u and v of the function f(x) in (7) or the coefficients of a higher order form of f(x). In the
inverse problem some or all of these data are not given a priori. We denote by p=(py,..., p,) the
parameter vector of the unknown parameters which we want to recover from the measured hydraulic
head ¢; at N discrete points (x;,z;). Denote by ¢, the hydraulic head obtained from the direct
problem with parameter vector p. Furthermore, o; is the relative or absolute standard deviation of
the measurement in (x;,z;). Then, in the inverse problem we look for a parameter vector p such
that the penalty functional

N TN
q)(p)_z<qw> (8)
i=1 !

reaches a minimum.

We solve this inverse problem by using the Levenberg—Marquardt method, which is known to
be fairly general and reliable. It includes the Newton—Gauss method as a special case, see [4]. For
this method we need the gradient V ,®, which reduces to calculating V ,¢ ,(x;,z;). This gradient
can be obtained numerically by solving the direct problem several times. If we start from an initial
parameter set p¥, the improved vector p**! is given by

(i + (P = P = Iy ©)
Here, I is the unity matrix of order n, J|! is the transposed matrix of the matrix J; defined by
(Jk)i,j = ap,¢pk(xi,Zi)-

Furthermore, Fj is the column matrix defined by

¢pk(xiszi) — ¢;

Oi

(Fr)i=

and A is a multiplicator.

To minimize the penalty functional we start from an initial parameter set py and an initial value
Jo for the multiplicator (we take Ay = Tr(JlJ;)/n). As long as the penalty functional decreases
with consecutive steps, we decrease A. This enlarges the stepsize. If the penalty functional did not
decrease from step k to k+ 1, we calculate a new p**! for a larger value of /. We stop the method
when 4 > Amax. We recall that the Newton—Gauss method follows from the Levenberg—Marquardt
method by setting 4 = 0. The inverse method works equally well for the FEM or IFEM. In the
following, only experiments with the FEM are presented.

3.2.1. Numerical experiment: determination of d

Let us consider the extraction of the parameter vector p = (d) from measured data. We generate
the measurements from the solution of the direct problem with a/L=0.02, V' =50, n=4, L=20,000,
T =1400, and a known d, which are then perturbated with artificial noise (normally distributed with
a relative or absolute standard deviation). This will prove the stability of the solution of the ill-posed
inverse problem.
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Fig. 5. Penalty functional for a/L = 0.02, V =50, n =4, L =20,000, 7 = 1400. Left: initial d = 0.00235, recovered
d = 0.00238. Right: initial d = 0.0235, recovered d = 0.0279.

We take 15 measurements over the entire length of the basin. In Fig. 5 the penalty functional is
plotted against the d-parameter. In the left figure we started from the direct problem with d=0.00235
and an absolute deviation of 5. We retrieved d = 0.00238 as extracted value. In the right figure we
started from d=0.0235 and a relative deviation of 5%. We retrieved d=0.0279. This is an acceptable
result, since for larger d-values, a relatively big deviation does not influence much the solution. This
can be interfered from the penalty functional which is very flat around the minimum. For small
d-values this is not the case, and we recover the unknown parameter almost exactly. In the absence
of noise, the parameters are recovered exactly. From the shapes of the penalty functionals in Fig. 5
it is clear that other inverse methods, like Newton—Gauss, will also converge fastly.

3.2.2. Numerical experiment: areal recharge determination

The FEM can of course be applied to general domains, without the specific sinusoidal top con-
sidered in [7] among others. We set up the following experiment. Consider two parallel rivers (at
x =0 and L), with an elevation in between. If the slope of the elevation flanks greatly exceeds
the longitudinal slopes of the river floors and the longitudinal slope of the elevation top, this lon-
gitudinal component can be neglected. Therefore, also in this case a two-dimensional scheme can
be adopted, with x the horizontal coordinate along the elevation flanks and z the depth. We may
consider the rivers to be no-flow boundaries, similarly as in [6,7]. As before, the groundwater level
follows the surface. Under the considered domain, we have an aquifer. This aquifer will undergo
an areal recharge due to the overlying basin. Based on the Dupuit—Forcheimer model, we take the
bottom boundary condition (6) to be
d)x:L I d)x:Ox + d)x:O (10)
with ¢.—¢ and ¢,—; the hydraulic head of the aquifer under the rivers, and with N being the areal
recharge (dimension L/T), see [2].

For the experiment, we take the elevation as depicted in Fig. 6.

Consider the recovery of the parameter vector p = (d,N) from measured data, taken not more
than 50 m under the surface. We generate the measurements from the solution of the direct problem
with ¢,—o = —290m, ¢,—; = —300m, L =5500 m, d =0.008 and N = 0.05/L. This means that the
areal recharge over the length L totalizes 0.05 m/s.

We use 15 measurements with an absolute deviation of 2 m. In Fig. 7 the penalty functional
is plotted versus the d and N-parameter. From the Levenberg—Marquardt method we retrieve that

fx)= —%x(x — L)+
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Fig. 6. Topology elevation between two rivers. Top of elevation is at z=0, L=5500 m, underlying aquifer at z=—400 m.
Equipotential lines for ¢y—o = —290 m, ¢—r = —300 m, N = 0.05/L and d = 0.008.
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Fig. 7. Penalty functional for the inverse problem from Fig. 6. Right a detail is given around the minimum reached for
d =0.00786, N = 0.0528, with a contourplot projection.

d =0.00786 and N = 0.0528. From Fig. 7 it is clear that the Newton—Gauss method will also give
a good result. We may expect a priori that first the d-parameter is recovered, and next the areal
recharge, as may be seen from the left part of Fig. 7. This is confirmed by the experiment.

4. Conclusion

The infinite element method allows for an identification of the far field value of the hydraulic
head. Other missing parameters can be recovered from measured values of the hydraulic head by
using the Levenberg—Marquardt method for the inverse problem based on an accurate direct solver.
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