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1. Introduction

Let R be a Noetherian ring and let I be an ideal of R. Let v; be the order function of R with respect to I, that is,
vi(h) = sup{r : h € I'}, forallh € R, h # 0, and v(0) = oo. Let us consider the function v; : R — R, U {oo} defined

by v;(h) = lim,_, %”S) for all h € R. It was proven by Samuel [17] and Rees [14] that this limit exists and Nagata proved
in [12] that, when finite, the number v;(h) is a rational number. The function v is called the asymptotic Samuel function of
1.1f J is another ideal of R, then the number v;(J) is defined analogously and if hy, ..., h; is a generating system of ] then
vi(J) = min{v;(hy), ..., v;(h;)}. Let us denote by I the integral closure of I. As a consequence of the theorem of existence of
the Rees valuations of an ideal (see for instance [8, p. 192]), it is known that, if ] is another ideal and p, q € Z.1, then % C IP
ifand only if v;(J) > %.

Let @, denote the ring of analytic function germs f : (C", 0) — C and let m, denote its maximal ideal, that will be also
denoted by m if no confusion arises. Let I be an ideal of ¢, of finite colength. Lejeune and Teissier proved in [ 10, p. 832] that
5 :m) is equal to the Lojasiewicz exponent of I (in fact, this result was proven in a more general context, that is, for ideals in a
structural ring Oy, where X is a reduced complex analytic space).If g1, . . ., g; is a generating system of I, then the £ojasiewicz
exponent of I is defined as the infimum of those « > 0 for which there exist a constant C > 0 and an open neighbourhood
U of 0 € C" with

%] < C sup |gi(x)]
1

for all x € U. Let us denote this number by Lo(I) and let e(I) denote the Samuel multiplicity of I. Therefore we have
that Lo(I) = inf{% :mP C I, p,q € Z-o} and hence, by the Rees multiplicity theorem (see [8, p. 222]) it follows that
Lo() = inf{% ce(l9) =e(I?+ mP), p, q € Z-}. This expression of Ly(I) is one of the motivations that led the first author

to introduce the notion of Lojasiewicz exponent of a set of ideals in [4]. This notion is based on the Rees mixed multiplicity
of a set of ideals (Definition 2.1).
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Lojasiewicz exponents have important applications in singularity theory. Here we recall one of them. Ifg : (C",0) —
(C™, 0) is an analytic map germ such that g~!(0) = {0} then we denote by Lo(g) the Lojasiewicz exponent of the ideal
generated by the component functions of g. Let f : (C", 0) — (C, 0) be the germ of a complex analytic function with an
isolated singularity at the origin. Then Vf : (C", 0) — (C", 0) denotes the gradient map of f, that is, Vf = (% e, %f”).
The Jacobian ideal of f, that we will denote by J(f), is the ideal generated by the components of Vf. The degree of
CO-determinacy of f, denoted by s (f), is defined as the smallest integer r such that f is topologically equivalent to f + g, for
allg € O, with vy, (g) > r + 1. Teissier proved in [19, p. 280] that so(f) = [Lo(Vf)] + 1, where [a] stands for the integer
part of a given a € R. Despite the fact that this equality connects Ly(Vf) with a fundamental topological aspect of f, the
problem of determining whether the Lojasiewicz exponent £ (Vf) is a topological invariant of f is still an open problem.

The effective computation of £ (I) has proven to be a challenging problem in algebraic geometry that, by virtue of the
results of Lejeune and Teissier is directly related with the computation of the integral closure of an ideal. In [5] the authors
relate the problem of computing £ (I) with the algorithms of resolution of singularities. The approach that we give in this
paper is based on techniques of commutative algebra.

We recall that, if w = (wy, ..., wy) € ZI;, then a polynomial f € C[x;, ..., x,] is called weighted homogeneous of

degree d with respect to w when f is written as a sum of monomials x'{‘ . -x’;" such that wqx; + - -+ + wpx, = d. This
paper is motivated by the main result of Krasiriski et al. in [9], which says that if f : C* — C is a weighted homogeneous
polynomial of degree d with respect to (w1, w,, w3) with an isolated singularity at the origin, then £y(Vf) is given by the
expression

d — min{w;, wy, w3}

Lo(Vf) = .
mln{wl, wy, UJ3}

provided that d > 2wy, for alli = 1, 2, 3. That is, £o(Vf) depends only on the weights w; and the degree d in this case.

Therefore it is concluded that Lo(Vf) is a topological invariant of f, by virtue of the results of [16,21]. In view of the

above equality it is reasonable to conjecture that the analogous result holds in general, that is, if f : (C",0) — (C, 0)

is a weighted homogeneous polynomial, or even a semi-weighted homogeneous function (see Definition 4.1), with respect

to (wy, ..., wy) of degree d with an isolated singularity at the origin, and if d > 2w, foralli =1, ..., n, then
d — min{wq, ..., wy}
Lo(Vf) = — . (1
min{wy, ..., wyp}

We point out that inequality (<) always holds in (1) for semi-weighted homogeneous functions (see Corollary 4.11).

In this paper we obtain the equality (1) for semi-weighted homogeneous germs f : (C", 0) — (C, 0) under a restriction
expressed in terms of the supports of the component functions of Vf (see Corollary 4.11). This result arises as a consequence
of amore general result involving the Lojasiewicz exponent of a set of ideals coming from a weighted homogeneous filtration
(see Theorem 4.7). Our approach to Lojasiewicz exponents is purely algebraic and comes from the techniques developed
in [3,4]. This new point of view of the subject has led us to detect a broad class of semi-weighted homogeneous functions
where relation (1) holds.

For the sake of completeness we recall in Section 2 the definition of the Rees mixed multiplicity and basic facts about this
notion. In Section 3 we show some results about the notion of Lojasiewicz exponent of a set of ideals that will be applied in
Section 4. The main results appear in Section 4.

2. The Rees mixed multiplicity of a set of ideals

Let (R, m) be a Noetherian local ring and let I be an ideal of R. We denote by e(I) the Samuel multiplicity of I. LetdimR = n
and let us fix a set of n ideals I, .. ., I, of R of finite colength. Then we denote by e(ly, ..., I;) the mixed multiplicity of
I1, ..., I, as defined by Teissier and Risler in [20] (we refer to [8, Section 17] and [ 18] for fundamental results about mixed
multiplicities of ideals). We recall that, if the ideals I, . . ., I, are equal to a given ideal, say I, thene(l4, ..., I) = e(I).

Let us suppose that the residue field k = R/m is infinite. Let a;1, . . ., a;; be a generating system of I;, where s; > 1, for
i=1,...,nLets =s;+---+s,. We say that a property holds for sufficiently general elements of I; & - - - @ I, if there exists
a non-empty Zariski-open set U in k® verifying that the said property holds for all elements (g1, ..., g,) € [ & --- @I, such
thatg; = Zjuijaij,i =1,...,nand the image of (Uy1, ..., U5, ..., Unt, - . ., Upg,) in k* lies in U.

By virtue of a result of Rees (see [15] or [8, p. 335]), if the ideals Iy, ..., I, have finite colength and R/m is infinite,
then the mixed multiplicity of I, ..., I, is obtained as e(I1, ...,I,) = e(g1,..., &), for a sufficiently general element
(g]a""gﬂ) 611@69111'

Let us denote by 9, the ring of analytic function germs (C",0) — C.Letg : (C",0) — (C", 0) be a complex analytic
map germ such that g=1(0) = {0} and let gy, . .., g, denote the component functions of g. We recall that e(I) = dim¢ ©,/I,
where [ is the ideal of @, generated by g1, ..., g,. It turns out that this number is equal to the geometric multiplicity of g
(see[11, p.258] or [13]).

Now we show the definition of a number associated to a family of ideals that generalizes the notion of mixed multiplicity.
This number is fundamental in the results of this paper.

We denote by Z the set of non-negative integers. Let a € Z, we denote by Z., the set of integers z > a.
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Definition 2.1 ([3]). Let (R, m) be a Noetherian local ring of dimension n. Let I, ..., I, be ideals of R. Then we define the
Rees mixed multiplicity of Iy, ..., I, as
o(ly,....I) =maxe(l; +m",..., I, +m"), (2)
reZ4

when the number on the right hand side is finite. If the set of integers {e(I; + m', ..., I, + m") : r € Z,} is non-bounded
thenweseto(lq, ..., I, = oc.

We remark that if I; is an ideal of finite colength, foralli =1, ...,n,theno(ly,...,I;) = e(, ..., I;). The next propo-
sition characterizes the finiteness of o (I, . . ., I).

Proposition 2.2 ([3, p.393]). Let I, ..., I, be ideals of a Noetherian local ring (R, m) such that the residue field k = R/m is

infinite. Then o (I, . .., I,) < oo if and only if there exist elements g; € I;, fori = 1, ..., n, such that (g,, ..., g,) has finite
colength. In this case, we have that o (I, . .., I,) = e(g1, ..., ) for sufficiently general elements (g1, ...,8,) €1 D --- D I,.
Remark 2.3. It is worth pointing out that, if I, . .., I, is a set of ideals of R such thato (I1, ..., I;) < oo,thenl; 4+ --- +1,

is an ideal of finite colength. Obviously the converse is not true.
The following result will be useful in subsequent sections.

Lemma 2.4 ([4, p. 392]). Let (R, m) be a Noetherian local ring of dimension n > 1. Let ]y, ..., J, be ideals of R such that
o(J1,...,Jn) <oo.Letly, ..., I, beideals ofRsuchthat]; C I, foralli=1,...,n.Theno (I, ...,I;) < ooand

o1,y Jn) =0, ..., ).

Now we recall some basic definitions. Let us fix a coordinate system x1, ..., x, in C". If k = (ky, ..., k,) € Z", we will

denote the monomial x’fl <. xfn by xK.Ifh € 9, and h = )", axx* denotes the Taylor expansion of h around the origin, then
the support of h is the set supp(h) = {k € Z' : ax # 0}.1f h # 0, the Newton polyhedron of h, denoted by I'; (h), is the
convex hull of the set {k + v : k € supp(h), v € R! }. It h = 0, then we set I'y (h) = @.1f I is an ideal of O, and g1, ..., g is
a generating system of I, then we define the Newton polyhedron of I as the convex hull of I, (g1) U - - - U I (g;). It is easy to
check that the definition of I, (I) does not depend on the chosen generating system of I. We say that I is a monomial ideal
of @, when I admits a generating system formed by monomials.

Definition 2.5. Let I, ..., I, be monomial ideals of @, such that o (I, ..., ;) < oo.Then we denote by §(I, ..., I,) the
family of those maps g = (g1,...,8:) : (C",0) — (C",0) for which g7'(0) = {0}, g € I, foralli = 1,...,n, and
o(ly,...,I,) =e(gq,...,8), wheree(gy, ..., g,) stands for the multiplicity of the ideal of ©, generated by g1, .. ., g,. The
elements of $(Iy, ..., I,) are characterized in [3, Theorem 3.10].

We denote by $y(I4, .. ., I) the set formed by the maps g = (g1, ..., &) € 8(I1, ..., I;) such that I, (g;)) = I (I;), for
alli=1,...,n.

3. The Lojasiewicz exponent of a set of ideals

In this section we introduce some results concerning the notion of Lojasiewicz exponent of a set of ideals in a Noetherian
ring. These results will be applied in the next section.
LetIy, ..., I, be ideals of a local ring (R, m) such thato (I, ..., I;) < co.Then we define

r(h, ..., L) =min{r e zZy :o(h,.... L) =el; +m", ..., I, +m")}. (3)

Theorem 3.1 ([4, p. 398]). Let Iy, ..., I, be monomial ideals of @, such that o (4, ..., I,) is finite. If g € $o(I, ..., I,), then
Lo(g) depends onlyon 1y, ..., I, and it is given by

rdy, .. )
. .

(4)

Lo(g) = min
s=1

S S
By the proof of the above theorem it is concluded that the infimum of the sequence { M }s>1 is actually a minimum.
Theorem 3.1 motivates the following definition.
Definition 3.2. Let (R, m) be a Noetherian local ring of dimension n. Let Iy, ..., I, be ideals of R. Let us suppose that
o(ly, ..., I,) < oo. We define the Lojasiewicz exponent of I, . . ., I, as
rdy, ..., )

Loy, ..., I) = inf ———.
s>1
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As we will see in Lemma 3.3, we have that r(I3, ..., [J) < sr(l;,...,I), forall s € Z.;. Therefore Lo(I3, ..., I;) <
T(I], ey In)

We can extend Definition 2.1 by replacing the maximal ideal m by an arbitrary ideal of finite colength, but the resulting
number is the same. That is, under the hypothesis of Definition 2.1, let us denote by J an ideal of R of finite colength and let
us suppose that o (I, ..., I) < oo.Then we define

oj(li, ...,y =max e, +J',.... I, +].
reZ4

An easy computation reveals that oy (Iy, ..., I) = o (I, ..., I;). We also define
ny,.... ) =min{r ez, oy, ...y =eli +J",.... I, +])}. (5)
Let I be an ideal of R of finite colength. Then we denote by r;(I) the number r;(I, ..., I), where I is repeated n times. We
deduce from the Rees multiplicity theorem that, if R is quasi-unmixed, then r;(I) = min{r > 1:J" C I}.
Lemma 3.3. Let (R, m) be a Noetherian local ring of dimension n. Let I, . . ., I, be ideals of R such that o (I1, ..., I,) < oo and
let | be an m-primary ideal. Then
r](Is, ey I;) < ST](I], AU

1
rs(ly, ... 1) > grj(ll»-ualn)

for all integer s > 1.
Proof. For the first inequality, setr = rj(Iy, ..., I;). Thuso(I1, ..., I) = e(l; +J', ..., I +J). It is enough to prove that
ol},....)=edi+J%, ..., I, +]%):
el +J%, ... L+ =edi+J5, .. B4+ =e((h +])5, ..., U +]0)%)
e((ll +.]r)sv s (In +.lr)s) = S"E(I] +]r7 ey In +]r)
=s'o(ly,....Ip) =03, ..., L),

where last equality comes from [4, Lemma 2.6].

The second inequality comes directly from the definition of rjs (I3, ..., I,). O
It is easy to find examples of ideals I and J such that ry(I3, ..., I,) # r(l1,...,I,) in general. This fact motivates the
following definition.
Definition 3.4. Let (R, m) be a Noetherian local ring of dimension n. Let I, ..., I, beideals of Rsuch thato (I, ..., ) < oc.
Let] be an m-primary ideal of R. We define the Lojasiewicz exponent of I, . . . , I, withrespect to ], denoted by L; (I3, . . ., I), as
s, ..., I°
@m““Jg:mhi———ﬁ. (6)
s>1 S
If I is an m-primary ideal of R, then we denote by £;(I) the number £;(I, ..., I), where I is repeated n times.
Remark 3.5. Under the conditions of the previous definition, we observe that £;(I1, ..., I;) can be seen as a limit inferior:
s, ... ¢
qm““nghmmﬁi———ﬁ.
$—00 S
Set £ = Ly(I, ..., I,). In order to prove the equality above, it is enough to see that for alle > 0 and all p € Z,, there exists
an integer m > p such that
™, ... Im
oGl gy

Let us fix an € > 0 and an integer p € Z.. By definition, there exists g € Z, such that

Qm“”Jb<E+E

Let s € Z, such that sq > p. Then, from Lemma 3.3 we obtain that

. Iy _ [ S )

sq =
Ifg : (C",0) — (C", 0) denotes an analytic map germ such that g~!(0) = {0} and J is an ideal of O, of finite colength,
then we denote the number £; (I), where I is the ideal generated by the component functions of g, by £;(g). A straightforward

reproduction of the argument in the proof of Theorem 3.1 consisting of replacing the powers of the maximal ideal by the
powers of a given ideal of finite colength leads to the following result, which is analogous to Theorem 3.1.

<l+e.
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Theorem 3.6. Letl, ..., I, be monomial ideals of O, such thato (11, . . ., I,,) is finite and let ] be a monomial ideal of ©,, of finite

,,,,,,

S S
colength. Then the sequence {r]<1157n>}s>1 attains a minimum and ifg € $o(Iy, ..., I,) then

o3, ...,E)
(@) = (L, ..., I,) = min L1 (7)
s=1 S

Lemma 3.7. Under the hypothesis of Lemma 3.3 we have

L](Is,...,I;) =SL](11,...,In)
1
Gl k) = ()

foralls € Z.1.

Proof. For the first equality

T T( S = I T(E v
@, .. ) = ing Lo b))

> SLJ(I], o).
p>1 p p>1 sp

On the other hand, by Lemma 3.3 we obtain

AP, 1P nd?, .. 18
inf](1 ")gsinf ) ( n)
p>1 p p>1

= SL](I], e ,In).

Let us see the second equality. Applying Lemma 3.3 we have

rs(P, .. 1 1. nd,....¢ 1
UAUTEELEL YR SR (G CLELEL YL PSR A
p S p>1 p S

Let us denote the number rys(I7, . .., I}) by 1, for all p > 1. Then

L(l, ... ) = Il]I;f

o, ..., 1) >e(? + 5V [P 4 50Dy,
In particular
@, .. Py > s, — 1)

for all p > 1. Dividing the previous inequality by p and taking lim inf,_, .. we obtain by Remark 3.5, that

B TN 5 N 4
Ly, ..., I)) = liminf =———— > sliminf =Ly, ..., 1y). O
p—00 p p

p—>00

Lemma 3.8. Let (R, m) be a quasi-unmixed Noetherian local ring of dimension n. Let Iy, ..., I, be ideals of R such that
o(ly, ..., I,) < oco.If]1,], are m-primary ideals of R then

Ly o ln) < Lp )Ly (I, oo ).
Proof. By (5) we have that
(o) =min{r > 1:e(y) =e(> +J)}.

Given an integer r > 1, the condition e(J,) = e(J, +J7) is equivalent to saying that J{ < J>, by the Rees multiplicity theorem
(see [8, p. 222]). Therefore, an elementary computation shows that

n,(h, o ) < (R, (T, - ). (8)
By the generality of the previous inequality, we have
(05, D) <1y (lg)rjg(ls, N &) 9)

for all integers p, s > 1. The inequality (9) shows that

p s s
5, . U, .. )
Ly (y, ..., Iy) = inf n( » <inf——2"2! !

s>1 S s>1 N

1
=m@wwwwm=m@5%mw”m

for all integer p > 1, where the last equality comes from Lemma 3.7. Then

. r]](lg)
le(I],...,In)< ;l;lfT 2]2(117"'5171):le(lz)ﬁ/jz(l‘la""ln)' O
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We recall the following two results, which will be applied in the next section.

Proposition 3.9 ([4]). Let (R, m) be a Noetherian local ring of dimension n. Foreachi = 1, ..., n let us consider ideals I; and J;
such that I; C J;. Let suppose that o (I1, ..., I;) < ocoand thato (I, ...,I;) = o (1, ...,Js). Then
Lo(lis oo In) < LoUrs - -5 dn)- (10)
Let us denote the canonical basis in R" by e, ..., e,.

Proposition 3.10 ([2]). Let] be an ideal of finite colength of ©,, and set r; = min{r : re; € I'.(J)}, foralli =1, ..., n. Then
max{ry, ..., m} < Lo(J)

and equality holds if ] is a monomial ideal.

4. Weighted homogeneous filtrations

Let us fix a vector w = (w1, ..., wy) € Z;l. We will usually refer to w as the vector of weights. Let h € Oy, h # 0, the
degree of h with respect to w, or w-degree of h, is defined as

dy(h) = min{(k, w) : k € supp(h)},

where (, ) stands for the usual scalar product. In particular, if x, . . . , x, denotes a system of coordinates in C" and xlfl .- ~xf§”

isamonomial in ©®,, then dw(x’;1 .. ~x’,§") = wiky+- - -+wyk,. By convention, we setd,, (0) = +o0.Ifh € O,andh =}, agxk

is the Taylor expansion of h around the origin, then we define the principal part of h with respect to w as the polynomial given
by the sum of those terms a;x* such that (k, w) = d,, (h). We denote this polynomial by p,, (h).

Definition 4.1. We say that a function h € O, is weighted homogeneous of degree d with respect to w if (k, w) = d, for all
k € supp(h). The function h is said to be semi-weighted homogeneous of degree d with respect to w when p,, (h) has an isolated
singularity at the origin. Note that p,, (h) is weighted homogeneous with respect to w.

It is well known that, if h is a semi-weighted homogeneous function, then h has an isolated singularity at the origin and
that h and p,, (h) have the same Milnor number (see for instance [1, Section 12]). Letg = (g1, ..., &) : (C",0) — (C", 0)
be an analytic map germ, let us denote the map (p,(g1), ..., Pw(gn)) by pw(g). The map g is said to be semi-weighted
homogeneous with respect to w when (p,, (g))~1(0) = {0}.

If I is an ideal of O, then we define the degree of I with respect to w, or w-degree of I, as

dy, (1) = min{d, (h) : h € I}.

Ifgq, ..., g constitutes a generating system of I, then it is straightforward to see that d,,(I) = min{d,, (g1), . .., dw(g)}.
Letr € Z., then we denote by B, the set of all h € @, such that d,,(h) > r (therefore 0 € B,). We observe that

(a) B, is an integrally closed monomial ideal of finite colength, for all r > 1;
(b) BrBs & Br+s' r,s>1;
(C) Bog = Op.

The family of ideals {B,},.1 is called the weighted homogeneous filtration induced by w. We denote by A, the ideal of @,
generated by the monomials x* such that d,,(x*) = r. If there is not any monomial x* such that d,,(xX*) = r then we set
Ar = 0.Given an integer r > 1, we observe that A, C B, and that A, # B, in general. Moreover it follows easily that
A, = B, if and only if A, is an ideal of finite colength of @,,.

Ifry, ..., € Z3q, thenitis not true in general that o (A, ..., Ar,) < 00, evenif A, # 0,foralli =1, ..., n. However
o (Br,, ..., Br,) < 00, since By, has finite colength, for alli = 1, ..., n. For instance, let us consider the vector w = (3, 1).
Then we have

Ag = (xy, Y, As = (X%, 9°).

We observe that the ideal A4 + A5 does not have finite colength, therefore o (A4, As) is not finite (see Remark 2.3).

Proposition 4.2. Letry, ..., 1, € Zs1. If o (A, ..., Ap) < 0o theno(B,, ..., B,) < coand
Tq.-Ty
0(Arys oy Ary) =0(Bryy oo, B) = —————.
Wq - Wy
Proof. By Proposition 2.2, there exists a sufficiently general element (hy, ..., h,) € B, ® - - - @ B, such that
0(Bry, ..., Br) =e(hy, ..., hy). (11)
The condition o (A;,, ..., A,) < ooimpliesthat A, # 0,foralli =1, ..., n.The ideal A, is generated by the monomials

of w-degreer;, foralli = 1, ..., n,thenh; canbe written as h; = gi+g/,foralli = 1..., n,where (gy, . .., g,) is a sufficiently
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general element of A;, @ --- @ A, and g/ € O, verifies that d,,(g]) > r;, foralli = 1, ..., n. Therefore p,,(h;) = g;, for all
i=1,...,n
Let g denote the map (g1, ..., g) : (C",0) — (C", 0). The conditiono (A, ..., A,) < oo and the genericity of g imply
that g is finite, that is, g~1(0) = {0} and o (A, ..., Ar) = e(gi1, ..., &). Consequently the map h : (C",0) — (C",0)
is semi-weighted homogeneous with respect to w. By [1, Section 12] (see also [7] for a more general phenomenon), this
implies that
ry---Ty

e(hla"'7hn):e(g15"'7gn): .
Wi - Wy

Then the result follows. O

Definition 4.3. Let ]y, ..., J, be a family of ideals of O, and letr; = d,,(J;), foralli = 1, ..., n. We say that ]y, . . ., J, admits

a w-matching if there exists a permutation t of {1, ..., n} and an index iy € {1, ..., n} such that

(@) wi, = min{wy, ..., wy},

(b) ey = max{ry, ..., rp} and

(c) the pure monomial x,-r’”)/w" belongs to J. (i, for all i # i.

Remark 4.4. If r € Z., then we observe that A, has finite colength if and only if w; divides r, foralli = 1,...,n. Let
1, ..., € Z3q such that A;, has finite colength, for alli = 1, ..., n. Then condition (c) of the above definition is not a
restriction in this case and therefore A,,, ..., Ay, admits a w-matching.

Let us consider the case n = 2 of the previous definition. Therefore, let ry, 1, € Z.; withr; > r, and let us suppose that
wy < wy. Let ]y, |, be ideals of @, such that d,,(J;) = r;,i = 1, 2. Then J;, J» admits a w-matching if and only if y2/*2 ¢ J,.

Example 4.5. Set w = (1,2, 3,4)andr; = 10,1, = 9,r3 = 8,14 = 6. The family of ideals given by
hi=®x3),  h=&.xx), J3=K.x%),  Ja= (X, XXa),
admits a w-matching. Observe that here iy = 1and the permutation t is definedby (1) = 1,7(2) = 4,t(3) = 2,7(4) = 3.

Let us observe that, if i, . . ., J, admits a w-matching, then it is always possible to reorder the ideals J; in such a way that
7(ig) = ig, and therefore one could restrict to the case t = id after a permutation of the ideals J;. But the permutation t is
specially relevant when considering ideals coming from the gradient of a function f (see Example 4.12).

Lemma 4.6. Letry,..., 1, € Z>q and let Iy, ..., I, be monomial ideals of O, such that d,(I;) = 1, foralli = 1,...,n, and
oly,....I) = ﬁ.Let} be an ideal of O, such that] = (x;"', ..., x,""), forsomer > 1, where o; = % andw = wy - - - Wy.
Then

min{ry, wr} - - - min{r,, wr
el 41,y gy = T TR ) (12)
Proof. Let A = {i : r; < rw}. After a reordering of the integersry, ..., r, we can assume that A = {1, ..., s}, forsomes > 1.

Then, since ] = B, we conclude thate(ly +J, ..., I, +]) =e(lt +], ..., s+ ],], ..., ]).
By Proposition 2.2, there exist an element (g1, ...,8,) € Iy ® - - - @ I, such that d,, (g;) = r;,foralli=1, ..., n,and

rl...rn

eg,....&)=0l,....Iyp) = —. (13)
Wi - Wy
Let us denote by R the quotient ring O,/ (P (€1), - - - » Pw(8gs)) and let H denote the ideal of ©¥,, generated by xqa‘ R AR
Relation (13) implies, by [6, Theorem 3.3], that the ideal generated by p,,(g1), . . . , Dw(gx) has finite colength. In particular,
these elements form a regular sequence and then dim(R) = n — s. Hence there exists a sufficiently general element
(hq, ..., ha—s) € H®- - - @ H such that the images of the h; in R generate a reduction of the image of ] in R, by the theorem of
existence of reductions (see [8, p. 166]). In particular, the ideal K = (p,,(g1), ..., Pw(gs), h1, ..., hy_s) has finite colength.
Since h; is a generic C-linear combination of x;‘”, .ooxon foralli = 1,...,n, we have that p,,(h;)) = h;, foralli =
1,...,n.ThenK = (py,(g1), - - ., Pw(gs), Pw(h1), ..., pw(hs_s)). Therefore
e(K) = ry---rs(wr)"* _ min{ry, wr}- - - min{rn,wr}’ (14)

Wy - Wy w

where the first equality comes from [1, Section 12] (see also [6, Theorem 3.3]).
Since I; is a monomial ideal, for alli = 1, ..., n, we have that p,,(g;) € I;, foralli = 1,..., n. In particular we have
e(K)>e(ly+],...,I, +]), by Lemma 2.4. Then
min{ry, wr}---min{r,, wr}

e)>eli+H,....,In+H) > — ; (15)
w

where the second inequality follows from [6, Theorem 3.3].
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The hypothesis | = H implies that
elh+J,....hn+)=elli+H,....I, + H). (16)
Then the result follows by joining (14)-(16). O

Theorem 4.7. Letry, ..., 1y, € Zyq suchthato (A, ..., Ay,) < 00.Let]q, ..., ], be aset of ideals of O, with d,, (J;) = r;, for
ali=1,...,nando(r,...,Js) =0 (A, ..., Ar). Then

maxiry, ..., Fa} (17)

LoUtrs v Jn) < Lo(Brysonts Bry) < min{w 0]
15+ Wn

and the above inequalities turn into equalities if ], . . ., J, admit a w-matching.

Proof. The conditiono (A, ..., Ay,) < oo and the equality o (1, ..., Jn) = 0 (A, ..., Ay,) imply that
r.l .. rn
o(i,....Jn) = O'(Br], ey Brn) =,
w.l ... wn
by Proposition 4.2. Then we can apply Proposition 3.9 to deduce that

L‘O(Ila . -’]n) < LO(BH» RN Brn)~

Let us denote max({ry, ..., r,} and min{ws, ..., w,} by p and g, respectively. Let us see that Lo(B;,, ..., By,) < %.
Let us denote by w the product wy - - - wy, and let us consider the ideal ] = (x’fl, ..., Xp"), where o; = % for all
1
i=1,...,n.Sinceo(B,,...,B,) < oo, it makes sense to compute the number r](3§1, R %ﬁn), foralls > 1:

n(By ..., B ) =min{r>1:0(8,....8)=e® +J',...., 8, +])}

. sry---Sr,  min{sry, wr}-- - min{sr,, wr}
=mini{r>1: = —

w w
=min{r > 1:wr > max{sry, ..., sr}}
max{sm,...,srn}}

=minjr>1:r> —
w

w

"max{sn, .. .,srn}-‘

where [a] denotes the least integer greater than or equal to q, for any a € R, and the second equality is a direct application
of Lemma 4.6. Therefore

(BS,...,B%) r(B™, ..., BW
4By, ..., By) = inf—0 " o inf 1 In

s>1 s a>1 aw
of 1 [ max{awry, ..., awr,} max{ry, ..., n}
= inf — = .
a1 aw w w
Moreover, by Proposition 3.10 we have
w
Lo()) = max{ay, ..., o0} = ————,
min{wy, ..., wy}
since J is a monomial ideal. Therefore, by Lemma 3.8 we obtain
LO((Brla e 3rn) < LO(])LJ(BT17 ) 3rn)
- w max{rq, ..., 'y} max{ry, ..., '}
= minfwy, ..., Wy} w " min{wy, ..., wy}

Let us prove that Lo(J1, ..., n) = % supposing that J1, ..., J, admit a w-matching. This inequality holds if and only if
S S
rdi, - Jw) P
S q
foralls > 1. By Lemma 3.3 we have that qr (J§, ..., J$) > r(Ji*, ..., Ja"), for all s > 1. Therefore it suffices to show that

rgy, LB >sp—1, (18)

forall s > 1. Let us fix an integer s > 1, then relation (18) is equivalent to saying that

G > eU 4+ m P L m ), (19)
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Since J1, . .., J, admits a w-matching, let us consider a permutation t of {1, ..., n} such that
(@) wi, = min{wy, ..., wy},
(b) T¢¢iy) = max{ry, ..., r} and

Tz iy /Wi

(c) the pure monomial x; belongs to J; for all i # io.

Let us define the ideal

rT(i)‘sq
H={x"" ‘i#i +(x§§*‘>.

Then
Tr(1)54 Tt(ig—1)%1 Tt (ig+1)54 Tt(mS4
_ wq Wig—1 sp—1 Wig+1
e(H) =e(x s Xt X s Xiged e X" )
IFRERET w;,
= (sq)" ' ——"——"—(sp—1).
Tz(p) Wi---Wp
Tz (i)
Since x; " e forallie {1,...,n}\ {ip}, and xfg’*l e m*®~!, we can apply Lemma 2.4 to conclude that
e(H) > e(;ly, +mP ' . +mPT) =e(y? +mPT L mPT, (20)
Hence, if we prove thato (J}?, ..., Ja") > e(H) then the result follows.

By [4, Lemma 2.6], we have that o (J;", ..., Ja") = (sq)"0(J1,...,Jn). Then, using the hypothesis o (1, ...,J,) =
o (A, ..., Ayr,) and Proposition 4.2, we obtain that

1 Tn

G, = (sq)“uf (21)

1 * Wn

Thus, since we assume that r(;,) = p and w;, = g, we have that o(]fq, D > e(H) if and only if
sq> 2(sp— 1),
p

which is to say that spqg > spq — q. Therefore relation (19) holds for all integer s > 1 and consequently the inequality
LoUrys--ostm) = % follows. Thus relation (17) is proven. O

Remark 4.8. We observe that the condition that Ji, ..., J, admits a w-matching cannot be removed from the hypothesis
of the previous theorem. Let us consider now the weighted homogeneous filtration in @, induced by the vector of weights
w = (1, 4) and let J;, J, be the ideals of 9, given by J; = (x*), J, = (y*). We observe that d,,(x*) = 4, d,,(¥*) = 8 and
consequently the right hand side of (17) would lead to the conclusion that £y(J1, J,) = 8, which is not the case, since clearly
Lo(x*, ¥?) = 4. We also observe that the system of ideals J;, J, does not admit a w-matching.

In order to simplify the exposition, we need to introduce the following definition.

Definition 4.9. If f € O, f(0) = 0, then f is termed convenient when I, (f) intersects each coordinate axis. Let J; denote
the ideal of 9, generated by all monomials x* such that k € I, (3f /9x;),i = 1, ..., n. Let us fix a vector of weights w € VASE
Then we say that f admits a w-matching when the family of ideals J1, ..., J, admits a w-matching (see Definition 4.3).

If a function f € O, is convenient and quasi-homogeneous, then f admits a w-matching. Observe that in this case the
d/w,-

monomials x;" ™ are in the support of f, fori = 1, ..., n. Then there is a pure monomial in x; belonging to the support of the
partial derivative df /dx; and one could take 7 = id in the definition of w-matching (see Definition 4.3).
Let us fix a vector of weights w = (w1, ..., w,) € Z%; and an integer d > 1. Then we denote by O (w; d) the set of all

functions f € @, such that f is semi-weighted homogeneous with respect to w of degree d.

Remark 4.10. From Definition 4.3 we observe that a function f € @ (w; d) admits a w-matching if and only if p,, (f) admits
a w-matching, since the ideals J; introduced in Definition 4.9 have the same w-degree as the analogous ideals defined for

pw ().

Corollary 4.11. Let f : (C",0) — (C, 0) be a semi-weighted homogeneous function of degree d with respect to the weights
w1, ..., Wy Then
d — min{wq, ..., wy}

Lo(Vf) < - (22)
min{wy, ..., wy}

and equality holds if f admits a w-matching.
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Proof. Let J; denote the ideal of 9, generated by all monomials x* such that k € 1"\ (3f/dx;),i = 1, ..., n.Since f has an
isolated singularity at the origin (that is, the ideal J(f) has finite colength) then o (J1, ..., J;) < oo, by Proposition 2.2. Then
Theorem 3.1 shows that Lo(Vf) = Lo(1, ..., n). We observe that d,,(Jy) = d — w;, foralli = 1, ..., n. Then the result
arises as a direct application of Theorem 4.7. O

It has been proven recently by Ploski et al. [9] that equality holds in (22) for all weighted homogeneous functions
f:(C3,0) = (C, 0) such that f has an isolated singularity at the origin, under the hypothesis that 2w; < d for all i.
The result of Corollary 4.11 holds for any number of variables.

Example 4.12. Let us consider the vector of weights w = (1, 2, 3, 5) and the polynomial f : (C* 0) — (C, 0) given by
f(x1, X2, X3,X4) = xg—x;1x4 —I—xzxi +x§7. Thenf is weighted homogeneous with w-degree 27 and f has an isolated singularity
at the origin. The ideals J; introduced in Definition 4.9 are given by

h=&°  Lh=&%.x) =) Ji=&" xx).

Then we observe that the polynomial f admits w-matching. Here the permutation t of Definition4.3is (1) = 1,t(2) = 4,
7(3) = 3, t(4) = 2. Then it follows from Corollary 4.11 that £,(Vf) = 26.

Given a vector of weights w = (w1, ..., w,) and a degree d, then it is not always possible to find a weighted homo-
geneous function f : (C",0) — (C, 0) of degree d with respect to w such that f admits a w-matching, as the following
example shows.

Example 4.13. Let w = (1, 2, 3) and d = 16. Let f be a weighted homogeneous function of degree d with respect to w. Let
J; denote the ideal of ©3 generated by all monomials x* such that k € I", (3f /dx;), forall i = 1, 2, 3. As a direct consequence
of Definition 4.3, if 1, J,, J3 admits a w-matching, then J5 contains a pure monomial of x, or a pure monomial of x5, which is
impossible since d,,(J3) = 13 and neither 2 nor 3 are divisors of 13.

However we observe that O (w; d) # @, since the function f (1, X2, x3) = x}® + x5 + x;x3 belongs to O (w; d).

Proposition 4.14. Let d, w1, ..., w, be non-negative integers such that w; divides d foralli = 1,...,n. Letf : (C",0) —
(C, 0) be a weighted homogeneous function of degree d with respect to the weights w, ..., wy. Let us assume that f has an
isolated singularity at the origin. Then there exists a change of coordinates X in (C", 0) of the form x; = y;+h;(y1, . . . , ¥n), Where
h; is a polynomialinyq, ..., yn i =1, ..., n, such that:

(1) the function f o X is convenient;
(2) if hy # 0, then the polynomial h; is weighted homogeneous of degree w; with respect to w and therefore f o x is weighted
homogeneous of degree d with respect to w.

Proof. Since f has an isolated singularity at the origin, foranyi =1, ..., nwe can fixanindex k; € {1, ..., n} such that x;""

appears in the support of % where m; = ulf"" , which is to say that the monomial x,qxf"f appears in the support of f. Then

w; divides d — wy,; and consequently w; divides wy;, since w; divides d by assumption.
Forallj=1,...,n,wesetl; = {i: k; =j,i# j}. Let us define
a0
hj = i€l; (23)
0 otherwise,
where we suppose that {aj,,-}j.l. is a generic choice of coefficients in C. It is straightforward to see that, given an index
j€{1,...,n}suchthat h; # 0, the polynomial h; is weighted homogeneous of degree wj.
Let us consider the map x : (C", 0) — (C", 0), X(¥1, ..., ¥n) = (X1, ..., Xp), given by
X =yj+h(y forallj=1,...,n.

We conclude that x is a local biholomorphism, the function f o x is weighted homogeneous with respect to w of degree d
and, by the genericity of the coefficients g; ; in (23), the pure monomialyf/w" appearsinthe supportoffox,foralli=1,...,n.
Hence the function f o X is convenient. O
Example 4.15. Setw = (1,2, 3, 4, 6) and d = 12. The polynomial f = x}? 4 xjx4 +x; + x3x5 +x2 is weighted homogeneous

of degree 12. Let J; denote the ideal of 95 generated by all monomials x* such that k € I, (3f/dx),i = 1,...,5. A
straightforward computation shows that

h=&h,  h=@x), J=@&sxs), Ja=x), Js= (3 %5).
Since the ideals J, and J3 do not contain any pure monomial, the family of ideals {J; : i = 1,...,5} does not admit a
w-matching.

Following the proof of Proposition 4.14, we consider the coordinate change x : (C°, 0) — (C>, 0), given by: x; = y1,
Xy = Y2,X3 = ¥3,Xa = Ya + Y3, X5 = Y5 + y3.Let g = f o x and let J/ denote the ideal of Os generated by all monomials y*
such thatk € I', (dg/dy;),i = 1, ..., 5. Then, as shown in that proof, the function g is convenient and therefore the family
ofideals {J{ : i =1, ..., 5} admits a w-matching.
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Corollary 4.16. Letd, w1, ..., w, be non-negative integers such that w; dividesd foralli =1, ...,n. Letf : (C",0) — (C, 0)

be a semi-weighted homogeneous function of degree d with respect to the weights w1, . .., wy,. Then
d — minf{wq, ..., w,}
Lo(Vf) = - .
min{wq, ..., wy}

Proof. Since f is semi-weighted homogeneous, the principal part p,,(f) has an isolated singularity at the origin. Let
X : (C",0) — (C", 0) denote the analytic coordinate change obtained in Proposition 4.14 applied to p,, (f). The function
Pw(f) o xis weighted homogeneous of degree d with respect to w. Therefore

Pu(f) oX=py(f oXx),

which implies that f ox is a semi-weighted homogeneous function. Then, by Proposition 4.14 and Remark 4.10, the function
f ox admits a w-matching. Thus we obtain, by Corollary 4.11, that

Lo(V(f OX)) — d— mil’l{wl’ o wn}

min{wy, ... wy}
Then the result follows, since the local Lojasiewicz exponent is a bianalytic invariant. O

We remark that in Corollary 4.16 we do not assume 2w; < d as in [9]. This assumption cannot be eliminated from the
main result of [9], as the following example shows. The result in 4.16 holds for any number of variables, but the assumptions
are also restrictive, since we are assuming that the weights w; divide d.

Example 4.17. Let us consider the polynomial f of ©¥; given by f = x;x3 + x% + x%xz. We observe that f is weighted
homogeneous of degree 4 with respect to the vector of weights w = (1, 2, 3). The Jacobian ideal is (x1, x,, x3) so that
Lo(Vf) = 1 # 3. We remark that it is easy to check that f does not admit a w-matching.
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