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Abstract 

The elasticity of a domain is the upper bound of the ratios of lengths of two decompositions 
in irreducible factors of nonzero nonunit elements. We show that for a large class of Noetherian 
domains, including any domain contained in a number field (but not a field), the elasticity of the 
ring of integral-valued polynomials is infinite. 

0. Introduction 

A domain D is said to be atomic if every nonzero nonunit element of D can be 
decomposed into products of irreducible elements (atoms); this is for example the case 
for Noetherian domains and more generally for domains which satisfy the ascending 
chain condition on principal ideals (or ACCP). If the decomposition is unique, D is 
a uniquefactorization domain (in short a UFD), but it may not be, it may even happen 
that two decompositions of the same element do not have the same number of 
irreducible factors. The elasticity of D is then defined as p(D) = Sup{m/n 1 x1 ... X, = 

Yl ... y,, for Xi, Yj irreducible elements of D}. This concept was introduced by Valenza 
[ 151 for rings of integers in an algebraic number field, then was studied by Steffan [ 141 
for a Dedekind domain with finite divisor class group and by Anderson and others 
Cl-33 in more general settings. 

In this paper D is an integral domain with quotient field K, and we study the 
elasticity of the ring Int(D) of integral-valued polynomials over D, i.e. Int(D) = 

{fe KCXI If(~) c D}. Integral-valued polynomials over rings of integers in an 
algebraic number field have been studied by Polya [12] and Ostrowsky [ 111, over 
Dedekind domains by Brizolis [S], by the authors in various general situations [6-lo] 
and by others in quite a few recent papers. We show that the elasticity of Int(D) is 
infinite in most cases; in particular the ring Int(Z) of integral-valued polynomials with 
rational coefficients provides quite a natural and easy example of infinite elasticity. 
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In Section 1 we recall a few results on the ascending chain condition on principal 
ideals. They give a fairly large class of domains (including in particular Noetherian 
domains) such that Int(D) is atomic and for which it is relevant to study elasticity. 
Finally we give a straightforward proof that the elasticity of Int(Z) is infinite. 

In Section 2 we study the irreducibility of polynomials in Int(D): in particular it is 
enough that f be irreducible in K[X] and not divisible in Int(D) by any nonunit 
element of D; we also give examples of polynomials which are irreducible in Int(D) but 
not in K[X]. 

In the last section we finally give (technical but quite general) sufficient conditions 
for the elasticity of Int(D) to be infinite: it is enough that D be a Noetherian domain 
with a principal ideal Dt such that the quotient D/Dt is finite. This applies in particular 
to any domain (which is not a field) contained in a number field or a function field over 
a finite field. In fact we could not provide any example where the elasticity of Int(D) is 
finite, except when Int(D) is trioial, i.e. equal to the ring D[X] of polynomials with 
coefficients in D. 

1. Atomicity 

Let D be a domain with quotient field K. Recall that D is said to be atomic if every 
nonzero nonunit element can be decomposed into products of irreducible elements. In 
this paper we are interested in irreducible elements of Int(D) and we first record 
a lemma (the proof of which is immediate). 

Lemma 1.1. (i) The units ofInt(D) are the units of D. 

(ii) An element of D is irreducible in Int(D) if and only ifit is irreducible in D. 

From this we get immediately: 

Proposition 1.2. ZfInt(D) is atomic then D is atomic. 

Note that (conversely) Roitman [13] has shown how to construct an atomic 
integral domain D such that D[X] is not atomic; such a D can be chosen so that 
Int(D) = D[X]. 

A domain D which satisfies ACCP (i.e. the ascending chain condition on principal 
ideals) is atomic. For the sake of completeness, we then prove the following that is 
a particular case of Corollary 7.6 in [l]: 

Theorem 1.3. The ring Int(D) satisfies ACCP ifand only if0 satisfies ACCP. 

Proof. The condition is necessary: let a,D be in increasing sequence of principal 
ideals of D; by hypothesis the sequence a, Int(D) is stationary, hence there exists n, 

such that, for n 2 no, a,Int(D) = a,,Int(D), thus a, = &,a,,,,, where 1, is a unit of 
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Int(D) (hence a unit of D) and a,D = anoD. The condition is sufficient: letf, Int(D) be 
an increasing sequence of (nonzero) principal ideals of Int(D); the sequencef,K [X] of 
principal ideals of K[X] is stationary and there exists no such that, for n 2 no, 

.LKCXl =fn,KIIW~ hence .L = U,,,7 where A, is a nonzero element of K. If ever 
D = K, then Int(D) = K[X] and we are done. If D # K, then D is infinite and there 
exists an element a of D such that&(a) # 0. The sequencef,(a)D is increasing, thus 
stationary by hypothesis. Hence there exists m, 2 no such that, for n 2 mo, 

f,(a) = ~nfm,(4, where pn is a unit of D. Hence fn = ,u,,J‘& and thus 

fn Int(D) = U& Int(D). •I 

Thus, if D satisfies ACCP (and in particular if D is Noetherian), Int(D) is atomic. 
Assuming that Int(D) is atomic we shall then be interested in the elasticity of Int(D), 

i.e. the upper bound Sup{m/nlfr ...fm = g1 ... g., for h,gj irreducible elements of 
Int(D)}. Here is an other immediate consequence to Lemma 1.1: 

Proposition 1.4. The elasticity of Int(D) is greater or equal to the elasticity of D. 

If, for each nonzero nonunit element c( of D, there is a bound LD(a) on the lengths of 
factorizations of a into products of irreducible elements, the domain D is said to be 
a boundedfactorization domain (or a BFD [2]). It is known that Int(D) is a BFD if and 
only if D is a BFD [l, Corollary 7.61. More precisely we may record the following: 

Proposition 1.5. Let D he a BFD, Then,for euchf E Int(D) and each a E D: 

L wU(X)) I LK&IX)) + L&f(a)) I de&f(X)) + L&f(4) 

with rhefollowing convention: LD(a) = 0 if a is a unit in D and L,(O) = CC. 

Proof. First we note that the hypothesis on D implies the ascending chain condition 
on principal ideals of D hence, by Theorem 1.3, the atomicity of Int(D). If 
f= i., .‘. E,;g, ... g1 where the Ai are nonzero nonunit elements of D and the gj are 
nonconstant elements of Int(D), then obviously t I LKIXl(f(X)) I deg(f(X)) and 
s I L,(& ... A,) < L&f(a)) for each a E D since A1 ... & dividesf(a) in D. Cl 

In the last section we shall see that, in most cases, the elasticity of Int(D) turns out 
to be infinite; but before going into these general results we give here a straightforward 
proof of this fact, for the principal ideal domain Z whose elasticity is one. 

Theorem 1.6. The elasticity of Int(Z) is injnite. 

Proof. Recall that the binomials 

X 0 
n-1 

n 
= l/n! n (X - i) 

i=O 



306 P-J. Cahen, J-L. Chabert/Journal I$ Pure and Applied Algebra IO3 (1995) 303 

are integral-valued (and form a basis of Int(Z) as a Z-module). Write 

n! x 
0 n 

= “lj’ (X - i); 
i=O 

3/l 

it is clear that (X - i) is irreducible (and will follow from more general results below, 
Example 2.3), hence there are n irreducible factors on the right-hand side whereas, on 
the left-hand side, n! admits as many irreducible factors in Int(Z) as it does in 
H (Lemma 1.1). We conclude with a proof that this number of factors may eventually 
be greater than nm, whatever m. Let n = p !, where p is prime. Among the factors 
1,2, . . . , n of n !, there are n/2 multiples of 2, n/3 multiples of 3, n/5 multiples 5, and so 
on up to p, hence n! admits (at least) n(t + f + ... + $) irreducible factors. We are 
done, since the series of the inverses of primes is divergent. 0 

2. Irreducible polynomials 

In this section we describe irreducible elements of Int(D): on the one hand there are 
the elements of D (constant polynomials) which are irreducible in D [Lemma 1.11, on 
the other hand the next proposition and its corollaries will provide examples of 
nonconstant irreducible polynomials. 

Proposition 2.1. Letf be a polynomial ofInt(D) which is irreducible in K[X]. Then the 

following assertions are equivalent: 

(i) f is irreducible in Int (D). 

(ii) For each a E D, (f/a) E Int(D) ifand only if a is a unit of D. 

Proof. If f is irreducible in Int(D) and g = (f/a) E Int( D), then f = ag and thus a is 
a unit since g is not (g is nonconstant). Conversely, iffis irreducible in K[X] and if 
f= gh in Int(D), necessarily one factor, say h, is in D; letting a = h, then 
(f/a) = g E Int(D) and condition (ii) implies that a is a unit. 0 

Corollary 2.2. Let f be a polynomial of Int(D) such that 

(i) f is irreducible in K[X], 

(ii) for every maximal ideal (m of D, there exists CI E D such that f (a)$%l. 

Then f is irreducible in Int(D). 

Proof. Let a E D and suppose that (f/a) E Int(D). For very maximal ideal 1)37 of D, 

there exists c( E D such that f (a)~9Jlm; hence a@JI, since (f (@)/a) E D. Therefore a is 
a unit of D and f is irreducible in Int(D) from the previous proposition. 0 

Example 2.3. For each a E D, (X - a) is irreducible in Int(D). 
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Remark 2.4. In contradiction to condition (ii) of the previous proposition, condition 

(ii) of Corollary 2.2 is not necessary as the next example shows. 

Example 2.5. Assume D is a Dedekind domain with a maximal ideal YII = (u, tl) which 

is not principal but generated by two elements u and c’. If moreover D/$%531 is finite, then 

Int(D) is not triuiul, i.e. Int(D) # D[X] [8, p. 3041). Let f = uX + L’, clearly, .f‘ is 

irreducible in K[X]. Moreover if a E D and (f/a) E Int(D), then f(O)/a = o/u and 

,f( 1)/a = (u + ~)/a are in D; thus u divides u and u and the principal ideal Da contains 

!IJ = (u, u). In conclusion a is a unit and thereforef is irreducible in Int(D) (Proposi- 

tion 2.1). However, for each a E D,f(cc) = uc( + u, hence,f(z) E 50331. 

The next corollary is a particular case of Corollary 2.2 or Proposition 1.5: 

Corollary 2.6. Let ,f be u polynomial Int( D) such that 

(i) f’is irreducible in K[X], 

(ii) there exists c( E D such that ,f (a) is u unit qf D. 

Thenf is irreducible in Int(D). 

The next proposition is the key to the general results of the last section; it gives more 

examples of irreducible polynomials under the hypothesis there exists a (nontrivial) 

discrete valuation u on the field K. Clearly this implies the existence of an element h of 

D such that u(h) # 0 (if not u would be null on every element of K). 

Proposition 2.7. Assume there exists u discrete valuation u on K. Then, for each a E D, 

euch h E D such that u(b) # 0 and each positive integer m prime to u(b), the polynomiul 

j’= (X - a)“’ + b is irreducible in Int( D). 

Proof. We prove first thatfis irreducible in K[X]. Let .y be a root offin an algebraic 

closure of K, and u’ a valuation extending u to K(x), then mc’(x - a) = v(b). From 

Bezout there are integers a and b such that au(b) - j?m = 1. Let t in K(x) be such that 

u’(t) = 1 and consider y = (x - u)“/P; then one has o’(y) = au’(x - a) - /Iv(t) = 

(a/m)u(b) - fi = l/m. Therefore the ramification index of u’ over u is m, K(x) is an 

extension of degree m of K andf is the minimal polynomial of x. We can conclude that 

,f is irreducible in Int(D) from Corollary 2.2. Indeed, for every maximal ideal Ylnl of D, 

there exists CI in D such thatf (a)@R either b E ‘$1, then choose SI such that (r - u)@IN, 

or b@ll, then choose CY such that (a - a) E $333. 0 

We conclude this section with examples of polynomials which are irreducible in 

Int(D) but not in K[X]. 

Example 2.8. For each n 2 1, 

X 0 
n-1 

n 
= l/n! n (X-i) 

i=O 
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is irreducible in Int(Z). Recall indeed that iffE Int(Z) is of degree at most n, then 
(n!)f E Z[X]. So if 

X 0 = sh, 
n 

with g and h respectively of degree Y and s, then 

(r!)(s!) f 
0 

E ~CXI, 

and thus 

(r!)(s!) E z, 

n! 

Therefore 

n o= 1, 
r 

hence Y = 0 or Y = n and g or h is in Z. Say g in Z, then (n!)h E Z[X] and the leading 
coefficient of 

= n!yh 

is 1, hence g = f 1. 

3. Pseudo-principal ideals and elasticity 

We start this section with an easy, although technical lemma which is really the key 
of next results: 

Lemma 3.1. Assume there is a (nontrivial) discrete valuation v on K and an ideal q of 

D such DJq isfinite. Then, for every integer n 2 1, there exists a product of q irreducible 

elements of Int(D) with values in q”, where q is the cardinal of D/q. 

Proof. First, there exists b E q such that v(b) # 0. Indeed there exists x ED such that 
V(X) # 0, so consider any y E q: either v(y) # 0, then we are done with b = y, or 
u(y) = 0, then take b = xy. Let then uO,ul, . . , uq _ 1 be a set of representatives of DJq. 

If m is an integer prime to nu(b), the polynomialsJ; = (X - ni)“’ + b” are irreducible 
(Proposition 2.7); if moreover m > n, the product nss,‘A takes its values in q” since, 
for any o! E D, there is i, 1 I i I q - 1, such that (a - ui) E q, hence 1;:(a) E q”. 0 

Recall that an ideal q of a ring D is said to be pseudo-principal if there is an integer 
k and a nonunit t E D, such that qk c Dt (7, Definition 5.1); the following will lead to 
various generalizations of Theorem 1.6: 
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Theorem 3.2. Let D be a domain with quotient ,jeld K such that 

(i) Int(D) is atomic, 

(ii) there is a (nontrioial) discrete valuation u on K, 

(iii) there is a pseudo-principal ideal q of D such that D/q i.s,finite. 

Then the elasticity of Int(D) is infinite. 

Proof. Let n be any integer. There exist a nonunit t in D and an integer k such that 
qk c Dt, hence qk” c Dt”. From Lemma 3.1 there is a product flrZd1; of irreducible 
factors of Int(D) with values in qkn, thus h = l/t”flfr,‘fi is integral valued; writing 
t”h = nTZ,‘fi, there are (at least) n + 1 factors on the left-hand side and exactly 
q irreducible factors on the right. lJ 

The first two conditions of Theorem 3.2 are satisfied for Krull or Noetherian 
domains, hence we derive: 

Corollary 3.3. Let D be a Krull or a Noetherian domain with a pseudo-principal ideal 

q such that D/q is jnite. Then the elasticity qfInt(D) is infinite. 

Krull and Noetherian domains are particular cases of Mori domains (i.e. domains 
which satisfy the ascending chain condition on divisorial ideals) which in turn satisfy 
the ascending chain condition on principal ideals, then we ask: 

Question 1. Is there always a (non trivial) discrete valuation on the field of fractions of 
a Mori domain or more generally of a domain which satisfies ACCP? 

Remark 3.4. In the Noetherian case, if q is an ideal such that D/q is finite, then D/qk is 
finite for every integer k; so if q is pseudo-principal, i.e. qk c Dt, the principal ideal Dt 

is itself such that D/Dt is finite. The next example shows however that, in general, there 
may be a pseudo-principal ideal with finite quotient ring, but no principal ideal with 
the same property. 

Example 3.5. Let k be a finite field, L an infinite extension of k and I/ = L[ [t]], the 
ring of formal power series with coefficients in L. Consider the “D + M” construction 
R = k + tL[[t]]. Since I/ satisfies the ascending chain condition on principal ideals 
(indeed V is a discrete valuation domain) and k is a field, it is easily seen (and classical, 
see for example [4, Theorem 121) that R itself satisfies the ascending chain condition 
on principal ideals (indeed if two principal ideals of R are such that Ra G Rb, then 
Ra = Rb if and only if Vu = Vb). The maximal ideal (YJI = tL[ [t]], shared by R and 
V, is such that RjY.3 = k is finite and ‘9J12 c Rt; hence ‘9JI is a pseudo-principal ideal 
with finite residue field. Therefore the elasticity of Int(R) is infinite [Theorem 3.21, 
whereas the elasticity of R is 1 (by Example 3.7 of Cl]). However, for every nonunit 
.Y E R, i.e. x E +YJI, RJRx is infinite: indeed if ,? E L and p E L, then ix E R and px E R; but 
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(2.x - px) E Rx if and only if (i - p) E k; thus the cardinal of R/R.x is at least the 
cardinal of L/k. 

From Corollary 3.3, we get the following generalization of Theorem 1.6: 

Corollary 3.6. Let D be a one-dimensional Noetherian domain with,finite residue,fields. 

Then the elusticity of Int(D) is infinite. 

Proof. For any nonzero nonunit t ED, Dt contains a power of its radical hence 
a product of finitely many maximal ideals with finite residue fields, therefore D,/Dt is 
finite. 17. 

Corollary 3.1. Let D be a domain, which is not a,field, contained in an algebraic number 

field or a,function,field over a jnite,field. Then the elasticity of Int(D) is infinite. 

The hypotheses of Corollary 3.6. are certainly too strong, indeed it would be 
enough to suppose there exists one nonunit t E D such that D/tD is finite. In fact we 
ask: 

Question 2. Is there any one dimensional Noetherian domain D such that one residue 
field at least is finite and the elasticity of Int (D) is finite? More generally, is there any 
example ofa domain D such that Int(D) # D[X] and the elasticity of Int(D) is finite? 

We conclude with principal ideal domains for which we have a complete 
characterization: 

Corollary 3.8. Let D be u principal ideal domuin. If there is a maximul ideal 91 of0 such 

that D/‘331 is ,jnite, then the elasticity of Int(D) is infinite otherwise the elasticity of 

Int(D) is 1. 

Proof. If every residue field of D is infinite, then Int(D) = D[X] is a unique factoriz- 
ation domain, otherwise there is a principal ideal with finite residue ring and the 
elasticity of Int(D) is infinite [Corollary 3.33. 0 
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