The Łojasiewicz exponent of a set of weighted homogeneous ideals

C. Bivià-Ausina ${ }^{\mathrm{a}, *}$, S. Encinas ${ }^{\text {b }}$
${ }^{\text {a }}$ Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, Camí de Vera, s/n, 46022 València, Spain
${ }^{\mathrm{b}}$ Departamento de Matemática Aplicada, Universidad de Valladolid, Avda. Salamanca s/n, 47014 Valladolid, Spain

ARTICLE INFO

Article history:

Received 23 March 2010
Received in revised form 19 April 2010
Available online 25 June 2010
Communicated by A.V. Geramita

MSC:

Primary: 32S05
Secondary: 13H15

Abstract

We give an expression for the Łojasiewicz exponent of a set of ideals which are pieces of a weighted homogeneous filtration. We also study the application of this formula to the computation of the Łojasiewicz exponent of the gradient of a semi-weighted homogeneous function $\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ with an isolated singularity at the origin.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let R be a Noetherian ring and let I be an ideal of R. Let ν_{I} be the order function of R with respect to I, that is, $v_{I}(h)=\sup \left\{r: h \in I^{r}\right\}$, for all $h \in R, h \neq 0$, and $\nu(0)=\infty$. Let us consider the function $\bar{v}_{I}: R \rightarrow \mathbb{R}_{\geqslant 0} \cup\{\infty\}$ defined by $\bar{\nu}_{I}(h)=\lim _{s \rightarrow \infty} \frac{\nu_{I}\left(h^{s}\right)}{s}$, for all $h \in R$. It was proven by Samuel [17] and Rees [14] that this limit exists and Nagata proved in [12] that, when finite, the number $\bar{\nu}_{I}(h)$ is a rational number. The function \bar{v} is called the asymptotic Samuel function of I. If J is another ideal of R, then the number $\bar{v}_{I}(J)$ is defined analogously and if h_{1}, \ldots, h_{r} is a generating system of J then $\bar{\nu}_{I}(J)=\min \left\{\bar{\nu}_{I}\left(h_{1}\right), \ldots, \bar{v}_{I}\left(h_{r}\right)\right\}$. Let us denote by \bar{I} the integral closure of I. As a consequence of the theorem of existence of the Rees valuations of an ideal (see for instance [8, p. 192]), it is known that, if J is another ideal and $p, q \in \mathbb{Z}_{\geqslant 1}$, then $J^{q} \subseteq \overline{I^{p}}$ if and only if $\bar{\nu}_{I}(J) \geqslant \frac{p}{q}$.

Let \mathcal{O}_{n} denote the ring of analytic function germs $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow \mathbb{C}$ and let m_{n} denote its maximal ideal, that will be also denoted by m if no confusion arises. Let I be an ideal of \mathcal{O}_{n} of finite colength. Lejeune and Teissier proved in [10, p. 832] that $\frac{1}{\bar{v}_{I}(m)}$ is equal to the Łojasiewicz exponent of I (in fact, this result was proven in a more general context, that is, for ideals in a structural ring \mathcal{O}_{X}, where X is a reduced complex analytic space). If g_{1}, \ldots, g_{r} is a generating system of I, then the Łojasiewicz exponent of I is defined as the infimum of those $\alpha>0$ for which there exist a constant $C>0$ and an open neighbourhood U of $0 \in \mathbb{C}^{n}$ with

$$
\|x\|^{\alpha} \leqslant C \sup _{i}\left|g_{i}(x)\right|
$$

for all $x \in U$. Let us denote this number by $\mathcal{L}_{0}(I)$ and let $e(I)$ denote the Samuel multiplicity of I. Therefore we have that $\mathcal{L}_{0}(I)=\inf \left\{\frac{p}{q}: m^{p} \subseteq \overline{I^{q}}, p, q \in \mathbb{Z}_{>0}\right\}$ and hence, by the Rees multiplicity theorem (see [8, p. 222]) it follows that $\mathcal{L}_{0}(I)=\inf \left\{\frac{p}{q}: e\left(I^{q}\right)=e\left(I^{q}+m^{p}\right), p, q \in \mathbb{Z}_{>0}\right\}$. This expression of $\mathcal{L}_{0}(I)$ is one of the motivations that led the first author to introduce the notion of Łojasiewicz exponent of a set of ideals in [4]. This notion is based on the Rees mixed multiplicity of a set of ideals (Definition 2.1).

[^0]Łojasiewicz exponents have important applications in singularity theory. Here we recall one of them. If $g:\left(\mathbb{C}^{n}, 0\right) \rightarrow$ $\left(\mathbb{C}^{n}, 0\right)$ is an analytic map germ such that $g^{-1}(0)=\{0\}$ then we denote by $\mathcal{L}_{0}(g)$ the Łojasiewicz exponent of the ideal generated by the component functions of g. Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ be the germ of a complex analytic function with an isolated singularity at the origin. Then $\nabla f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ denotes the gradient map of f, that is, $\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)$. The Jacobian ideal of f, that we will denote by $J(f)$, is the ideal generated by the components of ∇f. The degree of C^{0}-determinacy of f, denoted by $s_{0}(f)$, is defined as the smallest integer r such that f is topologically equivalent to $f+g$, for all $g \in \mathcal{O}_{n}$ with $v_{m_{n}}(g) \geqslant r+1$. Teissier proved in [19, p. 280] that $s_{0}(f)=\left[\mathcal{L}_{0}(\nabla f)\right]+1$, where $[a]$ stands for the integer part of a given $a \in \mathbb{R}$. Despite the fact that this equality connects $\mathcal{L}_{0}(\nabla f)$ with a fundamental topological aspect of f, the problem of determining whether the Łojasiewicz exponent $\mathcal{L}_{0}(\nabla f)$ is a topological invariant of f is still an open problem.

The effective computation of $\mathcal{L}_{0}(I)$ has proven to be a challenging problem in algebraic geometry that, by virtue of the results of Lejeune and Teissier is directly related with the computation of the integral closure of an ideal. In [5] the authors relate the problem of computing $\mathcal{L}_{0}(I)$ with the algorithms of resolution of singularities. The approach that we give in this paper is based on techniques of commutative algebra.

We recall that, if $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{Z}_{\geqslant 1}^{n}$, then a polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is called weighted homogeneous of degree d with respect to w when f is written as a sum of monomials $x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$ such that $w_{1} x_{1}+\cdots+w_{n} x_{n}=d$. This paper is motivated by the main result of Krasiński et al. in [9], which says that if $f: \mathbb{C}^{3} \rightarrow \mathbb{C}$ is a weighted homogeneous polynomial of degree d with respect to $\left(w_{1}, w_{2}, w_{3}\right)$ with an isolated singularity at the origin, then $\mathcal{L}_{0}(\nabla f)$ is given by the expression

$$
\mathcal{L}_{0}(\nabla f)=\frac{d-\min \left\{w_{1}, w_{2}, w_{3}\right\}}{\min \left\{w_{1}, w_{2}, w_{3}\right\}}
$$

provided that $d \geqslant 2 w_{i}$, for all $i=1,2,3$. That is, $\mathcal{L}_{0}(\nabla f)$ depends only on the weights w_{i} and the degree d in this case. Therefore it is concluded that $\mathcal{L}_{0}(\nabla f)$ is a topological invariant of f, by virtue of the results of $[16,21]$. In view of the above equality it is reasonable to conjecture that the analogous result holds in general, that is, if $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ is a weighted homogeneous polynomial, or even a semi-weighted homogeneous function (see Definition 4.1), with respect to $\left(w_{1}, \ldots, w_{n}\right)$ of degree d with an isolated singularity at the origin, and if $d \geqslant 2 w_{i}$, for all $i=1, \ldots, n$, then

$$
\begin{equation*}
\mathcal{L}_{0}(\nabla f)=\frac{d-\min \left\{w_{1}, \ldots, w_{n}\right\}}{\min \left\{w_{1}, \ldots, w_{n}\right\}} \tag{1}
\end{equation*}
$$

We point out that inequality (\leqslant) always holds in (1) for semi-weighted homogeneous functions (see Corollary 4.11).
In this paper we obtain the equality (1) for semi-weighted homogeneous germs $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ under a restriction expressed in terms of the supports of the component functions of ∇f (see Corollary 4.11). This result arises as a consequence of a more general result involving the Łojasiewicz exponent of a set of ideals coming from a weighted homogeneous filtration (see Theorem 4.7). Our approach to Łojasiewicz exponents is purely algebraic and comes from the techniques developed in $[3,4]$. This new point of view of the subject has led us to detect a broad class of semi-weighted homogeneous functions where relation (1) holds.

For the sake of completeness we recall in Section 2 the definition of the Rees mixed multiplicity and basic facts about this notion. In Section 3 we show some results about the notion of $Ł o j a s i e w i c z$ exponent of a set of ideals that will be applied in Section 4. The main results appear in Section 4.

2. The Rees mixed multiplicity of a set of ideals

Let (R, m) be a Noetherian local ring and let I be an ideal of R. We denote by $e(I)$ the Samuel multiplicity of I. Let $\operatorname{dim} R=n$ and let us fix a set of n ideals I_{1}, \ldots, I_{n} of R of finite colength. Then we denote by $e\left(I_{1}, \ldots, I_{n}\right)$ the mixed multiplicity of I_{1}, \ldots, I_{n}, as defined by Teissier and Risler in [20] (we refer to [8, Section 17] and [18] for fundamental results about mixed multiplicities of ideals). We recall that, if the ideals I_{1}, \ldots, I_{n} are equal to a given ideal, say I, then $e\left(I_{1}, \ldots, I_{n}\right)=e(I)$.

Let us suppose that the residue field $k=R / m$ is infinite. Let $a_{i 1}, \ldots, a_{i s_{i}}$ be a generating system of I_{i}, where $s_{i} \geqslant 1$, for $i=1, \ldots, n$. Let $s=s_{1}+\cdots+s_{n}$. We say that a property holds for sufficiently general elements of $I_{1} \oplus \cdots \oplus I_{n}$ if there exists a non-empty Zariski-open set U in k^{s} verifying that the said property holds for all elements $\left(g_{1}, \ldots, g_{n}\right) \in I_{1} \oplus \cdots \oplus I_{n}$ such that $g_{i}=\sum_{j} u_{i j} a_{i j}, i=1, \ldots, n$ and the image of $\left(u_{11}, \ldots, u_{1 s_{1}}, \ldots, u_{n 1}, \ldots, u_{n s_{n}}\right)$ in k^{s} lies in U.

By virtue of a result of Rees (see [15] or [8, p. 335]), if the ideals I_{1}, \ldots, I_{n} have finite colength and R / m is infinite, then the mixed multiplicity of I_{1}, \ldots, I_{n} is obtained as $e\left(I_{1}, \ldots, I_{n}\right)=e\left(g_{1}, \ldots, g_{n}\right)$, for a sufficiently general element $\left(g_{1}, \ldots, g_{n}\right) \in I_{1} \oplus \cdots \oplus I_{n}$.

Let us denote by \mathcal{O}_{n} the ring of analytic function germs $\left(\mathbb{C}^{n}, 0\right) \rightarrow \mathbb{C}$. Let $g:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ be a complex analytic map germ such that $g^{-1}(0)=\{0\}$ and let g_{1}, \ldots, g_{n} denote the component functions of g. We recall that $e(I)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{n} / I$, where I is the ideal of \mathcal{O}_{n} generated by g_{1}, \ldots, g_{n}. It turns out that this number is equal to the geometric multiplicity of g (see [11, p. 258] or [13]).

Now we show the definition of a number associated to a family of ideals that generalizes the notion of mixed multiplicity. This number is fundamental in the results of this paper.

We denote by \mathbb{Z}_{+}the set of non-negative integers. Let $a \in \mathbb{Z}$, we denote by $\mathbb{Z}_{\geqslant a}$ the set of integers $z \geqslant a$.

Definition 2.1 ([3]). Let (R, m) be a Noetherian local ring of dimension n. Let I_{1}, \ldots, I_{n} be ideals of R. Then we define the Rees mixed multiplicity of I_{1}, \ldots, I_{n} as

$$
\begin{equation*}
\sigma\left(I_{1}, \ldots, I_{n}\right)=\max _{r \in \mathbb{Z}_{+}} e\left(I_{1}+m^{r}, \ldots, I_{n}+m^{r}\right), \tag{2}
\end{equation*}
$$

when the number on the right hand side is finite. If the set of integers $\left\{e\left(I_{1}+m^{r}, \ldots, I_{n}+m^{r}\right): r \in \mathbb{Z}_{+}\right\}$is non-bounded then we set $\sigma\left(I_{1}, \ldots, I_{n}\right)=\infty$.

We remark that if I_{i} is an ideal of finite colength, for all $i=1, \ldots, n$, then $\sigma\left(I_{1}, \ldots, I_{n}\right)=e\left(I_{1}, \ldots, I_{n}\right)$. The next proposition characterizes the finiteness of $\sigma\left(I_{1}, \ldots, I_{n}\right)$.

Proposition 2.2 ([3, p.393]). Let I_{1}, \ldots, I_{n} be ideals of a Noetherian local ring (R, m) such that the residue field $k=R / m$ is infinite. Then $\sigma\left(I_{1}, \ldots, I_{n}\right)<\infty$ if and only if there exist elements $g_{i} \in I_{i}$, for $i=1, \ldots, n$, such that $\left\langle g_{1}, \ldots, g_{n}\right\rangle$ has finite colength. In this case, we have that $\sigma\left(I_{1}, \ldots, I_{n}\right)=e\left(g_{1}, \ldots, g_{n}\right)$ for sufficiently general elements $\left(g_{1}, \ldots, g_{n}\right) \in I_{1} \oplus \cdots \oplus I_{n}$.

Remark 2.3. It is worth pointing out that, if I_{1}, \ldots, I_{n} is a set of ideals of R such that $\sigma\left(I_{1}, \ldots, I_{n}\right)<\infty$, then $I_{1}+\cdots+I_{n}$ is an ideal of finite colength. Obviously the converse is not true.

The following result will be useful in subsequent sections.
Lemma 2.4 ([4, p. 392]). Let (R, m) be a Noetherian local ring of dimension $n \geqslant 1$. Let J_{1}, \ldots, J_{n} be ideals of R such that $\sigma\left(J_{1}, \ldots, J_{n}\right)<\infty$. Let I_{1}, \ldots, I_{n} be ideals of R such that $J_{i} \subseteq I_{i}$, for all $i=1, \ldots, n$. Then $\sigma\left(I_{1}, \ldots, I_{n}\right)<\infty$ and

$$
\sigma\left(J_{1}, \ldots, J_{n}\right) \geqslant \sigma\left(I_{1}, \ldots, I_{n}\right)
$$

Now we recall some basic definitions. Let us fix a coordinate system x_{1}, \ldots, x_{n} in \mathbb{C}^{n}. If $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}$, we will denote the monomial $x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$ by x^{k}. If $h \in \mathcal{O}_{n}$ and $h=\sum_{k} a_{k} x^{k}$ denotes the Taylor expansion of h around the origin, then the support of h is the set $\operatorname{supp}(h)=\left\{k \in \mathbb{Z}_{+}^{n}: a_{k} \neq 0\right\}$. If $h \neq 0$, the Newton polyhedron of h, denoted by $\Gamma_{+}(h)$, is the convex hull of the set $\left\{k+v: k \in \operatorname{supp}(h), v \in \mathbb{R}_{+}^{n}\right\}$. If $h=0$, then we set $\Gamma_{+}(h)=\emptyset$. If I is an ideal of \mathcal{O}_{n} and g_{1}, \ldots, g_{s} is a generating system of I, then we define the Newton polyhedron of I as the convex hull of $\Gamma_{+}\left(g_{1}\right) \cup \cdots \cup \Gamma_{+}\left(g_{r}\right)$. It is easy to check that the definition of $\Gamma_{+}(I)$ does not depend on the chosen generating system of I. We say that I is a monomial ideal of \mathcal{O}_{n} when I admits a generating system formed by monomials.

Definition 2.5. Let I_{1}, \ldots, I_{n} be monomial ideals of \mathcal{O}_{n} such that $\sigma\left(I_{1}, \ldots, I_{n}\right)<\infty$. Then we denote by $\delta\left(I_{1}, \ldots, I_{n}\right)$ the family of those maps $g=\left(g_{1}, \ldots, g_{n}\right):\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ for which $g^{-1}(0)=\{0\}, g_{i} \in I_{i}$, for all $i=1, \ldots, n$, and $\sigma\left(I_{1}, \ldots, I_{n}\right)=e\left(g_{1}, \ldots, g_{n}\right)$, where $e\left(g_{1}, \ldots, g_{n}\right)$ stands for the multiplicity of the ideal of \mathcal{O}_{n} generated by g_{1}, \ldots, g_{n}. The elements of $\delta\left(I_{1}, \ldots, I_{n}\right)$ are characterized in [3, Theorem 3.10].

We denote by $\ell_{0}\left(I_{1}, \ldots, I_{n}\right)$ the set formed by the maps $g=\left(g_{1}, \ldots, g_{n}\right) \in f\left(I_{1}, \ldots, I_{n}\right)$ such that $\Gamma_{+}\left(g_{i}\right)=\Gamma_{+}\left(I_{i}\right)$, for all $i=1, \ldots, n$.

3. The Łojasiewicz exponent of a set of ideals

In this section we introduce some results concerning the notion of Łojasiewicz exponent of a set of ideals in a Noetherian ring. These results will be applied in the next section.

Let I_{1}, \ldots, I_{n} be ideals of a local ring (R, m) such that $\sigma\left(I_{1}, \ldots, I_{n}\right)<\infty$. Then we define

$$
\begin{equation*}
r\left(I_{1}, \ldots, I_{n}\right)=\min \left\{r \in \mathbb{Z}_{+}: \sigma\left(I_{1}, \ldots, I_{n}\right)=e\left(I_{1}+m^{r}, \ldots, I_{n}+m^{r}\right)\right\} \tag{3}
\end{equation*}
$$

Theorem 3.1 ([4, p. 398]). Let I_{1}, \ldots, I_{n} be monomial ideals of \mathcal{O}_{n} such that $\sigma\left(I_{1}, \ldots, I_{n}\right)$ is finite. If $g \in s_{0}\left(I_{1}, \ldots, I_{n}\right)$, then $\mathcal{L}_{0}(g)$ depends only on I_{1}, \ldots, I_{n} and it is given by

$$
\begin{equation*}
\mathcal{L}_{0}(g)=\min _{s \geqslant 1} \frac{r\left(I_{1}^{s}, \ldots, I_{n}^{s}\right)}{s} . \tag{4}
\end{equation*}
$$

By the proof of the above theorem it is concluded that the infimum of the sequence $\left\{\frac{r\left(I_{1}^{s}, \ldots, I_{n}^{s}\right)}{s}\right\}_{s \geqslant 1}$ is actually a minimum. Theorem 3.1 motivates the following definition.

Definition 3.2. Let (R, m) be a Noetherian local ring of dimension n. Let I_{1}, \ldots, I_{n} be ideals of R. Let us suppose that $\sigma\left(I_{1}, \ldots, I_{n}\right)<\infty$. We define the Łojasiewicz exponent of I_{1}, \ldots, I_{n} as

$$
\mathcal{L}_{0}\left(I_{1}, \ldots, I_{n}\right)=\inf _{s \geqslant 1} \frac{r\left(I_{1}^{s}, \ldots, I_{n}^{s}\right)}{s} .
$$

As we will see in Lemma 3.3, we have that $r\left(I_{1}^{s}, \ldots, I_{n}^{s}\right) \leqslant \operatorname{sr}\left(I_{1}, \ldots, I_{n}\right)$, for all $s \in \mathbb{Z}_{\geqslant 1}$. Therefore $\mathcal{L}_{0}\left(I_{1}, \ldots, I_{n}\right) \leqslant$ $r\left(I_{1}, \ldots, I_{n}\right)$.

We can extend Definition 2.1 by replacing the maximal ideal m by an arbitrary ideal of finite colength, but the resulting number is the same. That is, under the hypothesis of Definition 2.1, let us denote by J an ideal of R of finite colength and let us suppose that $\sigma\left(I_{1}, \ldots, I_{n}\right)<\infty$. Then we define

$$
\sigma_{J}\left(I_{1}, \ldots, I_{n}\right)=\max _{r \in \mathbb{Z}_{+}} e\left(I_{1}+J^{r}, \ldots, I_{n}+J^{r}\right) .
$$

An easy computation reveals that $\sigma_{J}\left(I_{1}, \ldots, I_{n}\right)=\sigma\left(I_{1}, \ldots, I_{n}\right)$. We also define

$$
\begin{equation*}
r_{J}\left(I_{1}, \ldots, I_{n}\right)=\min \left\{r \in \mathbb{Z}_{+}: \sigma\left(I_{1}, \ldots, I_{n}\right)=e\left(I_{1}+J^{r}, \ldots, I_{n}+J^{r}\right)\right\} \tag{5}
\end{equation*}
$$

Let I be an ideal of R of finite colength. Then we denote by $r_{J}(I)$ the number $r_{J}(I, \ldots, I)$, where I is repeated n times. We deduce from the Rees multiplicity theorem that, if R is quasi-unmixed, then $r_{J}(I)=\min \left\{r \geqslant 1: J^{r} \subseteq \bar{I}\right\}$.
Lemma 3.3. Let (R, m) be a Noetherian local ring of dimension n. Let I_{1}, \ldots, I_{n} be ideals of R such that $\sigma\left(I_{1}, \ldots, I_{n}\right)<\infty$ and let J be an m-primary ideal. Then

$$
\begin{aligned}
& r_{J}\left(I_{1}^{s}, \ldots, I_{n}^{s}\right) \leqslant s r_{J}\left(I_{1}, \ldots, I_{n}\right) \\
& r_{J}\left(I_{1}, \ldots, I_{n}\right) \geqslant \frac{1}{s} r_{J}\left(I_{1}, \ldots, I_{n}\right)
\end{aligned}
$$

for all integer $s \geqslant 1$.
Proof. For the first inequality, set $r=r_{J}\left(I_{1}, \ldots, I_{n}\right)$. Thus $\sigma\left(I_{1}, \ldots, I_{n}\right)=e\left(I_{1}+J^{r}, \ldots, I_{n}+J^{r}\right)$. It is enough to prove that $\sigma\left(I_{1}^{s}, \ldots, I_{n}^{s}\right)=e\left(I_{1}^{s}+J^{r s}, \ldots, I_{n}^{s}+J^{r s}\right):$

$$
\begin{aligned}
e\left(I_{1}^{s}+J^{r s}, \ldots, I_{n}^{s}+J^{r s}\right) & =e\left(\overline{I_{1}^{s}+J^{r s}}, \ldots, \overline{I_{n}^{s}+J^{r s}}\right)=e\left(\overline{\left(\overline{\left.I_{1}+J^{r}\right)^{s}}\right.}, \ldots, \overline{\left(I_{n}+J^{r}\right)^{s}}\right) \\
& =e\left(\left(I_{1}+J^{r}\right)^{s}, \ldots,\left(I_{n}+J^{r}\right)^{s}\right)=s^{n} e\left(I_{1}+J^{r}, \ldots, I_{n}+J^{r}\right) \\
& =s^{n} \sigma\left(I_{1}, \ldots, I_{n}\right)=\sigma\left(I_{1}^{s}, \ldots, I_{n}^{s}\right)
\end{aligned}
$$

where last equality comes from [4, Lemma 2.6].
The second inequality comes directly from the definition of $r_{J}\left(I_{1}, \ldots, I_{n}\right)$.
It is easy to find examples of ideals I and J such that $r_{J}\left(I_{1}, \ldots, I_{n}\right) \neq r\left(I_{1}, \ldots, I_{n}\right)$ in general. This fact motivates the following definition.

Definition 3.4. Let (R, m) be a Noetherian local ring of dimension n. Let I_{1}, \ldots, I_{n} be ideals of R such that $\sigma\left(I_{1}, \ldots, I_{n}\right)<\infty$. Let J be an m-primary ideal of R. We define the Łojasiewicz exponent of I_{1}, \ldots, I_{n} with respect to J, denoted by $\mathcal{L}_{J}\left(I_{1}, \ldots, I_{n}\right)$, as

$$
\begin{equation*}
\mathcal{L}_{J}\left(I_{1}, \ldots, I_{n}\right)=\inf _{s \geqslant 1} \frac{r_{J}\left(I_{1}^{S}, \ldots, I_{n}^{S}\right)}{S} . \tag{6}
\end{equation*}
$$

If I is an m-primary ideal of R, then we denote by $\mathcal{L}_{J}(I)$ the number $\mathcal{L}_{J}(I, \ldots, I)$, where I is repeated n times.
Remark 3.5. Under the conditions of the previous definition, we observe that $\mathcal{L}_{J}\left(I_{1}, \ldots, I_{n}\right)$ can be seen as a limit inferior:

$$
\mathcal{L}_{J}\left(I_{1}, \ldots, I_{n}\right)=\liminf _{s \rightarrow \infty} \frac{r_{J}\left(I_{1}^{s}, \ldots, I_{n}^{s}\right)}{s} .
$$

Set $\ell=\mathcal{L}_{J}\left(I_{1}, \ldots, I_{n}\right)$. In order to prove the equality above, it is enough to see that for all $\epsilon>0$ and all $p \in \mathbb{Z}_{+}$, there exists an integer $m \geqslant p$ such that

$$
\frac{r_{J}\left(I_{1}^{m}, \ldots, I_{n}^{m}\right)}{m} \leqslant \ell+\epsilon
$$

Let us fix an $\epsilon>0$ and an integer $p \in \mathbb{Z}_{+}$. By definition, there exists $q \in \mathbb{Z}_{+}$such that

$$
\frac{r_{J}\left(I_{1}^{q}, \ldots, I_{n}^{q}\right)}{q} \leqslant \ell+\epsilon
$$

Let $s \in \mathbb{Z}_{+}$such that $s q \geqslant p$. Then, from Lemma 3.3 we obtain that

$$
\frac{r_{J}\left(I_{1}^{s q}, \ldots, I_{n}^{s q}\right)}{s q} \leqslant \frac{r_{J}\left(I_{1}^{q}, \ldots, I_{n}^{q}\right)}{q} \leqslant \ell+\epsilon .
$$

If $g:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ denotes an analytic map germ such that $g^{-1}(0)=\{0\}$ and J is an ideal of \mathcal{O}_{n} of finite colength, then we denote the number $\mathcal{L}_{J}(I)$, where I is the ideal generated by the component functions of g, by $\mathcal{L}_{J}(g)$. A straightforward reproduction of the argument in the proof of Theorem 3.1 consisting of replacing the powers of the maximal ideal by the powers of a given ideal of finite colength leads to the following result, which is analogous to Theorem 3.1.

Theorem 3.6. Let I_{1}, \ldots, I_{n} be monomial ideals of \mathcal{O}_{n} such that $\sigma\left(I_{1}, \ldots, I_{n}\right)$ is finite and let J be a monomial ideal of \mathcal{O}_{n} of finite colength. Then the sequence $\left\{\frac{r_{j}\left(I_{1}^{s}, \ldots, I_{n}^{s}\right)}{s}\right\}_{s \geqslant 1}$ attains a minimum and if $g \in \wp_{0}\left(I_{1}, \ldots, I_{n}\right)$ then

$$
\begin{equation*}
\mathcal{L}_{J}(g)=\mathcal{L}_{J}\left(I_{1}, \ldots, I_{n}\right)=\min _{s \geqslant 1} \frac{r_{J}\left(I_{1}^{s}, \ldots, I_{n}^{s}\right)}{s} . \tag{7}
\end{equation*}
$$

Lemma 3.7. Under the hypothesis of Lemma 3.3 we have

$$
\begin{aligned}
& \mathcal{L}_{J}\left(I_{1}^{s}, \ldots, I_{n}^{s}\right)=s \mathcal{L}_{J}\left(I_{1}, \ldots, I_{n}\right) \\
& \mathcal{L}_{J s}\left(I_{1}, \ldots, I_{n}\right)=\frac{1}{s} \mathcal{L}_{J}\left(I_{1}, \ldots, I_{n}\right)
\end{aligned}
$$

for all $s \in \mathbb{Z}_{\geqslant 1}$.
Proof. For the first equality

$$
\mathcal{L}_{J}\left(I_{1}^{s}, \ldots, I_{n}^{s}\right)=\inf _{p \geqslant 1} \frac{r_{J}\left(I_{1}^{s p}, \ldots, I_{n}^{s p}\right)}{p}=s \inf _{p \geqslant 1} \frac{r_{J}\left(I_{1}^{s p}, \ldots, I_{n}^{s p}\right)}{s p} \geqslant s \mathcal{L}_{J}\left(I_{1}, \ldots, I_{n}\right) .
$$

On the other hand, by Lemma 3.3 we obtain

$$
\inf _{p \geqslant 1} \frac{r_{J}\left(I_{1}^{s p}, \ldots, I_{n}^{s p}\right)}{p} \leqslant s \inf _{p \geqslant 1} \frac{r_{J}\left(I_{1}^{p}, \ldots, I_{n}^{p}\right)}{p}=s \mathcal{L}_{J}\left(I_{1}, \ldots, I_{n}\right) .
$$

Let us see the second equality. Applying Lemma 3.3 we have

$$
\mathcal{L}_{J^{s}}\left(I_{1}, \ldots, I_{n}\right)=\inf _{p \geqslant 1} \frac{r_{J^{s}}\left(I_{1}^{p}, \ldots, I_{n}^{p}\right)}{p} \geqslant \frac{1}{s} \inf _{p \geqslant 1} \frac{r_{J}\left(I_{1}^{p}, \ldots, I_{n}^{p}\right)}{p}=\frac{1}{s} \mathcal{L}_{J}\left(I_{1}, \ldots, I_{n}\right) .
$$

Let us denote the number $r_{J^{s}}\left(I_{1}^{p}, \ldots, I_{n}^{p}\right)$ by r_{p}, for all $p \geqslant 1$. Then

$$
\sigma\left(I_{1}^{p}, \ldots, I_{n}^{p}\right)>e\left(I_{1}^{p}+J^{s\left(r_{p}-1\right)}, \ldots, I_{n}^{p}+J^{s\left(r_{p}-1\right)}\right)
$$

In particular

$$
r_{J}\left(I_{1}^{p}, \ldots, I_{n}^{p}\right)>s\left(r_{p}-1\right)
$$

for all $p \geqslant 1$. Dividing the previous inequality by p and taking $\lim _{\inf }^{p \rightarrow \infty}$ we obtain by Remark 3.5 , that

$$
\mathcal{L}_{J}\left(I_{1}, \ldots, I_{n}\right)=\liminf _{p \rightarrow \infty} \frac{r_{J}\left(I_{1}^{p}, \ldots, I_{n}^{p}\right)}{p} \geqslant s \liminf _{p \rightarrow \infty}\left(\frac{r_{p}-1}{p}\right)=s \mathcal{L}_{J^{s}}\left(I_{1}, \ldots, I_{n}\right) .
$$

Lemma 3.8. Let (R, m) be a quasi-unmixed Noetherian local ring of dimension n. Let I_{1}, \ldots, I_{n} be ideals of R such that $\sigma\left(I_{1}, \ldots, I_{n}\right)<\infty$. If J_{1}, J_{2} are m-primary ideals of R then

$$
\mathcal{L}_{J_{1}}\left(I_{1}, \ldots, I_{n}\right) \leqslant \mathcal{L}_{J_{1}}\left(J_{2}\right) \mathcal{L}_{J_{2}}\left(I_{1}, \ldots, I_{n}\right)
$$

Proof. By (5) we have that

$$
r_{J_{1}}\left(J_{2}\right)=\min \left\{r \geqslant 1: e\left(J_{2}\right)=e\left(J_{2}+J_{1}^{r}\right)\right\} .
$$

Given an integer $r \geqslant 1$, the condition $e\left(J_{2}\right)=e\left(J_{2}+J_{1}^{r}\right)$ is equivalent to saying that $J_{1}^{r} \subseteq \overline{J_{2}}$, by the Rees multiplicity theorem (see [8, p. 222]). Therefore, an elementary computation shows that

$$
\begin{equation*}
r_{J_{1}}\left(I_{1}, \ldots, I_{n}\right) \leqslant r_{J_{1}}\left(J_{2}\right) r_{J_{2}}\left(I_{1}, \ldots, I_{n}\right) \tag{8}
\end{equation*}
$$

By the generality of the previous inequality, we have

$$
\begin{equation*}
r_{J_{1}}\left(I_{1}^{s}, \ldots, I_{n}^{s}\right) \leqslant r_{J_{1}}\left(J_{2}^{p}\right) r_{J_{2}^{p}}\left(I_{1}^{s}, \ldots, I_{n}^{s}\right) \tag{9}
\end{equation*}
$$

for all integers $p, s \geqslant 1$. The inequality (9) shows that

$$
\begin{aligned}
\mathcal{L}_{J_{1}}\left(I_{1}, \ldots, I_{n}\right) & =\inf _{s \geqslant 1} \frac{r_{J_{1}}\left(I_{1}^{s}, \ldots, I_{n}^{s}\right)}{s} \leqslant \inf _{s \geqslant 1} \frac{r_{J_{1}}\left(J_{2}^{p}\right) r_{J_{2}^{p}}\left(I_{1}^{s}, \ldots, I_{n}^{s}\right)}{s} \\
& =r_{J_{1}}\left(J_{2}^{p}\right) \mathcal{L}_{J_{2}^{p}}\left(I_{1}, \ldots, I_{n}\right)=r_{J_{1}}\left(J_{2}^{p}\right) \frac{1}{p} \mathcal{L}_{J_{2}}\left(I_{1}, \ldots, I_{n}\right)
\end{aligned}
$$

for all integer $p \geqslant 1$, where the last equality comes from Lemma 3.7. Then

$$
\mathcal{L}_{J_{1}}\left(I_{1}, \ldots, I_{n}\right) \leqslant\left(\inf _{p \geqslant 1} \frac{r_{J_{1}}\left(J_{2}^{p}\right)}{p}\right) \mathcal{L}_{J_{2}}\left(I_{1}, \ldots, I_{n}\right)=\mathcal{L}_{J_{1}}\left(J_{2}\right) \mathcal{L}_{J_{2}}\left(I_{1}, \ldots, I_{n}\right) .
$$

We recall the following two results, which will be applied in the next section.
Proposition 3.9 ([4]). Let (R, m) be a Noetherian local ring of dimension n. For each $i=1, \ldots, n$ let us consider ideals I_{i} and J_{i} such that $I_{i} \subseteq J_{i}$. Let suppose that $\sigma\left(I_{1}, \ldots, I_{n}\right)<\infty$ and that $\sigma\left(I_{1}, \ldots, I_{n}\right)=\sigma\left(J_{1}, \ldots, J_{n}\right)$. Then

$$
\begin{equation*}
\mathcal{L}_{0}\left(I_{1}, \ldots, I_{n}\right) \leqslant \mathcal{L}_{0}\left(J_{1}, \ldots, J_{n}\right) \tag{10}
\end{equation*}
$$

Let us denote the canonical basis in \mathbb{R}^{n} by e_{1}, \ldots, e_{n}.
Proposition 3.10 ([2]). Let J be an ideal of finite colength of \mathcal{O}_{n} and set $r_{i}=\min \left\{r: r e_{i} \in \Gamma_{+}(J)\right\}$, for all $i=1, \ldots$, n. Then

$$
\max \left\{r_{1}, \ldots, r_{n}\right\} \leqslant \mathcal{L}_{0}(J)
$$

and equality holds if \bar{J} is a monomial ideal.

4. Weighted homogeneous filtrations

Let us fix a vector $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{Z}_{\geqslant 1}^{n}$. We will usually refer to w as the vector of weights. Let $h \in \mathcal{O}_{n}, h \neq 0$, the degree of h with respect to w, or w-degree of h, is defined as

$$
d_{w}(h)=\min \{\langle k, w\rangle: k \in \operatorname{supp}(h)\}
$$

where \langle,$\rangle stands for the usual scalar product. In particular, if x_{1}, \ldots, x_{n}$ denotes a system of coordinates in \mathbb{C}^{n} and $x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$ is a monomial in \mathcal{O}_{n}, then $d_{w}\left(x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}\right)=w_{1} k_{1}+\cdots+w_{n} k_{n}$. By convention, we set $d_{w}(0)=+\infty$. If $h \in \mathcal{O}_{n}$ and $h=\sum_{k} a_{k} x^{k}$ is the Taylor expansion of h around the origin, then we define the principal part of h with respect to w as the polynomial given by the sum of those terms $a_{k} x^{k}$ such that $\langle k, w\rangle=d_{w}(h)$. We denote this polynomial by $p_{w}(h)$.

Definition 4.1. We say that a function $h \in \mathcal{O}_{n}$ is weighted homogeneous of degree d with respect to w if $\langle k, w\rangle=d$, for all $k \in \operatorname{supp}(h)$. The function h is said to be semi-weighted homogeneous of degree d with respect to w when $p_{w}(h)$ has an isolated singularity at the origin. Note that $p_{w}(h)$ is weighted homogeneous with respect to w.

It is well known that, if h is a semi-weighted homogeneous function, then h has an isolated singularity at the origin and that h and $p_{w}(h)$ have the same Milnor number (see for instance [1, Section 12]). Let $g=\left(g_{1}, \ldots, g_{n}\right):\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ be an analytic map germ, let us denote the map $\left(p_{w}\left(g_{1}\right), \ldots, p_{w}\left(g_{n}\right)\right)$ by $p_{w}(g)$. The map g is said to be semi-weighted homogeneous with respect to w when $\left(p_{w}(g)\right)^{-1}(0)=\{0\}$.

If I is an ideal of \mathcal{O}_{n}, then we define the degree of I with respect to w, or w-degree of I, as

$$
d_{w}(I)=\min \left\{d_{w}(h): h \in I\right\} .
$$

If g_{1}, \ldots, g_{r} constitutes a generating system of I, then it is straightforward to see that $d_{w}(I)=\min \left\{d_{w}\left(g_{1}\right), \ldots, d_{w}\left(g_{r}\right)\right\}$.
Let $r \in \mathbb{Z}_{+}$, then we denote by \mathcal{B}_{r} the set of all $h \in \mathcal{O}_{n}$ such that $d_{w}(h) \geqslant r$ (therefore $0 \in \mathcal{B}_{r}$). We observe that
(a) \mathcal{B}_{r} is an integrally closed monomial ideal of finite colength, for all $r \geqslant 1$;
(b) $\mathcal{B}_{r} \mathcal{B}_{s} \subseteq \mathcal{B}_{r+s}, r, s \geqslant 1$;
(c) $\mathcal{B}_{0}=\mathcal{O}_{n}$.

The family of ideals $\left\{\mathcal{B}_{r}\right\}_{r \geqslant 1}$ is called the weighted homogeneous filtration induced by w. We denote by \mathcal{A}_{r} the ideal of \mathcal{O}_{n} generated by the monomials x^{k} such that $d_{w}\left(x^{k}\right)=r$. If there is not any monomial x^{k} such that $d_{w}\left(x^{k}\right)=r$ then we set $\underline{\mathcal{A}_{r}}=0$. Given an integer $r \geqslant 1$, we observe that $\mathcal{A}_{r} \subseteq \mathcal{B}_{r}$ and that $\overline{\mathcal{A}_{r}} \neq \mathcal{B}_{r}$ in general. Moreover it follows easily that $\overline{\mathcal{A}_{r}}=\mathcal{B}_{r}$ if and only if \mathcal{A}_{r} is an ideal of finite colength of \mathcal{O}_{n}.

If $r_{1}, \ldots, r_{n} \in \mathbb{Z}_{\geqslant 1}$, then it is not true in general that $\sigma\left(\mathcal{A}_{r_{1}}, \ldots, \mathcal{A}_{r_{n}}\right)<\infty$, even if $\mathcal{A}_{r_{i}} \neq 0$, for all $i=1, \ldots, n$. However $\sigma\left(\mathcal{B}_{r_{1}}, \ldots, \mathcal{B}_{r_{n}}\right)<\infty$, since $\mathcal{B}_{r_{i}}$ has finite colength, for all $i=1, \ldots, n$. For instance, let us consider the vector $w=(3,1)$. Then we have

$$
\mathcal{A}_{4}=\left\langle x y, y^{4}\right\rangle, \quad \mathcal{A}_{5}=\left\langle x y^{2}, y^{5}\right\rangle .
$$

We observe that the ideal $\mathcal{A}_{4}+\mathcal{A}_{5}$ does not have finite colength, therefore $\sigma\left(\mathcal{A}_{4}, \mathcal{A}_{5}\right)$ is not finite (see Remark 2.3).
Proposition 4.2. Let $r_{1}, \ldots, r_{n} \in \mathbb{Z}_{\geqslant 1}$. If $\sigma\left(\mathcal{A}_{r_{1}}, \ldots, \mathcal{A}_{r_{n}}\right)<\infty$ then $\sigma\left(\mathcal{B}_{r_{1}}, \ldots, \mathcal{B}_{r_{n}}\right)<\infty$ and

$$
\sigma\left(\mathcal{A}_{r_{1}}, \ldots, \mathcal{A}_{r_{n}}\right)=\sigma\left(\mathcal{B}_{r_{1}}, \ldots, \mathcal{B}_{r_{n}}\right)=\frac{r_{1} \cdots r_{n}}{w_{1} \cdots w_{n}} .
$$

Proof. By Proposition 2.2, there exists a sufficiently general element $\left(h_{1}, \ldots, h_{n}\right) \in \mathcal{B}_{r_{1}} \oplus \cdots \oplus \mathcal{B}_{r_{n}}$ such that

$$
\begin{equation*}
\sigma\left(\mathcal{B}_{r_{1}}, \ldots, \mathcal{B}_{r_{n}}\right)=e\left(h_{1}, \ldots, h_{n}\right) \tag{11}
\end{equation*}
$$

The condition $\sigma\left(\mathcal{A}_{r_{1}}, \ldots, \mathcal{A}_{r_{n}}\right)<\infty$ implies that $\mathcal{A}_{r_{i}} \neq 0$, for all $i=1, \ldots, n$. The ideal $\mathcal{A}_{r_{i}}$ is generated by the monomials of w-degree r_{i}, for all $i=1, \ldots, n$, then h_{i} can be written as $h_{i}=g_{i}+g_{i}^{\prime}$, for all $i=1 \ldots, n$, where $\left(g_{1}, \ldots, g_{n}\right)$ is a sufficiently
general element of $\mathcal{A}_{r_{1}} \oplus \cdots \oplus \mathcal{A}_{r_{n}}$ and $g_{i}^{\prime} \in \mathcal{O}_{n}$ verifies that $d_{w}\left(g_{i}^{\prime}\right)>r_{i}$, for all $i=1, \ldots, n$. Therefore $p_{w}\left(h_{i}\right)=g_{i}$, for all $i=1, \ldots, n$.

Let g denote the map $\left(g_{1}, \ldots, g_{n}\right):\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$. The condition $\sigma\left(\mathcal{A}_{r_{1}}, \ldots, \mathcal{A}_{r_{n}}\right)<\infty$ and the genericity of g imply that g is finite, that is, $g^{-1}(0)=\{0\}$ and $\sigma\left(\mathcal{A}_{r_{1}}, \ldots, \mathcal{A}_{r_{n}}\right)=e\left(g_{1}, \ldots, g_{n}\right)$. Consequently the map $h:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ is semi-weighted homogeneous with respect to w. By [1, Section 12] (see also [7] for a more general phenomenon), this implies that

$$
e\left(h_{1}, \ldots, h_{n}\right)=e\left(g_{1}, \ldots, g_{n}\right)=\frac{r_{1} \cdots r_{n}}{w_{1} \cdots w_{n}} .
$$

Then the result follows.
Definition 4.3. Let J_{1}, \ldots, J_{n} be a family of ideals of \mathcal{O}_{n} and let $r_{i}=d_{w}\left(J_{i}\right)$, for all $i=1, \ldots, n$. We say that J_{1}, \ldots, J_{n} admits $a w$-matching if there exists a permutation τ of $\{1, \ldots, n\}$ and an index $i_{0} \in\{1, \ldots, n\}$ such that
(a) $w_{i_{0}}=\min \left\{w_{1}, \ldots, w_{n}\right\}$,
(b) $r_{\tau\left(i_{0}\right)}=\max \left\{r_{1}, \ldots, r_{n}\right\}$ and
(c) the pure monomial $x_{i}^{r_{\tau(i)} / w_{i}}$ belongs to $J_{\tau(i)}$, for all $i \neq i_{0}$.

Remark 4.4. If $r \in \mathbb{Z}_{\geqslant 1}$ then we observe that \mathcal{A}_{r} has finite colength if and only if w_{i} divides r, for all $i=1, \ldots, n$. Let $r_{1}, \ldots, r_{n} \in \mathbb{Z}_{\geqslant 1}$ such that $\mathcal{A}_{r_{i}}$ has finite colength, for all $i=1, \ldots, n$. Then condition (c) of the above definition is not a restriction in this case and therefore $\mathcal{A}_{r_{1}}, \ldots, \mathcal{A}_{r_{n}}$ admits a w-matching.

Let us consider the case $n=2$ of the previous definition. Therefore, let $r_{1}, r_{2} \in \mathbb{Z} \geqslant 1$ with $r_{1}>r_{2}$ and let us suppose that $w_{1}<w_{2}$. Let J_{1}, J_{2} be ideals of \mathcal{O}_{2} such that $d_{w}\left(J_{i}\right)=r_{i}, i=1$, 2. Then J_{1}, J_{2} admits a w-matching if and only if $y^{r_{2} / w_{2}} \in J_{2}$.
Example 4.5. Set $w=(1,2,3,4)$ and $r_{1}=10, r_{2}=9, r_{3}=8, r_{4}=6$. The family of ideals given by

$$
J_{1}=\left\langle x_{1} x_{3}^{3}\right\rangle, \quad J_{2}=\left\langle x_{3}^{3}, x_{1} x_{4}^{2}\right\rangle, \quad J_{3}=\left\langle x_{4}^{2}, x_{1}^{2} x_{3}^{2}\right\rangle, \quad J_{4}=\left\langle x_{2}^{3}, x_{2} x_{4}\right\rangle,
$$

admits a w-matching. Observe that here $i_{0}=1$ and the permutation τ is defined by $\tau(1)=1, \tau(2)=4, \tau(3)=2, \tau(4)=3$.
Let us observe that, if J_{1}, \ldots, J_{n} admits a w-matching, then it is always possible to reorder the ideals J_{i} in such a way that $\tau\left(i_{0}\right)=i_{0}$, and therefore one could restrict to the case $\tau=$ id after a permutation of the ideals J_{i}. But the permutation τ is specially relevant when considering ideals coming from the gradient of a function f (see Example 4.12).
Lemma 4.6. Let $r_{1}, \ldots, r_{n} \in \mathbb{Z}_{\geqslant 1}$ and let I_{1}, \ldots, I_{n} be monomial ideals of \mathcal{O}_{n} such that $d_{w}\left(I_{i}\right)=r_{i}$, for all $i=1, \ldots, n$, and $\sigma\left(I_{1}, \ldots, I_{n}\right)=\frac{r_{1} \cdots r_{n}}{w_{1} \cdots w_{n}}$. Let J be an ideal of \mathcal{O}_{n} such that $\left.\bar{J}=\overline{\left\langle x_{1}^{r \alpha_{1}}, \ldots, x_{n}^{r \alpha_{n}}\right\rangle}\right\rangle$, for somer $\geqslant 1$, where $\alpha_{i}=\frac{\bar{w}}{w_{i}}$ and $\bar{w}=w_{1} \cdots w_{n}$. Then

$$
\begin{equation*}
e\left(I_{1}+J, \ldots, I_{n}+J\right)=\frac{\min \left\{r_{1}, \bar{w} r\right\} \cdots \min \left\{r_{n}, \bar{w} r\right\}}{\bar{w}} \tag{12}
\end{equation*}
$$

Proof. Let $A=\left\{i: r_{i}<r \bar{w}\right\}$. After a reordering of the integers r_{1}, \ldots, r_{n} we can assume that $A=\{1, \ldots, s\}$, for some $s \geqslant 1$. Then, since $\bar{J}=\mathcal{B}_{r \bar{w}}$ we conclude that $e\left(I_{1}+J, \ldots, I_{n}+J\right)=e\left(I_{1}+J, \ldots, I_{s}+J, J, \ldots, J\right)$.

By Proposition 2.2, there exist an element $\left(g_{1}, \ldots, g_{n}\right) \in I_{1} \oplus \cdots \oplus I_{n}$ such that $d_{w}\left(g_{i}\right)=r_{i}$, for all $i=1, \ldots, n$, and

$$
\begin{equation*}
e\left(g_{1}, \ldots, g_{n}\right)=\sigma\left(I_{1}, \ldots, I_{n}\right)=\frac{r_{1} \cdots r_{n}}{w_{1} \cdots w_{n}} \tag{13}
\end{equation*}
$$

Let us denote by R the quotient ring $\mathcal{O}_{n} /\left\langle p_{w}\left(g_{1}\right), \ldots, p_{w}\left(g_{s}\right)\right\rangle$ and let H denote the ideal of \mathcal{O}_{n} generated by $x_{1}^{r \alpha_{1}}, \ldots, x_{n}^{r \alpha_{n}}$.
Relation (13) implies, by [6, Theorem 3.3], that the ideal generated by $p_{w}\left(g_{1}\right), \ldots, p_{w}\left(g_{n}\right)$ has finite colength. In particular, these elements form a regular sequence and then $\operatorname{dim}(R)=n-s$. Hence there exists a sufficiently general element (h_{1}, \ldots, h_{n-s}) $H \oplus \cdots \oplus H$ such that the images of the h_{i} in R generate a reduction of the image of J in R, by the theorem of existence of reductions (see [8, p. 166]). In particular, the ideal $K=\left\langle p_{w}\left(g_{1}\right), \ldots, p_{w}\left(g_{s}\right), h_{1}, \ldots, h_{n-s}\right\rangle$ has finite colength.

Since h_{i} is a generic \mathbb{C}-linear combination of $x_{1}^{r \alpha_{1}}, \ldots, x_{n}^{r \alpha_{n}}$, for all $i=1, \ldots, n$, we have that $p_{w}\left(h_{i}\right)=h_{i}$, for all $i=$ $1, \ldots, n$. Then $K=\left\langle p_{w}\left(g_{1}\right), \ldots, p_{w}\left(g_{s}\right), p_{w}\left(h_{1}\right), \ldots, p_{w}\left(h_{n-s}\right)\right\rangle$. Therefore

$$
\begin{equation*}
e(K)=\frac{r_{1} \cdots r_{s}(\bar{w} r)^{n-s}}{w_{1} \cdots w_{n}}=\frac{\min \left\{r_{1}, \bar{w} r\right\} \cdots \min \left\{r_{n}, \bar{w} r\right\}}{\bar{w}}, \tag{14}
\end{equation*}
$$

where the first equality comes from [1, Section 12] (see also [6, Theorem 3.3]).
Since I_{i} is a monomial ideal, for all $i=1, \ldots, n$, we have that $p_{w}\left(g_{i}\right) \in I_{i}$, for all $i=1, \ldots, n$. In particular we have $e(K) \geqslant e\left(I_{1}+J, \ldots, I_{n}+J\right)$, by Lemma 2.4. Then

$$
\begin{equation*}
e(K) \geqslant e\left(I_{1}+H, \ldots, I_{n}+H\right) \geqslant \frac{\min \left\{r_{1}, \bar{w} r\right\} \cdots \min \left\{r_{n}, \bar{w} r\right\}}{\bar{w}}, \tag{15}
\end{equation*}
$$

where the second inequality follows from [6, Theorem 3.3].

The hypothesis $\bar{J}=\bar{H}$ implies that

$$
\begin{equation*}
e\left(I_{1}+J, \ldots, I_{n}+J\right)=e\left(I_{1}+H, \ldots, I_{n}+H\right) \tag{16}
\end{equation*}
$$

Then the result follows by joining (14)-(16).
Theorem 4.7. Let $r_{1}, \ldots, r_{n} \in \mathbb{Z} \geqslant 1$ such that $\sigma\left(\mathcal{A}_{r_{1}}, \ldots, \mathcal{A}_{r_{n}}\right)<\infty$. Let J_{1}, \ldots, J_{n} be a set of ideals of \mathcal{O}_{n} with $d_{w}\left(J_{i}\right)=r_{i}$, for all $i=1, \ldots, n$, and $\sigma\left(J_{1}, \ldots, J_{n}\right)=\sigma\left(\mathcal{A}_{r_{1}}, \ldots, \mathcal{A}_{r_{n}}\right)$. Then

$$
\begin{equation*}
\mathcal{L}_{0}\left(J_{1}, \ldots, J_{n}\right) \leqslant \mathcal{L}_{0}\left(\mathcal{B}_{r_{1}}, \ldots, \mathcal{B}_{r_{n}}\right) \leqslant \frac{\max \left\{r_{1}, \ldots, r_{n}\right\}}{\min \left\{w_{1}, \ldots, w_{n}\right\}} \tag{17}
\end{equation*}
$$

and the above inequalities turn into equalities if J_{1}, \ldots, J_{n} admit a w-matching.
Proof. The condition $\sigma\left(\mathcal{A}_{r_{1}}, \ldots, \mathcal{A}_{r_{n}}\right)<\infty$ and the equality $\sigma\left(J_{1}, \ldots, J_{n}\right)=\sigma\left(\mathcal{A}_{r_{1}}, \ldots, \mathcal{A}_{r_{n}}\right)$ imply that

$$
\sigma\left(J_{1}, \ldots, J_{n}\right)=\sigma\left(\mathcal{B}_{r_{1}}, \ldots, \mathcal{B}_{r_{n}}\right)=\frac{r_{1} \cdots r_{n}}{w_{1} \cdots w_{n}}
$$

by Proposition 4.2. Then we can apply Proposition 3.9 to deduce that

$$
\mathcal{L}_{0}\left(J_{1}, \ldots, J_{n}\right) \leqslant \mathcal{L}_{0}\left(\mathcal{B}_{r_{1}}, \ldots, \mathcal{B}_{r_{n}}\right)
$$

Let us denote $\max \left\{r_{1}, \ldots, r_{n}\right\}$ and $\min \left\{w_{1}, \ldots, w_{n}\right\}$ by p and q, respectively. Let us see that $\mathcal{L}_{0}\left(\mathcal{B}_{r_{1}}, \ldots, \mathcal{B}_{r_{n}}\right) \leqslant \frac{p}{q}$.
Let us denote by \bar{w} the product $w_{1} \cdots w_{n}$ and let us consider the ideal $J=\left\langle x_{1}^{\alpha_{1}}, \ldots, x_{n}^{\alpha_{n}}\right\rangle$, where $\alpha_{i}=\frac{\bar{w}}{w_{i}}$, for all $i=1, \ldots, n$. Since $\sigma\left(\mathcal{B}_{r_{1}}, \ldots, \mathcal{B}_{r_{n}}\right)<\infty$, it makes sense to compute the number $r_{J}\left(\mathcal{B}_{r_{1}}^{s}, \ldots, \mathcal{B}_{r_{n}}^{s}\right)$, for all $s \geqslant 1$:

$$
\begin{aligned}
r_{J}\left(\mathcal{B}_{r_{1}}^{s}, \ldots, \mathcal{B}_{r_{n}}^{s}\right) & =\min \left\{r \geqslant 1: \sigma\left(\mathcal{B}_{r_{1}}^{s}, \ldots, \mathcal{B}_{r_{n}}^{s}\right)=e\left(\mathcal{B}_{r_{1}}^{s}+J^{r}, \ldots, \mathcal{B}_{r_{n}}^{s}+J^{r}\right)\right\} \\
& =\min \left\{r \geqslant 1: \frac{s r_{1} \cdots s r_{n}}{\bar{w}}=\frac{\min \left\{s r_{1}, \bar{w} r\right\} \cdots \min \left\{s r_{n}, \bar{w} r\right\}}{\bar{w}}\right\} \\
& =\min \left\{r \geqslant 1: \bar{w} r \geqslant \max \left\{s r_{1}, \ldots, s r_{n}\right\}\right\} \\
& =\min \left\{r \geqslant 1: r \geqslant \frac{\max \left\{s r_{1}, \ldots, s r_{n}\right\}}{\bar{w}}\right\}=\left\lceil\frac{\max \left\{s r_{1}, \ldots, s r_{n}\right\}}{\bar{w}}\right\rceil,
\end{aligned}
$$

where $\lceil a\rceil$ denotes the least integer greater than or equal to a, for any $a \in \mathbb{R}$, and the second equality is a direct application of Lemma 4.6. Therefore

$$
\begin{aligned}
\mathcal{L}_{J}\left(\mathcal{B}_{r_{1}}, \ldots, \mathcal{B}_{r_{n}}\right) & =\inf _{s \geqslant 1} \frac{r_{J}\left(\mathcal{B}_{r_{1}}^{s}, \ldots, \mathcal{B}_{r_{n}}^{s}\right)}{s} \leqslant \inf _{a \geqslant 1} \frac{r_{J}\left(\mathcal{B}_{r_{1}}^{a \bar{w}}, \ldots, \mathcal{B}_{r_{n}}^{a \bar{w}}\right)}{a \bar{w}} \\
& =\inf _{a \geqslant 1} \frac{1}{a \bar{w}}\left\lceil\frac{\max \left\{a \bar{w} r_{1}, \ldots, a \bar{w} r_{n}\right\}}{\bar{w}}\right\rceil=\frac{\max \left\{r_{1}, \ldots, r_{n}\right\}}{\bar{w}} .
\end{aligned}
$$

Moreover, by Proposition 3.10 we have

$$
\mathcal{L}_{0}(J)=\max \left\{\alpha_{1}, \ldots, \alpha_{n}\right\}=\frac{\bar{w}}{\min \left\{w_{1}, \ldots, w_{n}\right\}}
$$

since J is a monomial ideal. Therefore, by Lemma 3.8 we obtain

$$
\begin{aligned}
\mathcal{L}_{0}\left(\mathcal{B}_{r_{1}}, \ldots, \mathcal{B}_{r_{n}}\right) & \leqslant \mathcal{L}_{0}(J) \mathcal{L}_{J}\left(\mathcal{B}_{r_{1}}, \ldots, \mathcal{B}_{r_{n}}\right) \\
& \leqslant \frac{\bar{w}}{\min \left\{w_{1}, \ldots, w_{n}\right\}} \frac{\max \left\{r_{1}, \ldots, r_{n}\right\}}{\bar{w}}=\frac{\max \left\{r_{1}, \ldots, r_{n}\right\}}{\min \left\{w_{1}, \ldots, w_{n}\right\}} .
\end{aligned}
$$

Let us prove that $\mathcal{L}_{0}\left(J_{1}, \ldots, J_{n}\right) \geqslant \frac{p}{q}$ supposing that J_{1}, \ldots, J_{n} admit a w-matching. This inequality holds if and only if

$$
\frac{r\left(J_{1}^{s}, \ldots, J_{n}^{s}\right)}{s} \geqslant \frac{p}{q}
$$

for all $s \geqslant 1$. By Lemma 3.3 we have that $\operatorname{qr}\left(J_{1}^{s}, \ldots, J_{n}^{s}\right) \geqslant r\left(J_{1}^{s q}, \ldots, J_{n}^{s q}\right)$, for all $s \geqslant 1$. Therefore it suffices to show that

$$
\begin{equation*}
r\left(J_{1}^{s q}, \ldots, J_{n}^{s q}\right)>s p-1 \tag{18}
\end{equation*}
$$

for all $s \geqslant 1$. Let us fix an integer $s \geqslant 1$, then relation (18) is equivalent to saying that

$$
\begin{equation*}
\sigma\left(J_{1}^{s q}, \ldots, J_{n}^{s q}\right)>e\left(J_{1}^{s q}+m^{s p-1}, \ldots, J_{n}^{s q}+m^{s p-1}\right) . \tag{19}
\end{equation*}
$$

Since J_{1}, \ldots, J_{n} admits a w-matching, let us consider a permutation τ of $\{1, \ldots, n\}$ such that
(a) $w_{i_{0}}=\min \left\{w_{1}, \ldots, w_{n}\right\}$,
(b) $r_{\tau\left(i_{0}\right)}=\max \left\{r_{1}, \ldots, r_{n}\right\}$ and
(c) the pure monomial $x_{i}^{r_{\tau(i)} / w_{i}}$ belongs to $J_{\tau(i)}$ for all $i \neq i_{0}$.

Let us define the ideal

$$
H=\left\langle x_{i}^{\frac{\left.r_{\tau(i)}\right)^{s q}}{w_{i}}}: i \neq i_{0}\right\rangle+\left\langle x_{i_{0}}^{s p-1}\right\rangle .
$$

Then

$$
\begin{aligned}
e(H) & =e\left(x_{1}^{\frac{r_{\tau(1)} s q}{w_{1}}}, \ldots, x_{i_{0}-1}^{\frac{r_{\tau\left(i_{0}-1\right)^{s q}}^{w_{0}-1}}{s}}, x_{i_{0}}^{s p-1}, x_{i_{0}+1}^{\frac{r_{\tau\left(i_{0}+1\right)^{s q}}^{w_{0}+1}}{s i}}, \ldots, x_{n}^{\frac{r_{\tau(n)} s q}{w_{n}}}\right) \\
& =(s q)^{n-1} \frac{r_{1} \cdots r_{n}}{r_{\tau\left(i_{0}\right)}} \frac{w_{i_{0}}}{w_{1} \cdots w_{n}}(s p-1) .
\end{aligned}
$$

Since $x_{i}{ }^{\frac{r_{\tau(i)}}{w_{i}}} \in J_{\tau(i)}$ for all $i \in\{1, \ldots, n\} \backslash\left\{i_{0}\right\}$, and $x_{i_{0}}^{s p-1} \in m^{s p-1}$, we can apply Lemma 2.4 to conclude that

$$
\begin{equation*}
e(H) \geqslant e\left(J_{\tau(1)}^{s q}+m^{s p-1}, \ldots, J_{\tau(n)}^{s q}+m^{s p-1}\right)=e\left(J_{1}^{s q}+m^{s p-1}, \ldots, J_{n}^{s q}+m^{s p-1}\right) . \tag{20}
\end{equation*}
$$

Hence, if we prove that $\sigma\left(J_{1}^{s q}, \ldots, J_{n}^{s q}\right)>e(H)$ then the result follows.
By [4, Lemma 2.6], we have that $\sigma\left(J_{1}^{s q}, \ldots, J_{n}^{s q}\right)=(s q)^{n} \sigma\left(J_{1}, \ldots, J_{n}\right)$. Then, using the hypothesis $\sigma\left(J_{1}, \ldots, J_{n}\right)=$ $\sigma\left(\mathcal{A}_{r_{1}}, \ldots, \mathcal{A}_{r_{n}}\right)$ and Proposition 4.2, we obtain that

$$
\begin{equation*}
\sigma\left(J_{1}^{s q}, \ldots, J_{n}^{s q}\right)=(s q)^{n} \frac{r_{1} \cdots r_{n}}{w_{1} \cdots w_{n}} \tag{21}
\end{equation*}
$$

Thus, since we assume that $r_{\tau\left(i_{0}\right)}=p$ and $w_{i_{0}}=q$, we have that $\sigma\left(J_{1}^{s q}, \ldots, J_{n}^{s q}\right)>e(H)$ if and only if

$$
s q>\frac{q}{p}(s p-1)
$$

which is to say that $s p q>s p q-q$. Therefore relation (19) holds for all integer $s \geqslant 1$ and consequently the inequality $\mathcal{L}_{0}\left(J_{r_{1}}, \ldots, J_{r_{n}}\right) \geqslant \frac{p}{q}$ follows. Thus relation (17) is proven.
Remark 4.8. We observe that the condition that J_{1}, \ldots, J_{n} admits a w-matching cannot be removed from the hypothesis of the previous theorem. Let us consider now the weighted homogeneous filtration in \mathcal{O}_{2} induced by the vector of weights $w=(1,4)$ and let J_{1}, J_{2} be the ideals of \mathcal{O}_{2} given by $J_{1}=\left\langle x^{4}\right\rangle, J_{2}=\left\langle y^{2}\right\rangle$. We observe that $d_{w}\left(x^{4}\right)=4, d_{w}\left(y^{2}\right)=8$ and consequently the right hand side of (17) would lead to the conclusion that $\mathcal{L}_{0}\left(J_{1}, J_{2}\right)=8$, which is not the case, since clearly $\mathcal{L}_{0}\left(x^{4}, y^{2}\right)=4$. We also observe that the system of ideals J_{1}, J_{2} does not admit a w-matching.

In order to simplify the exposition, we need to introduce the following definition.
Definition 4.9. If $f \in \mathcal{O}_{n}, f(0)=0$, then f is termed convenient when $\Gamma_{+}(f)$ intersects each coordinate axis. Let J_{i} denote the ideal of \mathcal{O}_{n} generated by all monomials x^{k} such that $k \in \Gamma_{+}\left(\partial f / \partial x_{i}\right), i=1, \ldots, n$. Let us fix a vector of weights $w \in \mathbb{Z}_{\geqslant 1}^{n}$. Then we say that f admits a w-matching when the family of ideals J_{1}, \ldots, J_{n} admits a w-matching (see Definition 4.3).

If a function $f \in \mathcal{O}_{n}$ is convenient and quasi-homogeneous, then f admits a w-matching. Observe that in this case the monomials $x_{i}^{d / w_{i}}$ are in the support of f, for $i=1, \ldots, n$. Then there is a pure monomial in x_{i} belonging to the support of the partial derivative $\partial f / \partial x_{i}$ and one could take $\tau=$ id in the definition of w-matching (see Definition 4.3).

Let us fix a vector of weights $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{Z}_{\geqslant 1}^{n}$ and an integer $d \geqslant 1$. Then we denote by $\mathcal{O}(w ; d)$ the set of all functions $f \in \mathcal{O}_{n}$ such that f is semi-weighted homogeneous with respect to w of degree d.
Remark 4.10. From Definition 4.3 we observe that a function $f \in \mathcal{O}(w ; d)$ admits a w-matching if and only if $p_{w}(f)$ admits a w-matching, since the ideals J_{i} introduced in Definition 4.9 have the same w-degree as the analogous ideals defined for $p_{w}(f)$.

Corollary 4.11. Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a semi-weighted homogeneous function of degree d with respect to the weights w_{1}, \ldots, w_{n}. Then

$$
\begin{equation*}
\mathcal{L}_{0}(\nabla f) \leqslant \frac{d-\min \left\{w_{1}, \ldots, w_{n}\right\}}{\min \left\{w_{1}, \ldots, w_{n}\right\}} \tag{22}
\end{equation*}
$$

and equality holds iff admits a w-matching.

Proof. Let J_{i} denote the ideal of \mathcal{O}_{n} generated by all monomials x^{k} such that $k \in \Gamma_{+}\left(\partial f / \partial x_{i}\right), i=1, \ldots, n$. Since f has an isolated singularity at the origin (that is, the ideal $J(f)$ has finite colength) then $\sigma\left(J_{1}, \ldots, J_{n}\right)<\infty$, by Proposition 2.2. Then Theorem 3.1 shows that $\mathcal{L}_{0}(\nabla f)=\mathcal{L}_{0}\left(J_{1}, \ldots, J_{n}\right)$. We observe that $d_{w}\left(J_{i}\right)=d-w_{i}$, for all $i=1, \ldots, n$. Then the result arises as a direct application of Theorem 4.7.

It has been proven recently by Płoski et al. [9] that equality holds in (22) for all weighted homogeneous functions $f:\left(\mathbb{C}^{3}, 0\right) \rightarrow(\mathbb{C}, 0)$ such that f has an isolated singularity at the origin, under the hypothesis that $2 w_{i} \leqslant d$ for all i.

The result of Corollary 4.11 holds for any number of variables.
Example 4.12. Let us consider the vector of weights $w=(1,2,3,5)$ and the polynomial $f:\left(\mathbb{C}^{4}, 0\right) \rightarrow(\mathbb{C}, 0)$ given by $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{3}^{9}-x_{2}^{11} x_{4}+x_{2} x_{4}^{5}+x_{1}^{27}$. Then f is weighted homogeneous with w-degree 27 and f has an isolated singularity at the origin. The ideals J_{i} introduced in Definition 4.9 are given by

$$
J_{1}=\left\langle x_{1}^{26}\right\rangle \quad J_{2}=\left\langle x_{2}^{10} x_{4}, x_{4}^{5}\right\rangle \quad J_{3}=\left\langle x_{3}^{8}\right\rangle \quad J_{4}=\left\langle x_{2}^{11}, x_{2} x_{4}^{4}\right\rangle .
$$

Then we observe that the polynomial f admits w-matching. Here the permutation τ of Definition 4.3 is $\tau(1)=1, \tau(2)=4$, $\tau(3)=3, \tau(4)=2$. Then it follows from Corollary 4.11 that $\mathcal{L}_{0}(\nabla f)=26$.

Given a vector of weights $w=\left(w_{1}, \ldots, w_{n}\right)$ and a degree d, then it is not always possible to find a weighted homogeneous function $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ of degree d with respect to w such that f admits a w-matching, as the following example shows.
Example 4.13. Let $w=(1,2,3)$ and $d=16$. Let f be a weighted homogeneous function of degree d with respect to w. Let J_{i} denote the ideal of \mathcal{O}_{3} generated by all monomials x^{k} such that $k \in \Gamma_{+}\left(\partial f / \partial x_{i}\right)$, for all $i=1,2$, 3 . As a direct consequence of Definition 4.3, if J_{1}, J_{2}, J_{3} admits a w-matching, then J_{3} contains a pure monomial of x_{2} or a pure monomial of x_{3}, which is impossible since $d_{w}\left(J_{3}\right)=13$ and neither 2 nor 3 are divisors of 13 .

However we observe that $\mathcal{O}(w ; d) \neq \emptyset$, since the function $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{16}+x_{2}^{8}+x_{1} x_{3}^{5}$ belongs to $\mathcal{O}(w ; d)$.
Proposition 4.14. Let d, w_{1}, \ldots, w_{n} be non-negative integers such that w_{i} divides d for all $i=1, \ldots, n$. Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ be a weighted homogeneous function of degree d with respect to the weights w_{1}, \ldots, w_{n}. Let us assume that f has an isolated singularity at the origin. Then there exists a change of coordinates \mathbf{x} in $\left(\mathbb{C}^{n}, 0\right)$ of the form $x_{i}=y_{i}+h_{i}\left(y_{1}, \ldots, y_{n}\right)$, where h_{i} is a polynomial in $y_{1}, \ldots, y_{n}, i=1, \ldots, n$, such that:
(1) the function $f \circ \mathbf{x}$ is convenient;
(2) if $h_{i} \neq 0$, then the polynomial h_{i} is weighted homogeneous of degree w_{i} with respect to w and therefore $f \circ \mathbf{x}$ is weighted homogeneous of degree d with respect to w.
Proof. Since f has an isolated singularity at the origin, for any $i=1, \ldots, n$ we can fix an index $k_{i} \in\{1, \ldots, n\}$ such that $x_{i}^{m_{i}}$ appears in the support of $\frac{\partial f}{\partial x_{k_{i}}}$, where $m_{i}=\frac{d-w_{k_{i}}}{w_{i}}$, which is to say that the monomial $x_{k_{i}} x_{i}^{m_{i}}$ appears in the support of f. Then w_{i} divides $d-w_{k_{i}}$ and consequently w_{i} divides $w_{k_{i}}$, since w_{i} divides d by assumption.

For all $j=1, \ldots, n$, we set $L_{j}=\left\{i: k_{i}=j, i \neq j\right\}$. Let us define

$$
h_{j}= \begin{cases}\sum_{i \in L_{j}} a_{j, i} y_{i}^{w_{j} / w_{i}} & \text { if } L_{j} \neq \emptyset \tag{23}\\ 0 & \text { otherwise }\end{cases}
$$

where we suppose that $\left\{a_{j, i}\right\}_{j, i}$ is a generic choice of coefficients in \mathbb{C}. It is straightforward to see that, given an index $j \in\{1, \ldots, n\}$ such that $h_{j} \neq 0$, the polynomial h_{j} is weighted homogeneous of degree w_{j}.

Let us consider the map $\mathbf{x}:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right), \mathbf{x}\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)$, given by

$$
x_{j}=y_{j}+h_{j}(y) \text { for all } j=1, \ldots, n
$$

We conclude that \mathbf{x} is a local biholomorphism, the function $f \circ \mathbf{x}$ is weighted homogeneous with respect to w of degree d and, by the genericity of the coefficients $a_{j, i}$ in (23), the pure monomial $y_{i}^{d / w_{i}}$ appears in the support of $f \circ \mathbf{x}$, for all $i=1, \ldots, n$. Hence the function $f \circ \mathbf{x}$ is convenient.
Example 4.15. Set $w=(1,2,3,4,6)$ and $d=12$. The polynomial $f=x_{1}^{12}+x_{2}^{4} x_{4}+x_{4}^{3}+x_{3}^{2} x_{5}+x_{5}^{2}$ is weighted homogeneous of degree 12. Let J_{i} denote the ideal of \mathcal{O}_{5} generated by all monomials x^{k} such that $k \in \Gamma_{+}\left(\partial f / \partial x_{i}\right), i=1, \ldots, 5$. A straightforward computation shows that

$$
J_{1}=\left\langle x_{1}^{11}\right\rangle, \quad J_{2}=\left\langle x_{2}^{3} x_{4}\right\rangle, \quad J_{3}=\left\langle x_{3} x_{5}\right\rangle, \quad J_{4}=\left\langle x_{2}^{4}, x_{4}^{2}\right\rangle, \quad J_{5}=\left\langle x_{3}^{2}, x_{5}\right\rangle
$$

Since the ideals J_{2} and J_{3} do not contain any pure monomial, the family of ideals $\left\{J_{i}: i=1, \ldots, 5\right\}$ does not admit a w-matching.

Following the proof of Proposition 4.14, we consider the coordinate change $\mathbf{x}:\left(\mathbb{C}^{5}, 0\right) \rightarrow\left(\mathbb{C}^{5}, 0\right)$, given by: $x_{1}=y_{1}$, $x_{2}=y_{2}, x_{3}=y_{3}, x_{4}=y_{4}+y_{2}^{2}, x_{5}=y_{5}+y_{3}^{2}$. Let $g=f \circ \mathbf{x}$ and let J_{i}^{\prime} denote the ideal of \mathcal{O}_{5} generated by all monomials y^{k} such that $k \in \Gamma_{+}\left(\partial g / \partial y_{i}\right), i=1, \ldots, 5$. Then, as shown in that proof, the function g is convenient and therefore the family of ideals $\left\{J_{i}^{\prime}: i=1, \ldots, 5\right\}$ admits a w-matching.

Corollary 4.16. Let d, w_{1}, \ldots, w_{n} be non-negative integers such that w_{i} divides d for all $i=1, \ldots, n$. Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a semi-weighted homogeneous function of degree d with respect to the weights w_{1}, \ldots, w_{n}. Then

$$
\mathcal{L}_{0}(\nabla f)=\frac{d-\min \left\{w_{1}, \ldots, w_{n}\right\}}{\min \left\{w_{1}, \ldots, w_{n}\right\}}
$$

Proof. Since f is semi-weighted homogeneous, the principal part $p_{w}(f)$ has an isolated singularity at the origin. Let $\mathbf{x}:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ denote the analytic coordinate change obtained in Proposition 4.14 applied to $p_{w}(f)$. The function $p_{w}(f) \circ \mathbf{x}$ is weighted homogeneous of degree d with respect to w. Therefore

$$
p_{w}(f) \circ \mathbf{x}=p_{w}(f \circ \mathbf{x}),
$$

which implies that $f \circ \mathbf{x}$ is a semi-weighted homogeneous function. Then, by Proposition 4.14 and Remark 4.10, the function $f \circ \mathbf{x}$ admits a w-matching. Thus we obtain, by Corollary 4.11, that

$$
\mathcal{L}_{0}(\nabla(f \circ \mathbf{x}))=\frac{d-\min \left\{w_{1}, \ldots, w_{n}\right\}}{\min \left\{w_{1}, \ldots w_{n}\right\}}
$$

Then the result follows, since the local Łojasiewicz exponent is a bianalytic invariant.
We remark that in Corollary 4.16 we do not assume $2 w_{i} \leqslant d$ as in [9]. This assumption cannot be eliminated from the main result of [9], as the following example shows. The result in 4.16 holds for any number of variables, but the assumptions are also restrictive, since we are assuming that the weights w_{i} divide d.
Example 4.17. Let us consider the polynomial f of \mathcal{O}_{3} given by $f=x_{1} x_{3}+x_{2}^{2}+x_{1}^{2} x_{2}$. We observe that f is weighted homogeneous of degree 4 with respect to the vector of weights $w=(1,2,3)$. The Jacobian ideal is $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ so that $\mathcal{L}_{0}(\nabla f)=1 \neq 3$. We remark that it is easy to check that f does not admit a w-matching.

Acknowledgements

The first author was partially supported by DGICYT Grant MTM2009-08933. The second author was partially supported by DGICYT Grant MTM2009-07291 and CCG08-UAM/ESP-3928.

References

[1] V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko, Singularities of differentiable maps, in: Vol. I: The Classification of Critical Points, Caustics and Wave Fronts, in: Monogr. Math., vol. 82, Birkhäuser Boston, Inc., Boston, MA, 1985.
[2] C. Bivià-Ausina, Jacobian ideals and the Newton non-degeneracy condition, Proc. Edinb. Math. Soc. 48 (2005) 21-36.
[3] C. Bivià-Ausina, Joint reductions of monomial ideals and multiplicity of complex analytic maps, Math. Res. Lett. 15 (2) (2008) 389-407.
[4] C. Bivià-Ausina, Local Łojasiewicz exponents, Milnor numbers and mixed multiplicities of ideals, Math. Z. 262 (2) (2009) 389-409.
[5] C. Bivià-Ausina, S. Encinas, Łojasiewicz exponents and resolution of singularities, Arch. Math. 93 (3) (2009) 225-234.
[6] C. Bivià-Ausina, T. Fukui, M. Saia, Newton graded algebras and the codimension of non-degenerate ideals, Math. Proc. Camb. Phil. Soc. 133 (2002) 55-75.
[7] J. Briançon, H. Maynadier-Gervais, Sur le nombre de Milnor d’une singularité semi-quasi-homogène, C. R. Acad. Sci. Paris, Ser. I 334 (2002) $317-320$.
[8] C. Huneke, I. Swanson, Integral Closure of Ideals, Rings, and Modules, in: London Math. Soc. Lecture Note Series, vol. 336, Cambridge University Press, 2006.
[9] T. Krasiński, G. Oleksik, A. Płoski, The Łojasiewicz exponent of an isolated weighted homogeneous surface singularity, Proc. Amer. Math. Soc. 137 (10) (2009) 3387-3397.
[10] M. Lejeune, B. Teissier, Clôture intégrale des idéaux et equisingularité, with an appendix by J.J. Risler, Ann. Fac. Sci. Toulouse Math. (6) 17 (4) (2008) 781-859.
[11] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser Verlag, 1991.
[12] M. Nagata, Note on a paper of Samuel concerning asymptotic properties of ideals, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 30 (1957) 165-175.
[13] V.P. Palamodov, The multiplicity of a holomorphic transformation, Funkcional. Anal. i Priložen 1 (3) (1967) 54-65.
[14] D. Rees, Valuations associated with a local ring II, J. Lond. Math. Soc. 31 (1956) 228-235.
[15] D. Rees, Generalizations of reductions and mixed multiplicities, J. Lond. Math. Soc. (2) 29 (1984) 397-414.
[16] O. Saeki, Topological invariance of weights for weighted homogeneous isolated singularities in \mathbb{C}^{3}, Proc. Amer. Math. Soc. 103 (3) (1988) $905-909$.
[17] P. Samuel, Some asymptotic properties of powers of ideals, Ann. of Math. 56 (1) (1952) 11-21.
[18] I. Swanson, Multigraded Hilbert functions and mixed multiplicities, in: Syzygies and Hilbert Functions, in: Lect. Notes Pure Appl. Math., vol. 254, Chapman \& Hall/CRC, Boca Raton, FL, 2007, pp. 267-280.
[19] B. Teissier, Variétés polaires I. Invariants polaires des singularités d'hypersurfaces, Invent. Math. 40 (3) (1977) 267-292.
[20] B. Teissier, Cycles évanescents, sections planes et conditions of Whitney, Singularités Cargèse Ast. (7-8) (1973) 285-362.
[21] S.S.-T. Yau, Topological types and multiplicities of isolated quasihomogeneous surface singularities, Bull. Amer. Math. Soc. 19 (1988) 447-454.

[^0]: * Corresponding author.

 E-mail addresses: carbivia@mat.upv.es (C. Bivià-Ausina), sencinas@maf.uva.es (S. Encinas).

