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If every n-dimensional subspace of X* is the range of a projection of norm less 
than C, then every subspace of X with codimension n is the range of a projection 
having norm less than 1 + C. Also, projection constants of finite-dimensional 
spaces are determined by finite-dimensional superspaces. It is further demonstrated 
that spheres cannot, in general, be nicely embedded into unit balls of finite- 
dimensional spaces. 

This note is primarily concerned with the solution of some problems, 
stated in the paper of Cheney and Price [l], on projections of finite rank 
(that is, having finite-dimensional range) in Banach spaces. We see in 
Section 1 that a sphere cannot always be embedded nicely into the unit ball 
of a finite-dimensional space: In particular, if fi , fi , and f3 are in Z$) and 
if for x in Zj3), {h(x)” +L(x)~ +f3(x)2}1i2 > 11 x /I, we must have [IL II > 1 
for some i. This gives a negative solution to part of problem 6 of [l]. 

The “principle of local reflexivity” of Lindenstrauss and Rosenthal [7] is 
extended, in the second section, to show that finite rank projections on a con- 
jugate space X* are, in a certain sense, near adjoints of finite rank projections 
on X. From this one easily deduces that if every n-dimensional subspace of 
A’* is complemented with norm < c, , then every subspace of X having 
deficiency n is complemented with norm < 1 + c, (this gives an affirmative 
solution to problem 8 of [l]). From an unpublished result of Kadec to the 
effect that every n-dimensional subspace of every Banach space is comple- 
mented with norm < n1/2, it follows that if Y has deficiency H in x and if 
E > 0, there is a projection of norm < 1 + n1i2 + E of X onto Y. This 
result and the result of Kadec together with its proof, occur in [2]. 

Finally, the “compactness argument” of Lindenstrauss (see e.g. [6]) is 
applied directly to show that if Y is a finite-dimensional subspace of X and 
if P is a “best” (in terms of norm) projection of X onto Y, then /I P II = 
sup II R I/ where the sup is over all “best” projections of 2 onto Y, Z is 
finite-dimensional and Y C 2 C X. This answers problem 9 of [I]. 
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1 

We show that, in general, spheres cannot be efficiently inscribed in unit 
balls of finite-dimensional spaces. Suppose that X is an n-dimensional space 
with norm 11 . //. Suppose that there exist fimctionals fi ,..., fn in the ball of 
X*(B,*) such that 

for every x in X. There must be a vector xlc in nbl,,,, ker(h) such that 
fk(&) = 1 = /I Xk 112 > 11 xk (I. Since I& 11 d 1, it follows that 11 xk 11 = I/& /) = 1 
fork = 1, 2,..., n and thatfi(xi) = 6aj . The system (xi ; fa) is called a normal 
basis for X and must satisfy the condition that sp{x, ,..., xkPl, xk+r ,..., x,} 
is parallel to the supporting hyperplane to Bx at xk (that is, (fk(x) = l}). 

We are now able to show that the ball of Ii3’ has no such inscribed sphere. 

THEOREM 1. If{fi , fi , f3} are in 

12’ (= (y)*) and u&x>” + f2W + f3w2>1’2 b II x II 

for every x in I:“‘, then llfi I/ > 1 for some i. 

Proof. Suppose that there is a normal basis (as above) with jl x II2 3 Ij x (/ 
always. Then, notice that xi = (ai1 , ai , Ui3) must have ) aij I different from 
zero for each i, j. This is due to the fact that since {I\ x II2 = l} is tangent to 
Bx at x1 , x2 and x3 and since (]I x /I2 = l} C Bx these are smooth points of the 
ball of Ii”). We may as well assume that a,, , ui2 , and ur3 are all positive. 
Then f1 = (1, 1, 1). Since (xi ; fJ is a normal basis, we can conclude that 
a21 + a22 + a23 = a31 + a32 + a33 = 0. For definiteness, assume that a,, > 0, 
uz2 > 0 and u23 < 0 (the argument will apply to all legitimate choices of 
sign for the Q’S). This condition forces f2 = (1, 1, -1). In turn, 
a31 + u32 - u33 = 0, so that a33 = 0. This is impossible in our situation, 
and proves the theorem. 

2 

Let us recall some elementary facts and notation which will be used here. 
If R is a finite rank projection on X, then R: X-t X and R* is a finite rank 
projection on X*. If {x1 ,..., x,} are in X, then [x1 ,..., x,] is to denote the 
linear span the xi’s in X. If T is a map from X to Y and W is a subspace of X 
denote the norm of T I W by /I T IIw . 
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Theorem 2 below is a modification of the “principle of local reflexivity” 
of Lindenstrauss and Rosenthal [7]. The author has recently learned that 
similar versions of this principle occur in [4] and [5]. One change in the 
proof is the use of the following lemma (suggested to the author by 
J. Daneman) instead of the separation lemma of Klee [3]. 

LEMMA. Let C, ,..., C, be open convex subsets of a Banach space X, and 
suppose n CF* has a nonempty core. Then n Ci # 0. (For a set A in X, Aw* 
denotes its weak * closure in X* *). 

Proof. By induction, first consider n = 2 (the case n = 1 is trivial and 
the second case provides the proof of the lemma). Suppose C, n C, = o 
so there is an f in X* and a scalar 01 such that f(C,) < c11 <f(C,), then, 
f(C;“*) < a <f(C,W*). Let Y in X ** be such that Y(f) = 1. Since there is a 
core point y of C,W* n C,“*, there is 6 > 0 such that 1 h 1 < 6 implies v + XY 
is in C,W* n era. This is incompatible with (v + hY)(f) = 01 for all such A, 
giving the desired contradiction. Now, assuming the conclusion for n - 1, 

let Cl ,..., C, satisfy the hypotheses so that m # D = fi: Cj . Let y E core 
c,w* n . . . n C,W* and q~ # i@*. Then there is an f in X* such that y(f) > 1 
and f(d) < 1 for all d in D. However, letting Bi = Ci n {x /f(x) > l} for 

i = 2, 3,..., n, we see that the hypotheses for the case n - 1 apply to give 
o # ni Bi C D which is a contradiction. Thus core C,W* n ... n ez* C Dw* 
so that cr* n P has a core. Now apply the argument for n = 2 to the 

pair C, , D to see that i? # C, n D = ny=, Cj . 

THEOREM 2. Let P be a finite rank projection on X* and let E > 0. Let 
V be any jinite-dimensional subspace of X *. Then there is a finite rank pro- 

,jection R on X such that R*(X*) = P(X*), j/ P - R* I/V < E and 1) R 11 < 
II p II + 6. 

Proof. Let 

where {vr ,..., ~3 C X**. Next choose { fn+l ,..., fin} in [cpI ,..., q& so that 
{fi ,..., fm} is a basis for sp{f, ,..., f,, , V} = VI ,..., fn , V]. Now for 6 > 0 
and 7 > 0 (to be determined later), let {!Pi I 1 < i < p} be a &net on the 
unit sphere of [F~ ,..., q,] in X**. Define the following open convex subsets 
of X”(= x x -*- x X), for i = 1, 2 ,..., p: 
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and 

Let K$* and D** be the similarly defined subsets of (X**)n. Then D** is a 
weak*-open set containing (w ,..., cp,) and KF* is strongly open, containing 
(9’ 1 ,..., &. It follows easily (as in [7; proof of Theor. 3.11) that KyJ* 1 K,“*, 
and D’ 1 D**. The hypotheses of the lemma are now satisfied for the 
p + 1 sets K1 ,..., K, , D. Therefore, there is some (x1 ,..., x,) in X” common 
to all of these sets. Now define T: [vl ,..., q,J -+ [x1 ,..., x,] as the linear 
extension of Tqi = xi ; i = l,..., n. Let # E [?I ,..., P),J have norm one, let 
z,$ satisfy 11 # - \ttj 11 < 6 and suppose 11 T# \I = 11 T (1. Then 

II Tll G II T(vVll + II TII II # - ~4 II. 

Now, Ij T(t,bJll = II C &(jJ xi jl < 1 + 6 since (x1 ,..., x,J is in Ki . It follows 
from these inequalities that II T II < (1 + S)/(l - 6). (This argument is similar 
to the same norm estimate in [7].) Since (x1 ,..., x,) is in D it follows that 
the matrix B = (fj(xi) I i = l,..., n; j = l,..., n) is invertible for q < 1 
(using the Neumann series). Let A = (+) be its inverse so that 
A = C (I- B)k. Now set yi = C,& aijxj and let d be the linear extension 
of dxi = yi to all of [x1 ,..., x,]. It is easy to see that fi( yj) = i& . Now we 
estimate the norm of A. Let W = Cfi( W) yi . Then 

II w - d-lw)ll = jJ ~.hW)(Yi - Xi) I/ $ II WI c Ilh II II Yi - xt II, 

G ((&-) II T II i llh II II ~3 II) II W IL 
i.j==1 

G ((&$(+g) $, II& II II 9 II) II Wll, .= 

6 (2 (-f+) jgl llh II II 93 Ii) II Wll, for 0 < 6 G k 
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Therefore, for any K E (0, 1) there exists y,, > 0 such that 0 < r] < q,, implies 
I( W-fl-‘(W)~~<K~~ WII. Thus, d =x(1-A-l)” so Ild[[ <(l -Q-l. 
Now we define Ru = CA(u) yi . If J is the canonical map from X to X**, 
one verifies directly that R = dTP*J, so that 

By choosing 7 and 8 small we get II R I/ < /I P /I + E. Further, it is clear that 
R*X* = PX*. Now to check the final assertion, 

and the first term (being smaller than 7) approaches 0 as r) + 0 for each 
C”,, ajf; . By choosing 7 smaller if necessary, the conclusion follows. 

COROLLARY. If every n-dimensional subspace of X* is complemented with 
norm < K, , then every subspace of X having dejiciency n is complemented 
with norm < 1 + K,, . 

Proof. Let U = u1 ,..., ~$1~) P: X* -+ V; ,..., fn] having norm < K, and 
6 < K,, - 11 P 11. If R is the projection of the theorem, then (I - R)X = 
(R*X*),=U~~~~~Z-R~I<~+IIR~~<~+~IP~~+E<~+K,. 

This gives an affirmative solution to Problem 8 of [l]. 
Kadec has recently shown the following (see [2]): If Y is an n-dimensional 

subspace of (any Banach space) X, then there is a projection of X onto Y 
with norm < n1/2. This allows the following refinement of Theorem 6 of [l]. 
(This result also appears in [2]). 

COROLLARY. If Y has deficiency n in X, and if E > 0 there is a projection 
of norm < 1 + n1i2 + f of X onto Y. 

It is not known whether every Banach space has “nicely” complemented 
subspaces of arbitrarily large finite dimension. That is, given X, does there exist 
a constant A4 such that for every n there is a subspace U of X having dimen- 
sion > n and complemented with norm < M. The next corollary says that 
one may as well restrict his attention to conjugate spaces in studying this 
question. 
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COROLLARY. If, for X*, there is a constant M and subspaces V, of X* 
with dim V,, > n complemented with norm < M, then X contains subspaces 
U, with dim U,, >, n and complemented with norm < M. 

We must remark that if a finite-dimensional subspace is complemented 
with norm < M + E for every E > 0, then it is complemented with norm 
< M. 

3 

The following is a direct application of the Lindenstrauss “compactness 
argument” (see e.g. [6]). 

THEOREM 3. Let X be an n-dimensional subspace of a Banach space Z and 
let P be a projection of least norm of Z onto X. Then I/ P I/ = sup, 11 R /I where 
R ranges over all “minimum norm” projections from W to X, Wjinite-dimen- 
sional, XC WC Z. 

Proof. Let 5@ C 2z be the collection of all finite-dimensional superspaces 
of X partially ordered by inclusion. For each B E 8, let PB be a best (in terms 
of norm) projection of B onto X and extend PB to all of Z by setting PBz = 0 
if z E Z\B. By the Kadec result above, it follows that I] PBz 11 < (dim X)li2 1) z [j 
for every z E Z. Now let 

W= 17 nllzll& 
ZEZ 

which is compact in the product topology since X is n-dimensional. The net 
(PB(z)),,z is in W, and thus has a convergent subnet, say (PC(z)). Thus, 
P&z) converges in X for each z in Z. It is clear that, defining P: Z --+ X by 
Pz = lim Pcz, P is bounded and Px = x for all x in X. Also, for zl, z2 E Z, 
and all C r) [zl , z2 , X], P,(olz, + /3z2) = olP,(zJ + /3Pc(z2), so P is linear. 
Further II Pz I] < {limo II P, II} 11 z I/ giving the desired result. 

Let X be n-dimensional. For any superspace W of X let P(X, W) be the 
norm of the best projection of W onto X. Define 

P,(X) = sup{P(X, W) 1 dim W = m}, 

P(X) = SUPUYX, w) I WI a. 

The affirmative solution to problem 9 of [l] is 

COROLLARY. P(X) = sup P,(X). 



FINITE RANK PROJECTIONS 211 

REFERENCES 

1. E. W. CHENEY AND K. H. PRICE, “Minimal projections,” Approximutior: Theory 
(A. Talbot, Ed.), pp. 261-289, Academic press, New York, 1970. 

2. D. J. H. GARLINC AND Y. GORDON, “Relations between some constants associated 
with finite dimensional Banach spaces,” Is. J. Math. 9 (1971), 346-361. 

3. V. L. KLEE, “On certain intersection properties of convex sets,” Canad. J. Math. 
3 (1951), 272-275. 

4. W. B. JOHNSON, “On the existence of strongly series summable Markushevich bases in 
Banach spaces,” Trans. A. M. S. 157 (1971), 481486. 

5. W. B. JOHNSON, H. P. ROSENTHAL, AND M. ZIPPIN, “On bases finite dimensional 
decompositions and weaker structures in Banach spaces,” Is. J. Math. 9 (1971), 488506. 

6. J. LINDENSTRAUSS, “On nonlinear projections in Banach spaces,” Michigan Math. J. 
(1964), 263-287. 

7. J. LINDENSTRAUSS AND H. P. ROSENTHAL, “The 2, spaces,” Israel J. Math. 7 (1969), 
325-349. 


