Applied Mathematics Letters 25 (2012) 771-774

Applied Mathematics Letters

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/aml

A Tauberian theorem for the discrete M_{φ} summability method

İbrahim Çanak^a, Ümit Totur^{b,*}

^a Ege University, Department of Mathematics, İzmir 35100, Turkey

^b Adnan Menderes University, Department of Mathematics, Aydin 09010, Turkey

ARTICLE INFO

Article history: Received 19 June 2011 Accepted 9 October 2011

Keywords: Tauberian theorems Discrete methods Power series methods

1. Introduction

ABSTRACT

The object of this work is to retrieve the convergence of a series from its discrete M_{φ} summability under certain conditions. We obtain as a corollary a Tauberian theorem for the discrete logarithmic summability method.

© 2011 Elsevier Ltd. All rights reserved.

Let $\sum_{n=0}^{\infty} a_n$ be a series of real numbers with partial sums (s_n) . The Cesàro means of (s_n) are defined by

$$\sigma_n = \frac{1}{n+1} \sum_{k=0}^n s_k \quad (n = 0, 1, \ldots).$$

The identity

 $s_n - \sigma_n = V_n \quad (n = 0, 1, \ldots),$

where $V_n = \frac{1}{n+1} \sum_{k=0}^{n} ka_k$, is known as the Kronecker identity.

Definition 1.1. If $\sum_{n=0}^{\infty} a_n x^n$ converges for 0 < x < 1 and tends to s as $x \to 1^-$ we say that (s_n) is Abel summable to s and write $s_n \to s(A)$.

Denote the space of analytic functions in 0 < x < 1 by A and the class of kernels of the integral transforms of functions in A by Φ . The following properties of functions φ in Φ are needed.

(1) There exists a number $\alpha_0 = \alpha_0(\Phi) \in (0, 1)$ such that every $\varphi \in \Phi$ is analytical in $[\alpha_0, 1)$.

- (2) For every $\varphi \in \Phi$, $\varphi(x) \to \infty$, $x \to 1^-$.
- (3) Each $\varphi \in \Phi$ is zero-free in $[\alpha_0, 1)$.
- (4) For each $m \ge 1$,

$$\frac{\varphi_m(x)}{\varphi_{m-1}(x)} = o(1), x \to 1^-,$$

where $\varphi_0 = \varphi$ and $\varphi_m(x) = \int_{\alpha_0}^x \varphi_{m-1}(t) dt$.

(1)

^{*} Corresponding author. Tel.: +90 256 212 8498; fax: +90 256 213 5379. E-mail addresses: ibrahim.canak@ege.edu.tr (İ. Çanak), utotur@adu.edu.tr, utotur@yahoo.com (Ü. Totur).

^{0893-9659/\$ –} see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2011.10.018

For every *f* in \mathcal{A} and $\varphi \in \Phi$ we define

$$M(f,\varphi,x) = \frac{\int_{\alpha_0}^x f(t)\varphi(t)dt}{\varphi_1(x)}$$

if $x \neq \alpha_0$ and

 $\lim_{x\to\alpha_0} M(f,\varphi,x) = f(\alpha_0)$

if $x = \alpha_0$.

Definition 1.2. If

 $\lim_{x\to 1^-} M(f,\varphi,x) = s$

then we say that (s_n) is M_{φ} summable to s and write $s_n \to s(M_{\varphi})$.

It is plain that Abel summability implies M_{φ} summability, but the converse statement is not always true. If $\varphi(x) = \frac{1}{(1-x)^2}$ for $x \in (0, 1)$ then the corresponding M_{φ} summability method reduces to the (A, 1) summability method defined in [1]. In this case, $M(f, \varphi, x) = (1-x) \sum_{n=0}^{\infty} \sigma_n x^n$.

Discrete summability methods for power series have been extensively studied by a number of authors including Armitage and Maddox [2], and Watson [3,4].

We assume that (λ_n) satisfies $1 \le \lambda_0 < \lambda_1 < \cdots \rightarrow \infty$. Define the sequence (x_n) by $x_n = 1 - \frac{1}{\lambda_n}$.

Definition 1.3. If $M(f, \varphi, x_n)$ exists for all n and $\lim_{n\to\infty} M(f, \varphi, x_n) = s$ then we say that (s_n) is summable by the discrete (M_{φ}) method and write $s_n \to s (M_{\varphi})_{\lambda}$.

It is clear that $(M_{\varphi})_{\lambda}$ includes (M_{φ}) from Definitions 1.2 and 1.3. If (s_n) converges to s, then (s_n) is $(M_{\varphi})_{\lambda}$ summable to s. But the converse is satisfied under some additional conditions, which are so called Tauberian conditions. In this work we recover the convergence of (s_n) from its $(M_{\varphi})_{\lambda}$ summability under some Tauberian conditions. We obtain as a corollary a Tauberian theorem for the discrete logarithmic summability method. The proof of our theorem mimics the proofing techniques of Theorem 3 in Ishiguro [5].

Theorem 1.4. Suppose that:

(i) $\gamma_1 \leq \frac{\lambda_n}{n} \leq \gamma_2$ for some positive constants γ_1 and γ_2 . (ii) $n \frac{\varphi_2(x_n)}{\varphi_1(x_n)} = O(1), n \to \infty$. (iii) $s_n \to s(M_{\varphi})$. (iv) $na_n = o(1), n \to \infty$. Then $s_n \to s$ as $n \to \infty$.

Proof. We have

$$s_{n} - M(f, \varphi, x_{n}) = \frac{1}{\varphi_{1}(x_{n})} \int_{\alpha_{0}}^{x_{n}} s_{n}\varphi(t)dt - \frac{1}{\varphi_{1}(x_{n})} \int_{\alpha_{0}}^{x_{n}} f(t)\varphi(t)dt$$

$$= \frac{1}{\varphi_{1}(x_{n})} \int_{\alpha_{0}}^{x_{n}} (1 - x) \sum_{k=0}^{\infty} (s_{n} - s_{k})x^{k}\varphi(x)dx$$

$$= \frac{1}{\varphi_{1}(x_{n})} \int_{\alpha_{0}}^{x_{n}} (1 - x) \sum_{k=0}^{n} (s_{n} - s_{k})x^{k}\varphi(x)dx + \frac{1}{\varphi_{1}(x_{n})} \int_{\alpha_{0}}^{x_{n}} (1 - x) \sum_{k=n+1}^{\infty} (s_{n} - s_{k})x^{k}\varphi(x)dx$$

$$= I_{1} + I_{2}, \text{ say.}$$

It suffices to show that both $I_1 \rightarrow 0$ and $I_2 \rightarrow 0$ as $n \rightarrow \infty$. For I_1 we have

$$|I_{1}| = \frac{1}{\varphi_{1}(x_{n})} \left| \int_{\alpha_{0}}^{x_{n}} (1-x) \sum_{k=0}^{n} (s_{n}-s_{k}) x^{k} \varphi(x) dx \right|$$

$$\leq \frac{1}{\varphi_{1}(x_{n})} \int_{\alpha_{0}}^{x_{n}} (1-x) \sum_{k=0}^{n} |s_{n}-s_{k}| x^{k} \varphi(x) dx$$

$$\leq \frac{1}{\varphi_{1}(x_{n})} \int_{\alpha_{0}}^{x_{n}} (1-x) \sum_{k=0}^{n} |s_{n}-s_{k}| \varphi(x) dx$$

(2)

$$= \frac{1}{\varphi_1(x_n)} \int_{\alpha_0}^{x_n} (1-x) \{ |a_1 + a_2 + \dots + a_n| + |a_2 + \dots + a_n| + \dots + |a_n| \} \varphi(x) dx$$

$$= \frac{1}{\varphi_1(x_n)} \left(\sum_{k=0}^n k |a_k| \right) \int_{\alpha_0}^{x_n} (1-x) \varphi(x) dx$$

$$= \frac{n}{\varphi_1(x_n)} \left(\frac{1}{n} \sum_{k=0}^n k |a_k| \right) \left(\frac{\varphi_1(x_n)}{n} + \varphi_2(x_n) \right)$$

$$= \left(\frac{1}{n} \sum_{k=0}^n k |a_k| \right) \left(\frac{1}{\lambda_n} + n \frac{\varphi_2(x_n)}{\varphi_1(x_n)} \right).$$

We have, from the condition (iv), $\frac{1}{n} \sum_{k=0}^{n} k |a_k| = o(1)$ for $n \to \infty$. Hence, by condition (ii), we have

$$l_1 = o(1), \ n \to \infty. \tag{3}$$

Now estimate I_2 . By condition (iv), there is an *m* such that $|na_n| \le \varepsilon$ for all $k \ge m$. Assume that $k > n \ge m$. Then we have

$$|s_k - s_n| \leq \varepsilon \left\{ \frac{1}{n+1} + \frac{1}{n+1} + \cdots + \frac{1}{k} \right\} = \varepsilon Q_k$$
, say.

Now

$$I_{2}| \leq \frac{1}{\varphi_{1}(x_{n})} \int_{\alpha_{0}}^{x_{n}} (1-x) \sum_{k=n+1}^{\infty} \varepsilon Q_{k} x^{k} \varphi(x) dx$$
$$\leq \frac{1}{\varphi_{1}(x_{n})} \int_{\alpha_{0}}^{x_{n}} (1-x) \sum_{k=n+1}^{\infty} \varepsilon Q_{k} x_{n}^{k} \varphi(x) dx$$

and

$$Q_k = \frac{1}{n+1} + \frac{1}{n+1} + \dots + \frac{1}{k}$$
$$\leq \frac{k-n}{n}$$
$$< \frac{k+1}{n}.$$

Since $Q_k < \frac{k+1}{n}$, we get

$$\begin{aligned} |I_2| &\leq \frac{\varepsilon}{n\varphi_1(x_n)} \left(\frac{\varphi_1(x_n)}{\lambda_n} + \varphi_2(x_n) \right) \sum_{k=n+1}^{\infty} (k+1) x_n^k \\ &\leq \varepsilon \frac{(\lambda_n)^2}{n\varphi_1(x_n)} \left(\frac{\varphi_1(x_n)}{\lambda_n} + \varphi_2(x_n) \right) \\ &= \varepsilon \left(\frac{\lambda_n}{n} + \frac{(\lambda_n)^2}{n} \frac{\varphi_2(x_n)}{\varphi_1(x_n)} \right). \end{aligned}$$

By the conditions (i) and (ii), we have

 $|I_2| \leq \varepsilon C$,

for large *n* and some positive constant *C*. Finally we have, from (3) and (4), that

$$\lim_{n\to\infty}s_n=\lim_{n\to\infty}M(f,\varphi,x_n)$$

which completes the proof of Theorem 1.4. \Box

Using Theorem 1.4 and the Kronecker identity, we obtain the following result.

Corollary 1.5. Suppose that:

(i) $\gamma_1 \leq \frac{\lambda_n}{n} \leq \gamma_2$ for some positive constants γ_1 and γ_2 . (ii) $n \frac{\varphi_2(x_n)}{\varphi_1(x_n)} = O(1), n \to \infty$. 773

(4)

(iii) $\sigma_n \to s (M_{\varphi})_{\lambda}$. (iv) $V_n = o(1), n \to \infty$.

Then $s_n \to s$ as $n \to \infty$.

If we choose $\varphi(x) = \frac{1}{1-x}$ for $x \in (0, 1)$ then the corresponding M_{φ} summability method reduces to the logarithmic summability method. In this case we obtain the following result.

Corollary 1.6. If $na_n \to 0$ and for some positive constants γ_1 and γ_2 , $\gamma_1 \leq \frac{\lambda_n}{n} \leq \gamma_2$, then $s_n \to s(M_{\varphi})_{\lambda}$ implies $s_n \to s$ as $n \to \infty$.

References

- Č.V. Stanojević, İ. Çanak, V.B. Stanojević, Tauberian theorems for generalized abelian summability methods, Analysis of Divergence (Orono, ME, 1997), Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 1999, 13–26.
- [2] D.H. Armittage, I.J. Maddox, Discrete Abel means, Analysis 10 (1990) 177-186.
- [3] B. Watson, Discrete power series methods, Analysis (Munich) 18 (1) (1998) 97–102.
- [4] B. Watson, A Tauberian theorem for discrete power series methods, Analysis (Munich) 22 (4) (2002) 361-365.
- [5] K. Ishiguro, A Tauberian theorem for (*J*, *p*_n) summability, Proc. Japan Acad. 40 (1964) 807–812.