Contents lists available at ScienceDirect

# Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

# The Łojasiewicz exponent of a set of weighted homogeneous ideals

# C. Bivià-Ausina<sup>a,\*</sup>, S. Encinas<sup>b</sup>

<sup>a</sup> Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, Camí de Vera, s/n, 46022 València, Spain <sup>b</sup> Departamento de Matemática Aplicada, Universidad de Valladolid, Avda. Salamanca s/n, 47014 Valladolid, Spain

#### ARTICLE INFO

Article history: Received 23 March 2010 Received in revised form 19 April 2010 Available online 25 June 2010 Communicated by A.V. Geramita

MSC: Primary: 32S05 Secondary: 13H15

## ABSTRACT

We give an expression for the Łojasiewicz exponent of a set of ideals which are pieces of a weighted homogeneous filtration. We also study the application of this formula to the computation of the Łojasiewicz exponent of the gradient of a semi-weighted homogeneous function  $(\mathbb{C}^n, 0) \rightarrow (\mathbb{C}, 0)$  with an isolated singularity at the origin.

© 2010 Elsevier B.V. All rights reserved.

### 1. Introduction

Let *R* be a Noetherian ring and let *I* be an ideal of *R*. Let  $v_I$  be the order function of *R* with respect to *I*, that is,  $v_I(h) = \sup\{r : h \in I^r\}$ , for all  $h \in R$ ,  $h \neq 0$ , and  $v(0) = \infty$ . Let us consider the function  $\overline{v}_I : R \to \mathbb{R}_{\geq 0} \cup \{\infty\}$  defined by  $\overline{v}_I(h) = \lim_{s \to \infty} \frac{v_I(h^s)}{s}$ , for all  $h \in R$ . It was proven by Samuel [17] and Rees [14] that this limit exists and Nagata proved in [12] that, when finite, the number  $\overline{v}_I(h)$  is a rational number. The function  $\overline{v}$  is called the *asymptotic Samuel function of I*. If *J* is another ideal of *R*, then the number  $\overline{v}_I(J)$  is defined analogously and if  $h_1, \ldots, h_r$  is a generating system of *J* then  $\overline{v}_I(J) = \min\{\overline{v}_I(h_1), \ldots, \overline{v}_I(h_r)\}$ . Let us denote by  $\overline{I}$  the integral closure of *I*. As a consequence of the theorem of existence of the Rees valuations of an ideal (see for instance [8, p. 192]), it is known that, if *J* is another ideal and  $p, q \in \mathbb{Z}_{\geq 1}$ , then  $J^q \subseteq \overline{I^p}$ if and only if  $\overline{v}_I(J) \geq \frac{p}{q}$ .

Let  $\mathcal{O}_n$  denote the ring of analytic function germs  $f : (\mathbb{C}^n, 0) \to \mathbb{C}$  and let  $m_n$  denote its maximal ideal, that will be also denoted by m if no confusion arises. Let I be an ideal of  $\mathcal{O}_n$  of finite colength. Lejeune and Teissier proved in [10, p. 832] that  $\frac{1}{\overline{v}_I(m)}$  is equal to the Łojasiewicz exponent of I (in fact, this result was proven in a more general context, that is, for ideals in a structural ring  $\mathcal{O}_X$ , where X is a reduced complex analytic space). If  $g_1, \ldots, g_r$  is a generating system of I, then the Łojasiewicz exponent of I is defined as the infimum of those  $\alpha > 0$  for which there exist a constant C > 0 and an open neighbourhood U of  $0 \in \mathbb{C}^n$  with

 $\|x\|^{\alpha} \leq C \sup_{i} |g_i(x)|$ 

for all  $x \in U$ . Let us denote this number by  $\mathcal{L}_0(I)$  and let e(I) denote the Samuel multiplicity of I. Therefore we have that  $\mathcal{L}_0(I) = \inf\{\frac{p}{q} : m^p \subseteq \overline{I^q}, p, q \in \mathbb{Z}_{>0}\}$  and hence, by the Rees multiplicity theorem (see [8, p. 222]) it follows that  $\mathcal{L}_0(I) = \inf\{\frac{p}{q} : e(I^q) = e(I^q + m^p), p, q \in \mathbb{Z}_{>0}\}$ . This expression of  $\mathcal{L}_0(I)$  is one of the motivations that led the first author to introduce the notion of Łojasiewicz exponent of a set of ideals in [4]. This notion is based on the Rees mixed multiplicity of a set of ideals (Definition 2.1).

\* Corresponding author. E-mail addresses: carbivia@mat.upv.es (C. Bivià-Ausina), sencinas@maf.uva.es (S. Encinas).





<sup>0022-4049/\$ –</sup> see front matter 0 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jpaa.2010.06.008

Lojasiewicz exponents have important applications in singularity theory. Here we recall one of them. If *g* : (ℂ<sup>*n*</sup>, 0) → (ℂ<sup>*n*</sup>, 0) is an analytic map germ such that *g*<sup>-1</sup>(0) = {0} then we denote by  $\mathcal{L}_0(g)$  the Lojasiewicz exponent of the ideal generated by the component functions of *g*. Let *f* : (ℂ<sup>*n*</sup>, 0) → (ℂ, 0) be the germ of a complex analytic function with an isolated singularity at the origin. Then  $\nabla f$  : (ℂ<sup>*n*</sup>, 0) → (ℂ<sup>*n*</sup>, 0) denotes the gradient map of *f*, that is,  $\nabla f = (\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n})$ . The *Jacobian ideal of f*, that we will denote by *J*(*f*), is the ideal generated by the components of  $\nabla f$ . The *degree of*  $C^0$ -*determinacy of f*, denoted by  $s_0(f)$ , is defined as the smallest integer *r* such that *f* is topologically equivalent to f + g, for all  $g \in \mathcal{O}_n$  with  $\nu_{m_n}(g) \ge r + 1$ . Teissier proved in [19, p. 280] that  $s_0(f) = [\mathcal{L}_0(\nabla f)] + 1$ , where [*a*] stands for the integer part of a given  $a \in \mathbb{R}$ . Despite the fact that this equality connects  $\mathcal{L}_0(\nabla f)$  with a fundamental topological aspect of *f*, the problem of determining whether the Łojasiewicz exponent  $\mathcal{L}_0(\nabla f)$  is a topological invariant of *f* is still an open problem.

The effective computation of  $\mathcal{L}_0(I)$  has proven to be a challenging problem in algebraic geometry that, by virtue of the results of Lejeune and Teissier is directly related with the computation of the integral closure of an ideal. In [5] the authors relate the problem of computing  $\mathcal{L}_0(I)$  with the algorithms of resolution of singularities. The approach that we give in this paper is based on techniques of commutative algebra.

We recall that, if  $w = (w_1, \ldots, w_n) \in \mathbb{Z}_{\geq 1}^n$ , then a polynomial  $f \in \mathbb{C}[x_1, \ldots, x_n]$  is called weighted homogeneous of degree d with respect to w when f is written as a sum of monomials  $x_1^{k_1} \cdots x_n^{k_n}$  such that  $w_1x_1 + \cdots + w_nx_n = d$ . This paper is motivated by the main result of Krasiński et al. in [9], which says that if  $f : \mathbb{C}^3 \to \mathbb{C}$  is a weighted homogeneous polynomial of degree d with respect to  $(w_1, w_2, w_3)$  with an isolated singularity at the origin, then  $\mathcal{L}_0(\nabla f)$  is given by the expression

$$\mathcal{L}_0(\nabla f) = \frac{d - \min\{w_1, w_2, w_3\}}{\min\{w_1, w_2, w_3\}}$$

provided that  $d \ge 2w_i$ , for all i = 1, 2, 3. That is,  $\mathcal{L}_0(\nabla f)$  depends only on the weights  $w_i$  and the degree d in this case. Therefore it is concluded that  $\mathcal{L}_0(\nabla f)$  is a topological invariant of f, by virtue of the results of [16,21]. In view of the above equality it is reasonable to conjecture that the analogous result holds in general, that is, if  $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$  is a weighted homogeneous polynomial, or even a semi-weighted homogeneous function (see Definition 4.1), with respect to  $(w_1, \ldots, w_n)$  of degree d with an isolated singularity at the origin, and if  $d \ge 2w_i$ , for all  $i = 1, \ldots, n$ , then

$$\mathcal{L}_0(\nabla f) = \frac{d - \min\{w_1, \dots, w_n\}}{\min\{w_1, \dots, w_n\}}.$$
(1)

We point out that inequality ( $\leq$ ) always holds in (1) for semi-weighted homogeneous functions (see Corollary 4.11).

In this paper we obtain the equality (1) for semi-weighted homogeneous germs  $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$  under a restriction expressed in terms of the supports of the component functions of  $\nabla f$  (see Corollary 4.11). This result arises as a consequence of a more general result involving the Łojasiewicz exponent of a set of ideals coming from a weighted homogeneous filtration (see Theorem 4.7). Our approach to Łojasiewicz exponents is purely algebraic and comes from the techniques developed in [3,4]. This new point of view of the subject has led us to detect a broad class of semi-weighted homogeneous functions where relation (1) holds.

For the sake of completeness we recall in Section 2 the definition of the Rees mixed multiplicity and basic facts about this notion. In Section 3 we show some results about the notion of Łojasiewicz exponent of a set of ideals that will be applied in Section 4. The main results appear in Section 4.

#### 2. The Rees mixed multiplicity of a set of ideals

Let (R, m) be a Noetherian local ring and let I be an ideal of R. We denote by e(I) the Samuel multiplicity of I. Let dim R = n and let us fix a set of n ideals  $I_1, \ldots, I_n$  of R of finite colength. Then we denote by  $e(I_1, \ldots, I_n)$  the mixed multiplicity of  $I_1, \ldots, I_n$ , as defined by Teissier and Risler in [20] (we refer to [8, Section 17] and [18] for fundamental results about mixed multiplicities of ideals). We recall that, if the ideals  $I_1, \ldots, I_n$  are equal to a given ideal, say I, then  $e(I_1, \ldots, I_n) = e(I)$ .

Let us suppose that the residue field k = R/m is infinite. Let  $a_{i1}, \ldots, a_{is_i}$  be a generating system of  $I_i$ , where  $s_i \ge 1$ , for  $i = 1, \ldots, n$ . Let  $s = s_1 + \cdots + s_n$ . We say that a property holds for sufficiently general elements of  $I_1 \oplus \cdots \oplus I_n$  if there exists a non-empty Zariski-open set U in  $k^s$  verifying that the said property holds for all elements  $(g_1, \ldots, g_n) \in I_1 \oplus \cdots \oplus I_n$  such that  $g_i = \sum_i u_{ii}a_{ij}$ ,  $i = 1, \ldots, n$  and the image of  $(u_{11}, \ldots, u_{1s_1}, \ldots, u_{ns_n})$  in  $k^s$  lies in U.

that  $g_i = \sum_j u_{ij}a_{ij}$ , i = 1, ..., n and the image of  $(u_{11}, ..., u_{1s_1}, ..., u_{n1}, ..., u_{ns_n})$  in  $k^s$  lies in U. By virtue of a result of Rees (see [15] or [8, p. 335]), if the ideals  $I_1, ..., I_n$  have finite colength and R/m is infinite, then the mixed multiplicity of  $I_1, ..., I_n$  is obtained as  $e(I_1, ..., I_n) = e(g_1, ..., g_n)$ , for a sufficiently general element  $(g_1, ..., g_n) \in I_1 \oplus \cdots \oplus I_n$ .

Let us denote by  $\mathcal{O}_n$  the ring of analytic function germs  $(\mathbb{C}^n, 0) \to \mathbb{C}$ . Let  $g : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$  be a complex analytic map germ such that  $g^{-1}(0) = \{0\}$  and let  $g_1, \ldots, g_n$  denote the component functions of g. We recall that  $e(I) = \dim_{\mathbb{C}} \mathcal{O}_n/I$ , where I is the ideal of  $\mathcal{O}_n$  generated by  $g_1, \ldots, g_n$ . It turns out that this number is equal to the geometric multiplicity of g (see [11, p. 258] or [13]).

Now we show the definition of a number associated to a family of ideals that generalizes the notion of mixed multiplicity. This number is fundamental in the results of this paper.

We denote by  $\mathbb{Z}_+$  the set of non-negative integers. Let  $a \in \mathbb{Z}$ , we denote by  $\mathbb{Z}_{\geq a}$  the set of integers  $z \geq a$ .

**Definition 2.1** ([3]). Let (R, m) be a Noetherian local ring of dimension n. Let  $I_1, \ldots, I_n$  be ideals of R. Then we define the *Rees mixed multiplicity of*  $I_1, \ldots, I_n$  as

$$\sigma(I_1,\ldots,I_n) = \max_{r \in \mathbb{Z}_+} e(I_1 + m^r,\ldots,I_n + m^r), \tag{2}$$

when the number on the right hand side is finite. If the set of integers  $\{e(I_1 + m^r, ..., I_n + m^r) : r \in \mathbb{Z}_+\}$  is non-bounded then we set  $\sigma(I_1, ..., I_n) = \infty$ .

We remark that if  $I_i$  is an ideal of finite colength, for all i = 1, ..., n, then  $\sigma(I_1, ..., I_n) = e(I_1, ..., I_n)$ . The next proposition characterizes the finiteness of  $\sigma(I_1, ..., I_n)$ .

**Proposition 2.2** ([3, p. 393]). Let  $I_1, \ldots, I_n$  be ideals of a Noetherian local ring (R, m) such that the residue field k = R/m is infinite. Then  $\sigma(I_1, \ldots, I_n) < \infty$  if and only if there exist elements  $g_i \in I_i$ , for  $i = 1, \ldots, n$ , such that  $\langle g_1, \ldots, g_n \rangle$  has finite colength. In this case, we have that  $\sigma(I_1, \ldots, I_n) = e(g_1, \ldots, g_n)$  for sufficiently general elements  $(g_1, \ldots, g_n) \in I_1 \oplus \cdots \oplus I_n$ .

**Remark 2.3.** It is worth pointing out that, if  $I_1, \ldots, I_n$  is a set of ideals of *R* such that  $\sigma(I_1, \ldots, I_n) < \infty$ , then  $I_1 + \cdots + I_n$  is an ideal of finite colength. Obviously the converse is not true.

The following result will be useful in subsequent sections.

**Lemma 2.4** ([4, p. 392]). Let (R, m) be a Noetherian local ring of dimension  $n \ge 1$ . Let  $J_1, \ldots, J_n$  be ideals of R such that  $\sigma(J_1, \ldots, J_n) < \infty$ . Let  $I_1, \ldots, I_n$  be ideals of R such that  $J_i \subseteq I_i$ , for all  $i = 1, \ldots, n$ . Then  $\sigma(I_1, \ldots, I_n) < \infty$  and

 $\sigma(J_1,\ldots,J_n) \geq \sigma(I_1,\ldots,I_n).$ 

Now we recall some basic definitions. Let us fix a coordinate system  $x_1, \ldots, x_n$  in  $\mathbb{C}^n$ . If  $k = (k_1, \ldots, k_n) \in \mathbb{Z}_+^n$ , we will denote the monomial  $x_1^{k_1} \cdots x_n^{k_n}$  by  $x^k$ . If  $h \in \mathcal{O}_n$  and  $h = \sum_k a_k x^k$  denotes the Taylor expansion of h around the origin, then the *support of h* is the set supp $(h) = \{k \in \mathbb{Z}_+^n : a_k \neq 0\}$ . If  $h \neq 0$ , the *Newton polyhedron of h*, denoted by  $\Gamma_+(h)$ , is the convex hull of the set  $\{k + v : k \in \text{supp}(h), v \in \mathbb{R}_+^n\}$ . If h = 0, then we set  $\Gamma_+(h) = \emptyset$ . If I is an ideal of  $\mathcal{O}_n$  and  $g_1, \ldots, g_s$  is a generating system of I, then we define the *Newton polyhedron of I* as the convex hull of  $\Gamma_+(g_1) \cup \cdots \cup \Gamma_+(g_r)$ . It is easy to check that the definition of  $\Gamma_+(I)$  does not depend on the chosen generating system of I. We say that I is a *monomial ideal* of  $\mathcal{O}_n$  when I admits a generating system formed by monomials.

**Definition 2.5.** Let  $I_1, \ldots, I_n$  be monomial ideals of  $\mathcal{O}_n$  such that  $\sigma(I_1, \ldots, I_n) < \infty$ . Then we denote by  $\mathscr{S}(I_1, \ldots, I_n)$  the family of those maps  $g = (g_1, \ldots, g_n) : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$  for which  $g^{-1}(0) = \{0\}, g_i \in I_i$ , for all  $i = 1, \ldots, n$ , and  $\sigma(I_1, \ldots, I_n) = e(g_1, \ldots, g_n)$ , where  $e(g_1, \ldots, g_n)$  stands for the multiplicity of the ideal of  $\mathcal{O}_n$  generated by  $g_1, \ldots, g_n$ . The elements of  $\mathscr{S}(I_1, \ldots, I_n)$  are characterized in [3, Theorem 3.10].

We denote by  $\delta_0(I_1, \ldots, I_n)$  the set formed by the maps  $g = (g_1, \ldots, g_n) \in \delta(I_1, \ldots, I_n)$  such that  $\Gamma_+(g_i) = \Gamma_+(I_i)$ , for all  $i = 1, \ldots, n$ .

### 3. The Łojasiewicz exponent of a set of ideals

In this section we introduce some results concerning the notion of Łojasiewicz exponent of a set of ideals in a Noetherian ring. These results will be applied in the next section.

Let  $I_1, \ldots, I_n$  be ideals of a local ring (R, m) such that  $\sigma(I_1, \ldots, I_n) < \infty$ . Then we define

$$r(I_1, \dots, I_n) = \min \left\{ r \in \mathbb{Z}_+ : \sigma(I_1, \dots, I_n) = e(I_1 + m^r, \dots, I_n + m^r) \right\}.$$
(3)

**Theorem 3.1** ([4, p. 398]). Let  $I_1, \ldots, I_n$  be monomial ideals of  $\mathcal{O}_n$  such that  $\sigma(I_1, \ldots, I_n)$  is finite. If  $g \in \mathscr{S}_0(I_1, \ldots, I_n)$ , then  $\mathcal{L}_0(g)$  depends only on  $I_1, \ldots, I_n$  and it is given by

$$\mathcal{L}_0(g) = \min_{s \ge 1} \frac{r(l_1^s, \dots, l_n^s)}{s}.$$
(4)

By the proof of the above theorem it is concluded that the infimum of the sequence  $\left\{\frac{r(l_1^s,...,l_n^s)}{s}\right\}_{s \ge 1}$  is actually a minimum. Theorem 3.1 motivates the following definition.

**Definition 3.2.** Let (R, m) be a Noetherian local ring of dimension n. Let  $I_1, \ldots, I_n$  be ideals of R. Let us suppose that  $\sigma(I_1, \ldots, I_n) < \infty$ . We define the *Lojasiewicz exponent of*  $I_1, \ldots, I_n$  as

$$\mathcal{L}_0(I_1,\ldots,I_n) = \inf_{s \ge 1} \frac{r(I_1^s,\ldots,I_n^s)}{s}$$

As we will see in Lemma 3.3, we have that  $r(I_1^s, \ldots, I_n^s) \leq sr(I_1, \ldots, I_n)$ , for all  $s \in \mathbb{Z}_{\geq 1}$ . Therefore  $\mathcal{L}_0(I_1, \ldots, I_n) \leq r(I_1, \ldots, I_n)$ .

We can extend Definition 2.1 by replacing the maximal ideal *m* by an arbitrary ideal of finite colength, but the resulting number is the same. That is, under the hypothesis of Definition 2.1, let us denote by *J* an ideal of *R* of finite colength and let us suppose that  $\sigma(I_1, \ldots, I_n) < \infty$ . Then we define

$$\sigma_J(I_1,\ldots,I_n)=\max_{r\in\mathbb{Z}_+}e(I_1+J^r,\ldots,I_n+J^r).$$

An easy computation reveals that  $\sigma_l(I_1, \ldots, I_n) = \sigma(I_1, \ldots, I_n)$ . We also define

$$r_{I}(I_{1},\ldots,I_{n}) = \min \left\{ r \in \mathbb{Z}_{+} : \sigma(I_{1},\ldots,I_{n}) = e(I_{1}+J^{r},\ldots,I_{n}+J^{r}) \right\}.$$
(5)

Let *I* be an ideal of *R* of finite colength. Then we denote by  $r_J(I)$  the number  $r_J(I, ..., I)$ , where *I* is repeated *n* times. We deduce from the Rees multiplicity theorem that, if *R* is quasi-unmixed, then  $r_I(I) = \min\{r \ge 1 : J^r \subseteq \overline{I}\}$ .

**Lemma 3.3.** Let (R, m) be a Noetherian local ring of dimension n. Let  $I_1, \ldots, I_n$  be ideals of R such that  $\sigma(I_1, \ldots, I_n) < \infty$  and let J be an m-primary ideal. Then

$$r_J(I_1^s,\ldots,I_n^s) \leqslant sr_J(I_1,\ldots,I_n)$$
$$r_{J^s}(I_1,\ldots,I_n) \geqslant \frac{1}{s}r_J(I_1,\ldots,I_n)$$

for all integer  $s \ge 1$ .

**Proof.** For the first inequality, set  $r = r_J(I_1, \ldots, I_n)$ . Thus  $\sigma(I_1, \ldots, I_n) = e(I_1 + J^r, \ldots, I_n + J^r)$ . It is enough to prove that  $\sigma(I_1^s, \ldots, I_n^s) = e(I_1^s + J^{rs}, \ldots, I_n^s + J^{rs})$ :

$$e(I_1^{s} + J^{rs}, \dots, I_n^{s} + J^{rs}) = e(I_1^{s} + J^{rs}, \dots, \overline{I_n^{s} + J^{rs}}) = e(\overline{(I_1 + J^r)^s}, \dots, \overline{(I_n + J^r)^s})$$
  
=  $e((I_1 + J^r)^s, \dots, (I_n + J^r)^s) = s^n e(I_1 + J^r, \dots, I_n + J^r)$   
=  $s^n \sigma(I_1, \dots, I_n) = \sigma(I_1^s, \dots, I_n^s),$ 

where last equality comes from [4, Lemma 2.6].

The second inequality comes directly from the definition of  $r_{I^s}(I_1, \ldots, I_n)$ .  $\Box$ 

It is easy to find examples of ideals I and J such that  $r_J(I_1, \ldots, I_n) \neq r(I_1, \ldots, I_n)$  in general. This fact motivates the following definition.

**Definition 3.4.** Let (R, m) be a Noetherian local ring of dimension n. Let  $I_1, \ldots, I_n$  be ideals of R such that  $\sigma(I_1, \ldots, I_n) < \infty$ . Let J be an m-primary ideal of R. We define the *Łojasiewicz exponent* of  $I_1, \ldots, I_n$  with respect to J, denoted by  $\mathcal{L}_J(I_1, \ldots, I_n)$ , as

$$\mathcal{L}_J(I_1,\ldots,I_n) = \inf_{s \ge 1} \frac{r_J(I_1^s,\ldots,I_n^s)}{s}.$$
(6)

If *I* is an *m*-primary ideal of *R*, then we denote by  $\mathcal{L}_{I}(I)$  the number  $\mathcal{L}_{I}(I, \ldots, I)$ , where *I* is repeated *n* times.

**Remark 3.5.** Under the conditions of the previous definition, we observe that  $\mathcal{L}_{I}(I_{1}, \ldots, I_{n})$  can be seen as a limit inferior:

$$\mathcal{L}_J(I_1,\ldots,I_n) = \liminf_{s\to\infty} \frac{r_J(I_1^s,\ldots,I_n^s)}{s}$$

Set  $\ell = \mathcal{L}_J(I_1, \ldots, I_n)$ . In order to prove the equality above, it is enough to see that for all  $\epsilon > 0$  and all  $p \in \mathbb{Z}_+$ , there exists an integer  $m \ge p$  such that

$$\frac{r_J(I_1^m,\ldots,I_n^m)}{m} \leq \ell + \epsilon.$$

Let us fix an  $\epsilon > 0$  and an integer  $p \in \mathbb{Z}_+$ . By definition, there exists  $q \in \mathbb{Z}_+$  such that

$$\frac{r_J(I_1^q,\ldots,I_n^q)}{q} \leqslant \ell + \epsilon$$

Let  $s \in \mathbb{Z}_+$  such that  $sq \ge p$ . Then, from Lemma 3.3 we obtain that

$$\frac{r_j(I_1^{sq},\ldots,I_n^{sq})}{sq} \leqslant \frac{r_j(I_1^q,\ldots,I_n^q)}{q} \leqslant \ell + \epsilon.$$

If  $g : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$  denotes an analytic map germ such that  $g^{-1}(0) = \{0\}$  and J is an ideal of  $\mathcal{O}_n$  of finite colength, then we denote the number  $\mathcal{L}_J(I)$ , where I is the ideal generated by the component functions of g, by  $\mathcal{L}_J(g)$ . A straightforward reproduction of the argument in the proof of Theorem 3.1 consisting of replacing the powers of the maximal ideal by the powers of a given ideal of finite colength leads to the following result, which is analogous to Theorem 3.1.

**Theorem 3.6.** Let  $I_1, \ldots, I_n$  be monomial ideals of  $\mathcal{O}_n$  such that  $\sigma(I_1, \ldots, I_n)$  is finite and let J be a monomial ideal of  $\mathcal{O}_n$  of finite colength. Then the sequence  $\{\frac{r_j(l_1^s, \ldots, l_n^s)}{s}\}_{s \ge 1}$  attains a minimum and if  $g \in \mathcal{S}_0(I_1, \ldots, I_n)$  then

$$\mathcal{L}_J(g) = \mathcal{L}_J(I_1, \dots, I_n) = \min_{s \ge 1} \frac{r_J(I_1^s, \dots, I_n^s)}{s}.$$
(7)

Lemma 3.7. Under the hypothesis of Lemma 3.3 we have

$$\mathcal{L}_J(I_1^s,\ldots,I_n^s) = s\mathcal{L}_J(I_1,\ldots,I_n)$$
  
$$\mathcal{L}_{J^s}(I_1,\ldots,I_n) = \frac{1}{s}\mathcal{L}_J(I_1,\ldots,I_n)$$

for all  $s \in \mathbb{Z}_{\geq 1}$ .

Proof. For the first equality

$$\mathcal{L}_{J}(I_{1}^{s},\ldots,I_{n}^{s}) = \inf_{p \ge 1} \frac{r_{J}(I_{1}^{sp},\ldots,I_{n}^{sp})}{p} = s \inf_{p \ge 1} \frac{r_{J}(I_{1}^{sp},\ldots,I_{n}^{sp})}{sp} \ge s\mathcal{L}_{J}(I_{1},\ldots,I_{n}).$$

On the other hand, by Lemma 3.3 we obtain

$$\inf_{p>1} \frac{r_J(I_1^{sp},\ldots,I_n^{sp})}{p} \leqslant s \inf_{p>1} \frac{r_J(I_1^p,\ldots,I_n^p)}{p} = s\mathcal{L}_J(I_1,\ldots,I_n)$$

Let us see the second equality. Applying Lemma 3.3 we have

$$\mathcal{L}_{J^{s}}(I_{1},\ldots,I_{n})=\inf_{p\geqslant 1}\frac{r_{J^{s}}(I_{1}^{p},\ldots,I_{n}^{p})}{p}\geqslant\frac{1}{s}\inf_{p\geqslant 1}\frac{r_{J}(I_{1}^{p},\ldots,I_{n}^{p})}{p}=\frac{1}{s}\mathcal{L}_{J}(I_{1},\ldots,I_{n})$$

Let us denote the number  $r_{l^s}(I_1^p, \ldots, I_n^p)$  by  $r_p$ , for all  $p \ge 1$ . Then

$$\sigma(I_1^p,\ldots,I_n^p) > e(I_1^p + J^{s(r_p-1)},\ldots,I_n^p + J^{s(r_p-1)}).$$

In particular

$$r_J(l_1^p,\ldots,l_n^p) > s(r_p-1)$$

for all  $p \ge 1$ . Dividing the previous inequality by p and taking  $\liminf_{p \to \infty}$  we obtain by Remark 3.5, that

$$\mathcal{L}_{J}(I_{1},\ldots,I_{n})=\liminf_{p\to\infty}\frac{r_{J}(I_{1}^{p},\ldots,I_{n}^{p})}{p}\geq s\liminf_{p\to\infty}\left(\frac{r_{p}-1}{p}\right)=s\mathcal{L}_{J^{s}}(I_{1},\ldots,I_{n}).\quad \Box$$

**Lemma 3.8.** Let (R, m) be a quasi-unmixed Noetherian local ring of dimension n. Let  $I_1, \ldots, I_n$  be ideals of R such that  $\sigma(I_1, \ldots, I_n) < \infty$ . If  $J_1, J_2$  are m-primary ideals of R then

 $\mathcal{L}_{J_1}(I_1,\ldots,I_n) \leqslant \mathcal{L}_{J_1}(J_2)\mathcal{L}_{J_2}(I_1,\ldots,I_n).$ 

**Proof.** By (5) we have that

$$r_{J_1}(J_2) = \min \{r \ge 1 : e(J_2) = e(J_2 + J_1^r)\}.$$

Given an integer  $r \ge 1$ , the condition  $e(J_2) = e(J_2 + J_1^r)$  is equivalent to saying that  $J_1^r \subseteq \overline{J_2}$ , by the Rees multiplicity theorem (see [8, p. 222]). Therefore, an elementary computation shows that

$$r_{J_1}(I_1,\ldots,I_n) \leq r_{J_1}(J_2)r_{J_2}(I_1,\ldots,I_n).$$

By the generality of the previous inequality, we have

$$r_{J_1}(I_1^s,\ldots,I_n^s) \leq r_{J_1}(J_2^p)r_{J_2^p}(I_1^s,\ldots,I_n^s)$$

for all integers  $p, s \ge 1$ . The inequality (9) shows that

$$\begin{aligned} \mathcal{L}_{J_1}(I_1, \dots, I_n) &= \inf_{s \ge 1} \frac{r_{J_1}(I_1^s, \dots, I_n^s)}{s} \le \inf_{s \ge 1} \frac{r_{J_1}(J_2^p) r_{J_2^p}(I_1^s, \dots, I_n^s)}{s} \\ &= r_{J_1}(J_2^p) \mathcal{L}_{J_2^p}(I_1, \dots, I_n) = r_{J_1}(J_2^p) \frac{1}{n} \mathcal{L}_{J_2}(I_1, \dots, I_n) \end{aligned}$$

for all integer  $p \ge 1$ , where the last equality comes from Lemma 3.7. Then

$$\mathcal{L}_{J_1}(I_1,\ldots,I_n) \leqslant \left(\inf_{p \ge 1} \frac{r_{J_1}(J_2^p)}{p}\right) \mathcal{L}_{J_2}(I_1,\ldots,I_n) = \mathcal{L}_{J_1}(J_2) \mathcal{L}_{J_2}(I_1,\ldots,I_n). \quad \Box$$

(9)

(8)

We recall the following two results, which will be applied in the next section.

**Proposition 3.9** ([4]). Let (R, m) be a Noetherian local ring of dimension n. For each i = 1, ..., n let us consider ideals  $I_i$  and  $J_i$  such that  $I_i \subseteq J_i$ . Let suppose that  $\sigma(I_1, ..., I_n) < \infty$  and that  $\sigma(I_1, ..., I_n) = \sigma(J_1, ..., J_n)$ . Then

$$\mathcal{L}_0(I_1,\ldots,I_n)\leqslant \mathcal{L}_0(J_1,\ldots,J_n).$$

Let us denote the canonical basis in  $\mathbb{R}^n$  by  $e_1, \ldots, e_n$ .

**Proposition 3.10** ([2]). Let J be an ideal of finite colength of  $\mathcal{O}_n$  and set  $r_i = \min\{r : re_i \in \Gamma_+(J)\}$ , for all i = 1, ..., n. Then

 $\max\{r_1,\ldots,r_n\} \leqslant \mathcal{L}_0(J)$ 

and equality holds if  $\overline{J}$  is a monomial ideal.

#### 4. Weighted homogeneous filtrations

Let us fix a vector  $w = (w_1, ..., w_n) \in \mathbb{Z}_{\geq 1}^n$ . We will usually refer to w as the vector of weights. Let  $h \in \mathcal{O}_n$ ,  $h \neq 0$ , the degree of h with respect to w, or w-degree of h, is defined as

 $d_w(h) = \min\{\langle k, w \rangle : k \in \operatorname{supp}(h)\},\$ 

where  $\langle , \rangle$  stands for the usual scalar product. In particular, if  $x_1, \ldots, x_n$  denotes a system of coordinates in  $\mathbb{C}^n$  and  $x_1^{k_1} \cdots x_n^{k_n}$  is a monomial in  $\mathcal{O}_n$ , then  $d_w(x_1^{k_1} \cdots x_n^{k_n}) = w_1k_1 + \cdots + w_nk_n$ . By convention, we set  $d_w(0) = +\infty$ . If  $h \in \mathcal{O}_n$  and  $h = \sum_k a_k x^k$  is the Taylor expansion of h around the origin, then we define the *principal part of* h *with respect to* w as the polynomial given by the sum of those terms  $a_k x^k$  such that  $\langle k, w \rangle = d_w(h)$ . We denote this polynomial by  $p_w(h)$ .

**Definition 4.1.** We say that a function  $h \in O_n$  is weighted homogeneous of degree d with respect to w if  $\langle k, w \rangle = d$ , for all  $k \in \text{supp}(h)$ . The function h is said to be semi-weighted homogeneous of degree d with respect to w when  $p_w(h)$  has an isolated singularity at the origin. Note that  $p_w(h)$  is weighted homogeneous with respect to w.

It is well known that, if *h* is a semi-weighted homogeneous function, then *h* has an isolated singularity at the origin and that *h* and  $p_w(h)$  have the same Milnor number (see for instance [1, Section 12]). Let  $g = (g_1, \ldots, g_n) : (\mathbb{C}^n, 0) \rightarrow (\mathbb{C}^n, 0)$  be an analytic map germ, let us denote the map  $(p_w(g_1), \ldots, p_w(g_n))$  by  $p_w(g)$ . The map *g* is said to be *semi-weighted* homogeneous with respect to *w* when  $(p_w(g))^{-1}(0) = \{0\}$ .

If *I* is an ideal of  $\mathcal{O}_n$ , then we define the degree of *I* with respect to *w*, or *w*-degree of *I*, as

$$d_w(I) = \min\{d_w(h) : h \in I\}.$$

If  $g_1, \ldots, g_r$  constitutes a generating system of I, then it is straightforward to see that  $d_w(I) = \min\{d_w(g_1), \ldots, d_w(g_r)\}$ . Let  $r \in \mathbb{Z}_+$ , then we denote by  $\mathcal{B}_r$  the set of all  $h \in \mathcal{O}_n$  such that  $d_w(h) \ge r$  (therefore  $0 \in \mathcal{B}_r$ ). We observe that

- (a)  $\mathcal{B}_r$  is an integrally closed monomial ideal of finite colength, for all  $r \ge 1$ ;
- (b)  $\mathcal{B}_r \mathcal{B}_s \subseteq \mathcal{B}_{r+s}, r, s \ge 1$ ;

(c) 
$$\mathcal{B}_0 = \mathcal{O}_n$$
.

The family of ideals  $\{\mathbb{B}_r\}_{r\geq 1}$  is called the *weighted homogeneous filtration induced by w*. We denote by  $\mathcal{A}_r$  the ideal of  $\mathcal{O}_n$  generated by the monomials  $x^k$  such that  $d_w(x^k) = r$ . If there is not any monomial  $x^k$  such that  $d_w(x^k) = r$  then we set  $\mathcal{A}_r = 0$ . Given an integer  $r \ge 1$ , we observe that  $\mathcal{A}_r \subseteq \mathbb{B}_r$  and that  $\overline{\mathcal{A}_r} \neq \mathbb{B}_r$  in general. Moreover it follows easily that  $\overline{\mathcal{A}_r} = \mathbb{B}_r$  if and only if  $\mathcal{A}_r$  is an ideal of finite colength of  $\mathcal{O}_n$ .

If  $r_1, \ldots, r_n \in \mathbb{Z}_{\geq 1}$ , then it is not true in general that  $\sigma(A_{r_1}, \ldots, A_{r_n}) < \infty$ , even if  $A_{r_i} \neq 0$ , for all  $i = 1, \ldots, n$ . However  $\sigma(B_{r_1}, \ldots, B_{r_n}) < \infty$ , since  $B_{r_i}$  has finite colength, for all  $i = 1, \ldots, n$ . For instance, let us consider the vector w = (3, 1). Then we have

$$\mathcal{A}_4 = \langle xy, y^4 \rangle, \qquad \mathcal{A}_5 = \langle xy^2, y^5 \rangle$$

We observe that the ideal  $A_4 + A_5$  does not have finite colength, therefore  $\sigma(A_4, A_5)$  is not finite (see Remark 2.3).

**Proposition 4.2.** Let  $r_1, \ldots, r_n \in \mathbb{Z}_{\geq 1}$ . If  $\sigma(\mathcal{A}_{r_1}, \ldots, \mathcal{A}_{r_n}) < \infty$  then  $\sigma(\mathcal{B}_{r_1}, \ldots, \mathcal{B}_{r_n}) < \infty$  and

$$\sigma(\mathcal{A}_{r_1},\ldots,\mathcal{A}_{r_n})=\sigma(\mathcal{B}_{r_1},\ldots,\mathcal{B}_{r_n})=\frac{r_1\cdots r_n}{w_1\cdots w_n}$$

**Proof.** By Proposition 2.2, there exists a sufficiently general element  $(h_1, \ldots, h_n) \in \mathbb{B}_{r_1} \oplus \cdots \oplus \mathbb{B}_{r_n}$  such that

$$\sigma(\mathfrak{B}_{r_1},\ldots,\mathfrak{B}_{r_n})=e(h_1,\ldots,h_n)$$

The condition  $\sigma(A_{r_1}, \ldots, A_{r_n}) < \infty$  implies that  $A_{r_i} \neq 0$ , for all  $i = 1, \ldots, n$ . The ideal  $A_{r_i}$  is generated by the monomials of *w*-degree  $r_i$ , for all  $i = 1, \ldots, n$ , then  $h_i$  can be written as  $h_i = g_i + g'_i$ , for all  $i = 1, \ldots, n$ , where  $(g_1, \ldots, g_n)$  is a sufficiently

(10)

(11)

general element of  $A_{r_1} \oplus \cdots \oplus A_{r_n}$  and  $g'_i \in O_n$  verifies that  $d_w(g'_i) > r_i$ , for all i = 1, ..., n. Therefore  $p_w(h_i) = g_i$ , for all i = 1, ..., n.

Let g denote the map  $(g_1, \ldots, g_n)$ :  $(\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ . The condition  $\sigma(A_{r_1}, \ldots, A_{r_n}) < \infty$  and the genericity of g imply that g is finite, that is,  $g^{-1}(0) = \{0\}$  and  $\sigma(A_{r_1}, \ldots, A_{r_n}) = e(g_1, \ldots, g_n)$ . Consequently the map h:  $(\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$  is semi-weighted homogeneous with respect to w. By [1, Section 12] (see also [7] for a more general phenomenon), this implies that

$$e(h_1,\ldots,h_n)=e(g_1,\ldots,g_n)=\frac{r_1\cdots r_n}{w_1\cdots w_n}.$$

Then the result follows.  $\Box$ 

**Definition 4.3.** Let  $J_1, \ldots, J_n$  be a family of ideals of  $\mathcal{O}_n$  and let  $r_i = d_w(J_i)$ , for all  $i = 1, \ldots, n$ . We say that  $J_1, \ldots, J_n$  admits a *w*-matching if there exists a permutation  $\tau$  of  $\{1, \ldots, n\}$  and an index  $i_0 \in \{1, \ldots, n\}$  such that

(a)  $w_{i_0} = \min\{w_1, \ldots, w_n\},$ 

(b)  $r_{\tau(i_0)} = \max\{r_1, \ldots, r_n\}$  and

(c) the pure monomial  $x_i^{r_{\tau(i)}/w_i}$  belongs to  $J_{\tau(i)}$ , for all  $i \neq i_0$ .

**Remark 4.4.** If  $r \in \mathbb{Z}_{\geq 1}$  then we observe that  $A_r$  has finite colength if and only if  $w_i$  divides r, for all i = 1, ..., n. Let  $r_1, ..., r_n \in \mathbb{Z}_{\geq 1}$  such that  $A_{r_i}$  has finite colength, for all i = 1, ..., n. Then condition (c) of the above definition is not a restriction in this case and therefore  $A_{r_1}, ..., A_{r_n}$  admits a *w*-matching.

Let us consider the case n = 2 of the previous definition. Therefore, let  $r_1, r_2 \in \mathbb{Z}_{\geq 1}$  with  $r_1 > r_2$  and let us suppose that  $w_1 < w_2$ . Let  $J_1, J_2$  be ideals of  $\mathcal{O}_2$  such that  $d_w(J_i) = r_i, i = 1, 2$ . Then  $J_1, J_2$  admits a *w*-matching if and only if  $y^{r_2/w_2} \in J_2$ .

**Example 4.5.** Set w = (1, 2, 3, 4) and  $r_1 = 10$ ,  $r_2 = 9$ ,  $r_3 = 8$ ,  $r_4 = 6$ . The family of ideals given by

$$J_1 = \langle x_1 x_3^3 \rangle, \qquad J_2 = \langle x_3^3, x_1 x_4^2 \rangle, \qquad J_3 = \langle x_4^2, x_1^2 x_3^2 \rangle, \qquad J_4 = \langle x_2^3, x_2 x_4 \rangle$$

admits a *w*-matching. Observe that here  $i_0 = 1$  and the permutation  $\tau$  is defined by  $\tau(1) = 1$ ,  $\tau(2) = 4$ ,  $\tau(3) = 2$ ,  $\tau(4) = 3$ .

Let us observe that, if  $J_1, \ldots, J_n$  admits a *w*-matching, then it is always possible to reorder the ideals  $J_i$  in such a way that  $\tau(i_0) = i_0$ , and therefore one could restrict to the case  $\tau = id$  after a permutation of the ideals  $J_i$ . But the permutation  $\tau$  is specially relevant when considering ideals coming from the gradient of a function f (see Example 4.12).

**Lemma 4.6.** Let  $r_1, \ldots, r_n \in \mathbb{Z}_{\geq 1}$  and let  $I_1, \ldots, I_n$  be monomial ideals of  $\mathcal{O}_n$  such that  $d_w(I_i) = r_i$ , for all  $i = 1, \ldots, n$ , and  $\sigma(I_1, \ldots, I_n) = \frac{r_1 \cdots r_n}{w_1 \cdots w_n}$ . Let J be an ideal of  $\mathcal{O}_n$  such that  $\overline{J} = \overline{\langle x_1^{r\alpha_1}, \ldots, x_n^{r\alpha_n} \rangle}$ , for some  $r \geq 1$ , where  $\alpha_i = \frac{\overline{w}}{w_i}$  and  $\overline{w} = w_1 \cdots w_n$ . Then

$$e(I_1+J,\ldots,I_n+J) = \frac{\min\{r_1,\overline{w}r\}\cdots\min\{r_n,\overline{w}r\}}{\overline{w}}.$$
(12)

**Proof.** Let  $A = \{i : r_i < r\overline{w}\}$ . After a reordering of the integers  $r_1, \ldots, r_n$  we can assume that  $A = \{1, \ldots, s\}$ , for some  $s \ge 1$ . Then, since  $\overline{J} = \mathcal{B}_{r\overline{w}}$  we conclude that  $e(I_1 + J, \ldots, I_n + J) = e(I_1 + J, \ldots, I_s + J, J, \ldots, J)$ .

By Proposition 2.2, there exist an element  $(g_1, \ldots, g_n) \in I_1 \oplus \cdots \oplus I_n$  such that  $d_w(g_i) = r_i$ , for all  $i = 1, \ldots, n$ , and

$$e(g_1,\ldots,g_n)=\sigma(I_1,\ldots,I_n)=\frac{r_1\cdots r_n}{w_1\cdots w_n}.$$
(13)

Let us denote by *R* the quotient ring  $\mathcal{O}_n/\langle p_w(g_1), \ldots, p_w(g_s) \rangle$  and let *H* denote the ideal of  $\mathcal{O}_n$  generated by  $x_1^{r\alpha_1}, \ldots, x_n^{r\alpha_n}$ . Relation (13) implies, by [6, Theorem 3.3], that the ideal generated by  $p_w(g_1), \ldots, p_w(g_n)$  has finite colength. In particular, these elements form a regular sequence and then dim(R) = n - s. Hence there exists a sufficiently general element  $(h_1, \ldots, h_{n-s}) \in H \oplus \cdots \oplus H$  such that the images of the  $h_i$  in *R* generate a reduction of the image of *J* in *R*, by the theorem of existence of reductions (see [8, p. 166]). In particular, the ideal  $K = \langle p_w(g_1), \ldots, p_w(g_s), h_1, \ldots, h_{n-s} \rangle$  has finite colength.

Since  $h_i$  is a generic  $\mathbb{C}$ -linear combination of  $x_1^{r\alpha_1}, \ldots, x_n^{r\alpha_n}$ , for all  $i = 1, \ldots, n$ , we have that  $p_w(h_i) = h_i$ , for all  $i = 1, \ldots, n$ . Then  $K = \langle p_w(g_1), \ldots, p_w(g_s), p_w(h_1), \ldots, p_w(h_{n-s}) \rangle$ . Therefore

$$e(K) = \frac{r_1 \cdots r_s(\overline{w}r)^{n-s}}{w_1 \cdots w_n} = \frac{\min\{r_1, \overline{w}r\} \cdots \min\{r_n, \overline{w}r\}}{\overline{w}},$$
(14)

where the first equality comes from [1, Section 12] (see also [6, Theorem 3.3]).

Since  $I_i$  is a monomial ideal, for all i = 1, ..., n, we have that  $p_w(g_i) \in I_i$ , for all i = 1, ..., n. In particular we have  $e(K) \ge e(I_1 + J, ..., I_n + J)$ , by Lemma 2.4. Then

$$e(K) \ge e(I_1 + H, \dots, I_n + H) \ge \frac{\min\{r_1, \overline{w}r\} \cdots \min\{r_n, \overline{w}r\}}{\overline{w}},$$
(15)

where the second inequality follows from [6, Theorem 3.3].

The hypothesis  $\overline{I} = \overline{H}$  implies that

$$e(I_1 + J, \dots, I_n + J) = e(I_1 + H, \dots, I_n + H).$$
(16)

Then the result follows by joining (14)–(16).

**Theorem 4.7.** Let  $r_1, \ldots, r_n \in \mathbb{Z}_{\geq 1}$  such that  $\sigma(A_{r_1}, \ldots, A_{r_n}) < \infty$ . Let  $J_1, \ldots, J_n$  be a set of ideals of  $\mathcal{O}_n$  with  $d_w(J_i) = r_i$ , for all  $i = 1, \ldots, n$ , and  $\sigma(J_1, \ldots, J_n) = \sigma(A_{r_1}, \ldots, A_{r_n})$ . Then

$$\mathcal{L}_0(J_1,\ldots,J_n) \leqslant \mathcal{L}_0(\mathcal{B}_{r_1},\ldots,\mathcal{B}_{r_n}) \leqslant \frac{\max\{r_1,\ldots,r_n\}}{\min\{w_1,\ldots,w_n\}}$$
(17)

and the above inequalities turn into equalities if  $J_1, \ldots, J_n$  admit a *w*-matching.

**Proof.** The condition  $\sigma(A_{r_1}, \ldots, A_{r_n}) < \infty$  and the equality  $\sigma(J_1, \ldots, J_n) = \sigma(A_{r_1}, \ldots, A_{r_n})$  imply that

$$\sigma(J_1,\ldots,J_n)=\sigma(\mathfrak{B}_{r_1},\ldots,\mathfrak{B}_{r_n})=\frac{r_1\cdots r_n}{w_1\cdots w_n}$$

by Proposition 4.2. Then we can apply Proposition 3.9 to deduce that

.

$$\mathcal{L}_0(J_1,\ldots,J_n) \leqslant \mathcal{L}_0(\mathcal{B}_{r_1},\ldots,\mathcal{B}_{r_n}).$$

Let us denote  $\max\{r_1, \ldots, r_n\}$  and  $\min\{w_1, \ldots, w_n\}$  by p and q, respectively. Let us see that  $\mathcal{L}_0(\mathcal{B}_{r_1}, \ldots, \mathcal{B}_{r_n}) \leq \frac{p}{q}$ .

Let us denote by  $\overline{w}$  the product  $w_1 \cdots w_n$  and let us consider the ideal  $J = \langle x_1^{\alpha_1}, \ldots, x_n^{\alpha_n} \rangle$ , where  $\alpha_i = \frac{\overline{w}}{w_i}$ , for all  $i = 1, \ldots, n$ . Since  $\sigma(\mathcal{B}_{r_1}, \ldots, \mathcal{B}_{r_n}) < \infty$ , it makes sense to compute the number  $r_J(\mathcal{B}_{r_1}^s, \ldots, \mathcal{B}_{r_n}^s)$ , for all  $s \ge 1$ :

$$r_{J}(\mathcal{B}_{r_{1}}^{s},\ldots,\mathcal{B}_{r_{n}}^{s}) = \min\left\{r \ge 1: \sigma\left(\mathcal{B}_{r_{1}}^{s},\ldots,\mathcal{B}_{r_{n}}^{s}\right) = e\left(\mathcal{B}_{r_{1}}^{s}+J',\ldots,\mathcal{B}_{r_{n}}^{s}+J'\right)\right\}$$
$$= \min\left\{r \ge 1: \frac{sr_{1}\cdots sr_{n}}{\overline{w}} = \frac{\min\{sr_{1},\overline{w}r\}\cdots\min\{sr_{n},\overline{w}r\}}{\overline{w}}\right\}$$
$$= \min\left\{r \ge 1: \overline{w}r \ge \max\{sr_{1},\ldots,sr_{n}\}\right\}$$
$$= \min\left\{r \ge 1: r \ge \frac{\max\{sr_{1},\ldots,sr_{n}\}}{\overline{w}}\right\} = \left\lceil\frac{\max\{sr_{1},\ldots,sr_{n}\}}{\overline{w}}\right\rceil,$$

where  $\lceil a \rceil$  denotes the least integer greater than or equal to *a*, for any  $a \in \mathbb{R}$ , and the second equality is a direct application of Lemma 4.6. Therefore

$$\mathcal{L}_{J}(\mathcal{B}_{r_{1}},\ldots,\mathcal{B}_{r_{n}}) = \inf_{s \ge 1} \frac{r_{J}(\mathcal{B}_{r_{1}}^{s},\ldots,\mathcal{B}_{r_{n}}^{s})}{s} \leqslant \inf_{a \ge 1} \frac{r_{J}(\mathcal{B}_{r_{1}}^{a\overline{w}},\ldots,\mathcal{B}_{r_{n}}^{a\overline{w}})}{a\overline{w}}$$
$$= \inf_{a \ge 1} \frac{1}{a\overline{w}} \left\lceil \frac{\max\{a\overline{w}r_{1},\ldots,a\overline{w}r_{n}\}}{\overline{w}} \right\rceil = \frac{\max\{r_{1},\ldots,r_{n}\}}{\overline{w}}$$

Moreover, by Proposition 3.10 we have

$$\mathcal{L}_0(J) = \max\{\alpha_1, \ldots, \alpha_n\} = \frac{\overline{w}}{\min\{w_1, \ldots, w_n\}}$$

since J is a monomial ideal. Therefore, by Lemma 3.8 we obtain

$$\mathcal{L}_{0}(\mathcal{B}_{r_{1}},\ldots,\mathcal{B}_{r_{n}}) \leq \mathcal{L}_{0}(J)\mathcal{L}_{J}(\mathcal{B}_{r_{1}},\ldots,\mathcal{B}_{r_{n}})$$
$$\leq \frac{\overline{w}}{\min\{w_{1},\ldots,w_{n}\}}\frac{\max\{r_{1},\ldots,r_{n}\}}{\overline{w}} = \frac{\max\{r_{1},\ldots,r_{n}\}}{\min\{w_{1},\ldots,w_{n}\}}$$

Let us prove that  $\mathcal{L}_0(J_1, \ldots, J_n) \ge \frac{p}{q}$  supposing that  $J_1, \ldots, J_n$  admit a *w*-matching. This inequality holds if and only if

$$\frac{r(J_1^s,\ldots,J_n^s)}{s} \ge \frac{p}{q}$$

for all  $s \ge 1$ . By Lemma 3.3 we have that  $qr(J_1^s, \ldots, J_n^s) \ge r(J_1^{sq}, \ldots, J_n^{sq})$ , for all  $s \ge 1$ . Therefore it suffices to show that

$$r(J_1^{sq},\ldots,J_n^{sq}) > sp-1,$$
 (18)

for all  $s \ge 1$ . Let us fix an integer  $s \ge 1$ , then relation (18) is equivalent to saying that

$$\sigma(J_1^{sq},\ldots,J_n^{sq}) > e(J_1^{sq} + m^{sp-1},\ldots,J_n^{sq} + m^{sp-1}).$$
(19)

Since  $J_1, \ldots, J_n$  admits a *w*-matching, let us consider a permutation  $\tau$  of  $\{1, \ldots, n\}$  such that

(a)  $w_{i_0} = \min\{w_1, \ldots, w_n\},\$ 

(b)  $r_{\tau(i_0)} = \max\{r_1, \ldots, r_n\}$  and

(c) the pure monomial  $x_i^{r_{\tau(i)}/w_i}$  belongs to  $J_{\tau(i)}$  for all  $i \neq i_0$ .

Let us define the ideal

$$H = \left\langle x_i^{\frac{r_{\tau(i)}sq}{w_i}} : i \neq i_0 \right\rangle + \left\langle x_{i_0}^{sp-1} \right\rangle.$$

Then

$$e(H) = e\left(x_1^{\frac{r_{\tau(1)}sq}{w_1}}, \dots, x_{i_0-1}^{\frac{r_{\tau(i_0-1)}sq}{w_{i_0-1}}}, x_{i_0}^{sp-1}, x_{i_0+1}^{\frac{r_{\tau(i_0+1)}sq}{w_{i_0+1}}}, \dots, x_n^{\frac{r_{\tau(n)}sq}{w_n}}\right)$$
$$= (sq)^{n-1} \frac{r_1 \cdots r_n}{r_{\tau(i_0)}} \frac{w_{i_0}}{w_1 \cdots w_n} (sp-1).$$

Since  $x_i^{\frac{r_{\tau(i)}}{w_i}} \in J_{\tau(i)}$  for all  $i \in \{1, ..., n\} \setminus \{i_0\}$ , and  $x_{i_0}^{sp-1} \in m^{sp-1}$ , we can apply Lemma 2.4 to conclude that

$$e(H) \ge e(J_{\tau(1)}^{sq} + m^{sp-1}, \dots, J_{\tau(n)}^{sq} + m^{sp-1}) = e(J_1^{sq} + m^{sp-1}, \dots, J_n^{sq} + m^{sp-1}).$$
(20)

Hence, if we prove that  $\sigma(J_1^{sq}, \ldots, J_n^{sq}) > e(H)$  then the result follows.

By [4, Lemma 2.6], we have that  $\sigma(J_1^{sq}, \ldots, J_n^{sq}) = (sq)^n \sigma(J_1, \ldots, J_n)$ . Then, using the hypothesis  $\sigma(J_1, \ldots, J_n) =$  $\sigma(A_{r_1}, \ldots, A_{r_n})$  and Proposition 4.2, we obtain that

$$\sigma(J_1^{sq},\ldots,J_n^{sq}) = (sq)^n \frac{r_1\cdots r_n}{w_1\cdots w_n}.$$
(21)

Thus, since we assume that  $r_{\tau(i_0)} = p$  and  $w_{i_0} = q$ , we have that  $\sigma(J_1^{sq}, \ldots, J_n^{sq}) > e(H)$  if and only if

$$sq>\frac{q}{p}(sp-1),$$

which is to say that spq > spq - q. Therefore relation (19) holds for all integer  $s \ge 1$  and consequently the inequality  $\mathcal{L}_0(J_{r_1}, \ldots, J_{r_n}) \ge \frac{p}{a}$  follows. Thus relation (17) is proven.  $\Box$ 

**Remark 4.8.** We observe that the condition that  $J_1, \ldots, J_n$  admits a *w*-matching cannot be removed from the hypothesis of the previous theorem. Let us consider now the weighted homogeneous filtration in  $\mathcal{O}_2$  induced by the vector of weights w = (1, 4) and let  $J_1, J_2$  be the ideals of  $\mathcal{O}_2$  given by  $J_1 = \langle x^4 \rangle, J_2 = \langle y^2 \rangle$ . We observe that  $d_w(x^4) = 4, d_w(y^2) = 8$  and consequently the right hand side of (17) would lead to the conclusion that  $\mathcal{L}_0(J_1, J_2) = 8$ , which is not the case, since clearly  $\mathcal{L}_0(x^4, y^2) = 4$ . We also observe that the system of ideals  $J_1, J_2$  does not admit a *w*-matching.

In order to simplify the exposition, we need to introduce the following definition.

**Definition 4.9.** If  $f \in \mathcal{O}_n$ , f(0) = 0, then f is termed *convenient* when  $\Gamma_+(f)$  intersects each coordinate axis. Let  $J_i$  denote the ideal of  $\mathcal{O}_n$  generated by all monomials  $x^k$  such that  $k \in \Gamma_+(\partial f/\partial x_i)$ , i = 1, ..., n. Let us fix a vector of weights  $w \in \mathbb{Z}_{\geq 1}^n$ . Then we say that f admits a w-matching when the family of ideals  $J_1, \ldots, J_n$  admits a w-matching (see Definition 4.3).

If a function  $f \in O_n$  is convenient and quasi-homogeneous, then f admits a w-matching. Observe that in this case the monomials  $x_i^{d/w_i}$  are in the support of f, for i = 1, ..., n. Then there is a pure monomial in  $x_i$  belonging to the support of the partial derivative  $\partial f / \partial x_i$  and one could take  $\tau = id$  in the definition of *w*-matching (see Definition 4.3).

Let us fix a vector of weights  $w = (w_1, \ldots, w_n) \in \mathbb{Z}_{\geq 1}^n$  and an integer  $d \geq 1$ . Then we denote by  $\mathcal{O}(w; d)$  the set of all functions  $f \in \mathcal{O}_n$  such that f is semi-weighted homogeneous with respect to w of degree d.

**Remark 4.10.** From Definition 4.3 we observe that a function  $f \in \mathcal{O}(w; d)$  admits a *w*-matching if and only if  $p_w(f)$  admits a w-matching, since the ideals  $I_i$  introduced in Definition 4.9 have the same w-degree as the analogous ideals defined for  $p_w(f)$ .

**Corollary 4.11.** Let  $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$  be a semi-weighted homogeneous function of degree d with respect to the weights  $w_1, \ldots, w_n$ . Then

$$\mathcal{L}_{0}(\nabla f) \leqslant \frac{d - \min\{w_{1}, \dots, w_{n}\}}{\min\{w_{1}, \dots, w_{n}\}}$$
(22)

and equality holds if f admits a w-matching.

586

**Proof.** Let  $J_i$  denote the ideal of  $\mathcal{O}_n$  generated by all monomials  $x^k$  such that  $k \in \Gamma_+(\partial f/\partial x_i)$ , i = 1, ..., n. Since f has an isolated singularity at the origin (that is, the ideal J(f) has finite colength) then  $\sigma(J_1, ..., J_n) < \infty$ , by Proposition 2.2. Then Theorem 3.1 shows that  $\mathcal{L}_0(\nabla f) = \mathcal{L}_0(J_1, ..., J_n)$ . We observe that  $d_w(J_i) = d - w_i$ , for all i = 1, ..., n. Then the result arises as a direct application of Theorem 4.7.  $\Box$ 

It has been proven recently by Ploski et al. [9] that equality holds in (22) for all weighted homogeneous functions  $f : (\mathbb{C}^3, 0) \to (\mathbb{C}, 0)$  such that f has an isolated singularity at the origin, under the hypothesis that  $2w_i \leq d$  for all i. The result of Corollary 4.11 holds for any number of variables.

**Example 4.12.** Let us consider the vector of weights w = (1, 2, 3, 5) and the polynomial  $f : (\mathbb{C}^4, 0) \to (\mathbb{C}, 0)$  given by  $f(x_1, x_2, x_3, x_4) = x_3^9 - x_2^{11}x_4 + x_2x_4^5 + x_1^{27}$ . Then f is weighted homogeneous with w-degree 27 and f has an isolated singularity at the origin. The ideals  $J_i$  introduced in Definition 4.9 are given by

$$J_1 = \langle x_1^{26} \rangle \qquad J_2 = \langle x_2^{10} x_4, x_4^5 \rangle \qquad J_3 = \langle x_3^8 \rangle \qquad J_4 = \langle x_2^{11}, x_2 x_4^4 \rangle.$$

Then we observe that the polynomial f admits w-matching. Here the permutation  $\tau$  of Definition 4.3 is  $\tau(1) = 1$ ,  $\tau(2) = 4$ ,  $\tau(3) = 3$ ,  $\tau(4) = 2$ . Then it follows from Corollary 4.11 that  $\mathcal{L}_0(\nabla f) = 26$ .

Given a vector of weights  $w = (w_1, \ldots, w_n)$  and a degree d, then it is not always possible to find a weighted homogeneous function  $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$  of degree d with respect to w such that f admits a w-matching, as the following example shows.

**Example 4.13.** Let w = (1, 2, 3) and d = 16. Let f be a weighted homogeneous function of degree d with respect to w. Let  $J_i$  denote the ideal of  $\mathcal{O}_3$  generated by all monomials  $x^k$  such that  $k \in \Gamma_+(\partial f/\partial x_i)$ , for all i = 1, 2, 3. As a direct consequence of Definition 4.3, if  $J_1, J_2, J_3$  admits a w-matching, then  $J_3$  contains a pure monomial of  $x_2$  or a pure monomial of  $x_3$ , which is impossible since  $d_w(J_3) = 13$  and neither 2 nor 3 are divisors of 13.

However we observe that  $\mathcal{O}(w; d) \neq \emptyset$ , since the function  $f(x_1, x_2, x_3) = x_1^{16} + x_2^8 + x_1 x_3^5$  belongs to  $\mathcal{O}(w; d)$ .

**Proposition 4.14.** Let  $d, w_1, \ldots, w_n$  be non-negative integers such that  $w_i$  divides d for all  $i = 1, \ldots, n$ . Let  $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$  be a weighted homogeneous function of degree d with respect to the weights  $w_1, \ldots, w_n$ . Let us assume that f has an isolated singularity at the origin. Then there exists a change of coordinates  $\mathbf{x}$  in  $(\mathbb{C}^n, 0)$  of the form  $x_i = y_i + h_i(y_1, \ldots, y_n)$ , where  $h_i$  is a polynomial in  $y_1, \ldots, y_n$ ,  $i = 1, \ldots, n$ , such that:

- (1) the function  $f \circ \mathbf{x}$  is convenient;
- (2) if  $h_i \neq 0$ , then the polynomial  $h_i$  is weighted homogeneous of degree  $w_i$  with respect to w and therefore  $f \circ \mathbf{x}$  is weighted homogeneous of degree d with respect to w.

**Proof.** Since *f* has an isolated singularity at the origin, for any i = 1, ..., n we can fix an index  $k_i \in \{1, ..., n\}$  such that  $x_i^{m_i}$  appears in the support of  $\frac{\partial f}{\partial x_{k_i}}$ , where  $m_i = \frac{d - w_{k_i}}{w_i}$ , which is to say that the monomial  $x_{k_i} x_i^{m_i}$  appears in the support of *f*. Then  $w_i$  divides  $d - w_{k_i}$  and consequently  $w_i$  divides  $w_{k_i}$ , since  $w_i$  divides *d* by assumption.

For all j = 1, ..., n, we set  $L_j = \{i : k_i = j, i \neq j\}$ . Let us define

$$h_{j} = \begin{cases} \sum_{i \in L_{j}} a_{j,i} y_{i}^{w_{j}/w_{i}} & \text{if } L_{j} \neq \emptyset \\ 0 & \text{otherwise,} \end{cases}$$
(23)

where we suppose that  $\{a_{j,i}\}_{j,i}$  is a generic choice of coefficients in  $\mathbb{C}$ . It is straightforward to see that, given an index  $j \in \{1, ..., n\}$  such that  $h_j \neq 0$ , the polynomial  $h_j$  is weighted homogeneous of degree  $w_j$ .

Let us consider the map  $\mathbf{x} : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0), \mathbf{x}(y_1, \dots, y_n) = (x_1, \dots, x_n)$ , given by

 $x_j = y_j + h_j(y)$  for all  $j = 1, \ldots, n$ .

We conclude that **x** is a local biholomorphism, the function  $f \circ \mathbf{x}$  is weighted homogeneous with respect to w of degree d and, by the genericity of the coefficients  $a_{j,i}$  in (23), the pure monomial  $y_i^{d/w_i}$  appears in the support of  $f \circ \mathbf{x}$ , for all i = 1, ..., n. Hence the function  $f \circ \mathbf{x}$  is convenient.  $\Box$ 

**Example 4.15.** Set w = (1, 2, 3, 4, 6) and d = 12. The polynomial  $f = x_1^{12} + x_2^4 x_4 + x_4^3 + x_3^2 x_5 + x_5^2$  is weighted homogeneous of degree 12. Let  $J_i$  denote the ideal of  $\mathcal{O}_5$  generated by all monomials  $x^k$  such that  $k \in \Gamma_+(\partial f/\partial x_i)$ ,  $i = 1, \ldots, 5$ . A straightforward computation shows that

$$J_1 = \langle x_1^{11} \rangle, \quad J_2 = \langle x_2^3 x_4 \rangle, \quad J_3 = \langle x_3 x_5 \rangle, \quad J_4 = \langle x_2^4, x_4^2 \rangle, \quad J_5 = \langle x_3^2, x_5 \rangle.$$

Since the ideals  $J_2$  and  $J_3$  do not contain any pure monomial, the family of ideals  $\{J_i : i = 1, ..., 5\}$  does not admit a *w*-matching.

Following the proof of Proposition 4.14, we consider the coordinate change  $\mathbf{x} : (\mathbb{C}^5, 0) \to (\mathbb{C}^5, 0)$ , given by:  $x_1 = y_1$ ,  $x_2 = y_2, x_3 = y_3, x_4 = y_4 + y_2^2, x_5 = y_5 + y_3^2$ . Let  $g = f \circ \mathbf{x}$  and let  $J'_i$  denote the ideal of  $\mathcal{O}_5$  generated by all monomials  $y^k$  such that  $k \in \Gamma_+(\partial g/\partial y_i), i = 1, ..., 5$ . Then, as shown in that proof, the function g is convenient and therefore the family of ideals { $J'_i : i = 1, ..., 5$ } admits a w-matching.

**Corollary 4.16.** Let  $d, w_1, \ldots, w_n$  be non-negative integers such that  $w_i$  divides d for all  $i = 1, \ldots, n$ . Let  $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$  be a semi-weighted homogeneous function of degree d with respect to the weights  $w_1, \ldots, w_n$ . Then

$$\mathcal{L}_0(\nabla f) = \frac{d - \min\{w_1, \dots, w_n\}}{\min\{w_1, \dots, w_n\}}$$

**Proof.** Since *f* is semi-weighted homogeneous, the principal part  $p_w(f)$  has an isolated singularity at the origin. Let  $\mathbf{x} : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$  denote the analytic coordinate change obtained in Proposition 4.14 applied to  $p_w(f)$ . The function  $p_w(f) \circ \mathbf{x}$  is weighted homogeneous of degree *d* with respect to *w*. Therefore

$$p_w(f) \circ \mathbf{x} = p_w(f \circ \mathbf{x}),$$

which implies that  $f \circ \mathbf{x}$  is a semi-weighted homogeneous function. Then, by Proposition 4.14 and Remark 4.10, the function  $f \circ \mathbf{x}$  admits a *w*-matching. Thus we obtain, by Corollary 4.11, that

$$\mathcal{L}_0(\nabla(f \circ \mathbf{x})) = \frac{d - \min\{w_1, \dots, w_n\}}{\min\{w_1, \dots, w_n\}}.$$

Then the result follows, since the local  $\lambda$ ojasiewicz exponent is a bianalytic invariant.  $\Box$ 

We remark that in Corollary 4.16 we do not assume  $2w_i \leq d$  as in [9]. This assumption cannot be eliminated from the main result of [9], as the following example shows. The result in 4.16 holds for any number of variables, but the assumptions are also restrictive, since we are assuming that the weights  $w_i$  divide d.

**Example 4.17.** Let us consider the polynomial f of  $\mathcal{O}_3$  given by  $f = x_1x_3 + x_2^2 + x_1^2x_2$ . We observe that f is weighted homogeneous of degree 4 with respect to the vector of weights w = (1, 2, 3). The Jacobian ideal is  $\langle x_1, x_2, x_3 \rangle$  so that  $\mathcal{L}_0(\nabla f) = 1 \neq 3$ . We remark that it is easy to check that f does not admit a w-matching.

### Acknowledgements

The first author was partially supported by DGICYT Grant MTM2009–08933. The second author was partially supported by DGICYT Grant MTM2009–07291 and CCG08-UAM/ESP-3928.

#### References

- V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko, Singularities of differentiable maps, in: Vol. I: The Classification of Critical Points, Caustics and Wave Fronts, in: Monogr. Math., vol. 82, Birkhäuser Boston, Inc., Boston, MA, 1985.
- [2] C. Bivià-Ausina, Jacobian ideals and the Newton non-degeneracy condition, Proc. Edinb. Math. Soc. 48 (2005) 21–36.
- [3] C. Bivià-Ausina, Joint reductions of monomial ideals and multiplicity of complex analytic maps, Math. Res. Lett. 15 (2) (2008) 389-407.
- [4] C. Bivià-Ausina, Local Łojasiewicz exponents, Milnor numbers and mixed multiplicities of ideals, Math. Z. 262 (2) (2009) 389–409.
- [5] C. Bivià-Ausina, S. Encinas, Łojasiewicz exponents and resolution of singularities, Arch. Math. 93 (3) (2009) 225–234.
- [6] C. Bivià-Ausina, T. Fukui, M. Šaia, Newton graded algebras and the codimension of non-degenerate ideals, Math. Proc. Camb. Phil. Soc. 133 (2002)
- 55-75.
- [7] J. Briançon, H. Maynadier-Gervais, Sur le nombre de Milnor d'une singularité semi-quasi-homogène, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 317–320.
   [8] C. Huneke, I. Swanson, Integral Closure of Ideals, Rings, and Modules, in: London Math. Soc. Lecture Note Series, vol. 336, Cambridge University Press,
- 2006.
   [9] T. Krasiński, G. Oleksik, A. Płoski, The Łojasiewicz exponent of an isolated weighted homogeneous surface singularity, Proc. Amer. Math. Soc. 137 (10) (2009) 3387–3397.
- [10] M. Lejeune, B. Teissier, Clôture intégrale des idéaux et equisingularité, with an appendix by J.J. Risler, Ann. Fac. Sci. Toulouse Math. (6) 17 (4) (2008) 781–859.
- [11] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser Verlag, 1991.
- [12] M. Nagata, Note on a paper of Samuel concerning asymptotic properties of ideals, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 30 (1957) 165-175.
- [13] V.P. Palamodov, The multiplicity of a holomorphic transformation, Funkcional. Anal. i Priložen 1 (3) (1967) 54-65.
- [14] D. Rees, Valuations associated with a local ring II, J. Lond. Math. Soc. 31 (1956) 228-235.
- [15] D. Rees, Generalizations of reductions and mixed multiplicities, J. Lond. Math. Soc. (2) 29 (1984) 397-414.
- 16] O. Saeki, Topological invariance of weights for weighted homogeneous isolated singularities in  $\mathbb{C}^3$ , Proc. Amer. Math. Soc. 103 (3) (1988) 905–909.
- [17] P. Samuel, Some asymptotic properties of powers of ideals, Ann. of Math. 56 (1) (1952) 11-21.
- [18] I. Swanson, Multigraded Hilbert functions and mixed multiplicities, in: Syzygies and Hilbert Functions, in: Lect. Notes Pure Appl. Math., vol. 254, Chapman & Hall/CRC, Boca Raton, FL, 2007, pp. 267–280.
- [19] B. Teissier, Variétés polaires I. Invariants polaires des singularités d'hypersurfaces, Invent. Math. 40 (3) (1977) 267-292.
- [20] B. Teissier, Cycles évanescents, sections planes et conditions of Whitney, Singularités Cargèse Ast. (7–8) (1973) 285–362.
- [21] S.S.-T. Yau, Topological types and multiplicities of isolated quasihomogeneous surface singularities, Bull. Amer. Math. Soc. 19 (1988) 447-454.