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a b s t r a c t

The object of this work is to retrieve the convergence of a series from its discrete Mϕ

summability under certain conditions. We obtain as a corollary a Tauberian theorem for
the discrete logarithmic summability method.
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1. Introduction

Let


∞

n=0 an be a series of real numbers with partial sums (sn). The Cesàro means of (sn) are defined by

σn =
1

n + 1

n
k=0

sk (n = 0, 1, . . .).

The identity

sn − σn = Vn (n = 0, 1, . . .), (1)

where Vn =
1

n+1

n
k=0 kak, is known as the Kronecker identity.

Definition 1.1. If


∞

n=0 anx
n converges for 0 < x < 1 and tends to s as x → 1− we say that (sn) is Abel summable to s and

write sn → s (A).

Denote the space of analytic functions in 0 < x < 1 by A and the class of kernels of the integral transforms of functions
in A by Φ . The following properties of functions ϕ in Φ are needed.

(1) There exists a number α0 = α0(Φ) ∈ (0, 1) such that every ϕ ∈ Φ is analytical in [α0, 1).
(2) For every ϕ ∈ Φ , ϕ(x) → ∞, x → 1−.
(3) Each ϕ ∈ Φ is zero-free in [α0, 1).
(4) For eachm ≥ 1,

ϕm(x)
ϕm−1(x)

= o(1), x → 1−,

where ϕ0 = ϕ and ϕm(x) =
 x
α0

ϕm−1(t)dt .
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For every f in A and ϕ ∈ Φ we define

M(f , ϕ, x) =

 x
α0

f (t)ϕ(t)dt

ϕ1(x)

if x ≠ α0 and

lim
x→α0

M(f , ϕ, x) = f (α0)

if x = α0.

Definition 1.2. If

lim
x→1−

M(f , ϕ, x) = s (2)

then we say that (sn) isMϕ summable to s and write sn → s (Mϕ).

It is plain that Abel summability impliesMϕ summability, but the converse statement is not always true. If ϕ(x) =
1

(1−x)2

for x ∈ (0, 1) then the corresponding Mϕ summability method reduces to the (A, 1) summability method defined in [1]. In
this case,M(f , ϕ, x) = (1 − x)


∞

n=0 σnxn.
Discrete summabilitymethods for power series have been extensively studied by a number of authors includingArmitage

and Maddox [2], and Watson [3,4].
We assume that (λn) satisfies 1 ≤ λ0 < λ1 < · · · → ∞. Define the sequence (xn) by xn = 1 −

1
λn

.

Definition 1.3. If M(f , ϕ, xn) exists for all n and limn→∞ M(f , ϕ, xn) = s then we say that (sn) is summable by the discrete
(Mϕ) method and write sn → s (Mϕ)λ.

It is clear that (Mϕ)λ includes (Mϕ) fromDefinitions 1.2 and 1.3. If (sn) converges to s, then (sn) is (Mϕ)λ summable to s. But
the converse is satisfied under some additional conditions, which are so called Tauberian conditions. In this workwe recover
the convergence of (sn) from its (Mϕ)λ summability under some Tauberian conditions. We obtain as a corollary a Tauberian
theorem for the discrete logarithmic summability method. The proof of our theorem mimics the proofing techniques of
Theorem 3 in Ishiguro [5].

Theorem 1.4. Suppose that:

(i) γ1 ≤
λn
n ≤ γ2 for some positive constants γ1 and γ2.

(ii) n ϕ2(xn)
ϕ1(xn)

= O(1), n → ∞.
(iii) sn → s (Mϕ).
(iv) nan = o(1), n → ∞.

Then sn → s as n → ∞.

Proof. We have

sn − M(f , ϕ, xn) =
1

ϕ1(xn)

 xn

α0

snϕ(t)dt −
1

ϕ1(xn)

 xn

α0

f (t)ϕ(t)dt

=
1

ϕ1(xn)

 xn

α0

(1 − x)
∞
k=0

(sn − sk)xkϕ(x)dx

=
1

ϕ1(xn)

 xn

α0

(1 − x)
n

k=0

(sn − sk)xkϕ(x)dx +
1

ϕ1(xn)

 xn

α0

(1 − x)
∞

k=n+1

(sn − sk)xkϕ(x)dx

= I1 + I2, say.

It suffices to show that both I1 → 0 and I2 → 0 as n → ∞. For I1 we have

|I1| =
1

ϕ1(xn)


 xn

α0

(1 − x)
n

k=0

(sn − sk)xkϕ(x)dx


≤

1
ϕ1(xn)

 xn

α0

(1 − x)
n

k=0

|sn − sk|xkϕ(x)dx

≤
1

ϕ1(xn)

 xn

α0

(1 − x)
n

k=0

|sn − sk|ϕ(x)dx
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=
1

ϕ1(xn)

 xn

α0

(1 − x) {|a1 + a2 + · · · + an| + |a2 + · · · + an| + · · · + |an|} ϕ(x)dx

=
1

ϕ1(xn)


n

k=0

k|ak|

 xn

α0

(1 − x)ϕ(x)dx

=
n

ϕ1(xn)


1
n

n
k=0

k|ak|


ϕ1(xn)

n
+ ϕ2(xn)



=


1
n

n
k=0

k|ak|


1
λn

+ n
ϕ2(xn)
ϕ1(xn)


.

We have, from the condition (iv), 1
n

n
k=0 k|ak| = o(1) for n → ∞. Hence, by condition (ii), we have

I1 = o(1), n → ∞. (3)

Now estimate I2. By condition (iv), there is anm such that |nan| ≤ ε for all k ≥ m. Assume that k > n ≥ m. Then we have

|sk − sn| ≤ ε


1

n + 1
+

1
n + 1

+ · · · +
1
k


= εQk, say.

Now

|I2| ≤
1

ϕ1(xn)

 xn

α0

(1 − x)
∞

k=n+1

εQkxkϕ(x)dx

≤
1

ϕ1(xn)

 xn

α0

(1 − x)
∞

k=n+1

εQkxknϕ(x)dx

and

Qk =
1

n + 1
+

1
n + 1

+ · · · +
1
k

≤
k − n
n

<
k + 1
n

.

Since Qk < k+1
n , we get

|I2| ≤
ε

nϕ1(xn)


ϕ1(xn)

λn
+ ϕ2(xn)

 ∞
k=n+1

(k + 1)xkn

≤ ε
(λn)

2

nϕ1(xn)


ϕ1(xn)

λn
+ ϕ2(xn)


= ε


λn

n
+

(λn)
2

n
ϕ2(xn)
ϕ1(xn)


.

By the conditions (i) and (ii), we have

|I2| ≤ εC, (4)

for large n and some positive constant C .
Finally we have, from (3) and (4), that

lim
n→∞

sn = lim
n→∞

M(f , ϕ, xn)

which completes the proof of Theorem 1.4. �

Using Theorem 1.4 and the Kronecker identity, we obtain the following result.

Corollary 1.5. Suppose that:
(i) γ1 ≤

λn
n ≤ γ2 for some positive constants γ1 and γ2.

(ii) n ϕ2(xn)
ϕ1(xn)

= O(1), n → ∞.
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(iii) σn → s (Mϕ)λ.
(iv) Vn = o(1), n → ∞.

Then sn → s as n → ∞.

If we choose ϕ(x) =
1

1−x for x ∈ (0, 1) then the corresponding Mϕ summability method reduces to the logarithmic
summability method. In this case we obtain the following result.

Corollary 1.6. If nan → 0 and for some positive constants γ1 and γ2, γ1 ≤
λn
n ≤ γ2, then sn → s (Mϕ)λ implies sn → s as

n → ∞.
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