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If every n-dimensional subspace of X* is the range of a projection of norm less
than C, then every subspace of X with codimension » is the range of a projection
having norm less than 1 + C. Also, projection constants of finite-dimensional
spaces are determined by finite-dimensional superspaces. It is further demonstrated
that spheres cannot, in general, be nicely embedded into unit balls of finite-
dimensional spaces.

This note is primarily concerned with the solution of some problems,
stated in the paper of Cheney and Price [1], on projections of finite rank
(that is, having finite-dimensional range) in Banach spaces. We see in
Section 1 that a sphere cannot always be embedded nicely into the unit ball
of a finite-dimensional space: In particular, if f; , f;, and f; are in /& and
if for x in I, {fi(x)? + fox)? + fo(x)*}/2 > || x |, we must have || f;|| > 1
for some i. This gives a negative solution to part of problem 6 of [1].

The “principle of local reflexivity” of Lindenstrauss and Rosenthal [7] is
extended, in the second section, to show that finite rank projections on a con-
jugate space X* are, in a certain sense, near adjoints of finite rank projections
on X. From this one easily deduces that if every n-dimensional subspace of
X* is complemented with norm < ¢,, then every subspace of X having
deficiency # is complemented with norm << 1 + ¢, (this gives an affirmative
solution to problem 8 of [1]). From an unpublished result of Kadec to the
effect that every n-dimensional subspace of every Banach space is comple-
mented with norm < n'/?, it follows that if Y has deficiency # in x and if
€ > 0, there is a projection of norm <1+ n'/2 4+ ¢ of X onto Y. This
result and the result of Kadec together with its proof, occur in [2].

Finally, the “compactness argument” of Lindenstrauss (see e.g. [6]) is
applied directly to show that if Y is a finite-dimensional subspace of X and
if Pis a “best” (in terms of norm) projection of X onto Y, then || P| =
sup || R| where the sup is over all “best” projections of Z onto Y, Z is
finite-dimensional and ¥ C Z C X. This answers problem 9 of [1].
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1

We show that, in general, spheres cannot be efficiently inscribed in unit
balls of finite-dimensional spaces. Suppose that X is an n-dimensional space
with norm | - ||. Suppose that there exist functionals f; ,..., f,, in the ball of
X*(By+) such that

1/2
=llxl =l x|

i éf;(x)z

for every x in X. There must be a vector x, in ﬂ?=1,#k ker(f;) such that
Selxr) = 1 ={ xg [}y = || X, || Since || fi. || < 1, it follows that || x; || = || fi | = 1
for k = 1, 2,..., n and that f;(x;) = J,; . The system (x; ; f;) is called a normal
basis for X and must satisfy the condition that sp{x; ,..., Xp_1 > X511 s++r» Xn}
is parallel to the supporting hyperplane to By at x; (that is, {f,(x) = 1}).

We are now able to show that the ball of /¥ has no such inscribed sphere.

THEOREM 1. If{fi, fs,fa are in
(=0 and  {fi(xP + LGP + LR = x|l

Sor every x in I, then || f; || > 1 for some i.

Proof. Suppose that there is a normal basis (as above) with || x [l = || x ||
always. Then, notice that x; = (@, , @ , a;3) must have | a;; | different from
zero for each 7, j. This is due to the fact that since {|| x ||, = 1} is tangent to
By at x; , x, and x; and since {|| x |l = 1} C By these are smooth points of the
ball of I{. We may as well assume that a,; , a5, , and a5 are all positive.
Then f; = (1, 1, 1). Since (x; ; f;) is a normal basis, we can conclude that
Qs + Ay + Goy = agy + agy + ag3 = 0. For definiteness, assume that a,; > 0,
ay, > 0 and a3 < 0 (the argument will apply to all legitimate choices of
sign for the a;’s). This condition forces f, = (1,1, —1). In turn,
Qs + dgs — dgz = 0, so that a,3 = 0. This is impossible in our situation,
and proves the theorem.

2

Let us recall some elementary facts and notation which will be used here.
If R is a finite rank projection on X, then R: X — X and R¥* is a finite rank
projection on X*. If {x;,..., x,,} are in X, then [x, ,..., x,] is to denote the
linear span the x;’s in X. If 7is a map from X to Y and W is a subspace of X
denote the norm of T| Wby || Tliw .
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Theorem 2 below is a modification of the “principle of local reflexivity”
of Lindenstrauss and Rosenthal [7]. The author has recently learned that
similar versions of this principle occur in [4] and [5]. One change in the
proof is the use of the following lemma (suggested to the author by
J. Daneman) instead of the separation lemma of Klee [3].

LemMMAa. Let C,,..., C, be open convex subsets of a Banach space X, and
suppose ( C¥" has a nonempty core. Then (\ C; # @.(For a set A in X, A**
denotes its weak* closure in X**).

Proof. By induction, first consider n = 2 (the case » = 1 is trivial and
the second case provides the proof of the lemma). Suppose C; N C, = &
so there is an f in X* and a scalar « such that f(C,) < « << f(C,), then,
FCY) < a < F(CY). Let ¥ in X** be such that ¥(f) = 1. Since there is a
core point ¢ of C¥* N Cy”, there is 8 > 0 such that | A | < § implies ¢ + A¥
is in C¥" n C¥*. This is incompatible with (@ + A¥P)(f) = « for all such A,
giving the desired contradiction. Now, assuming the conclusion for n — 1,
let C, ,..., C, satisfy the hypotheses so that @ # D = (), C;. Let ¢ € core
C¥ NN CY and ¢ ¢ D**. Then there is an f in X* such that (f) > 1
and f(d) <1 for all d in D. However, letting B, = C; N {x | f(x) > 1} for
i=2,3,..,n, we see that the hypotheses for the case n — 1 apply to give
@ # () B; C D which is a contradiction. Thus core C¥* N -+ N C¥* C Dv*
so that C¥* n D** has a core. Now apply the argument for n = 2 to the
pair C;, D to see that o # C; N D = (), C;.

THEOREM 2. Let P be a finite rank projection on X* and let € > 0. Let
V be any finite-dimensional subspace of X*. Then there is a finite rank pro-
Jection R on X such that R¥(X*) = P(X*), | P — R*|y <e and | R| <
| Pl + e

Proof. Let

Pr=Y ol fi with  gdf) =5y,

i=1

where {p, ,..., ¢} CX** Next choose {f,.1 -, fu} I [@1 ,..., @p], sO that
{£1 seees fruy 15 a basis for sp{fi ,ecs fus ¥V} = [fisees fu» V1. Now for 8 >0
and 5 > 0 (to be determined later), let {¥;| 1 < i < p} be a 8-net on the
unit sphere of [, ,..., p,] in X**. Define the following open convex subsets
of X(=X X - X X),fori=1,2,..,p:

K = ‘ f: V() x;

i1

(X1 4eees Xn) <14 8%
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and

D = {(X1 5005 Xn)

glilm(xj)—si,.l <ql.

Let K}* and D** be the similarly defined subsets of (X**)”. Then D** is a
weak*-open set containing (¢, ,..., ¢,) and K;** is strongly open, containing
(@1 5e-e» Pn). It follows easily (as in [7; proof of Theor. 3.1]) that K¥* D K}**,
and Dv* D D** The hypotheses of the lemma are now satisfied for the
p + 1lsets Ky ,..., K, , D. Therefore, there is some (x, ,..., X,) in X™ common
to all of these sets. Now define T: [, ,..., 9n] —> [Xy ,..., X;] as the linear
extension of Tg; = x;; i = 1,..., n. Let Y € [, ,..., p,] have norm one, let
g; satisfy (| & — ;|| << & and suppose || Ty |l = || T||. Then

ITH<ITEN A+ T — s

Now, | Tl = | X #:(fi) x; 1| < 1 4 & since (x4 ,..., X,,) is in K . It follows
from these inequalities that || T'|| << (1 + 8)/(1 — 8). (This argument is similar
to the same norm estimate in [7].) Since (x; ,..., x,,) is in D it follows that
the matrix B = (fi(x)|i=1,..,n;j=1,.,n) is invertible for n <1
(using the Neumann series). Let A == (@;) be its inverse so that
A=Y (I — B)*. Now set y, = 3, a;;x; and let 4 be the linear extension
of dx; = y, to all of [x, ,..., x,,]. It is easy to see that fi( y;) = &;; . Now we
estimate the norm of 4. Let W = ¥ f(W) y; . Then

| W — 420 = | EAN v — x| NI T Ifill e = xall

(21 Al ”(21 s — aia‘) X;

Jiwi

<(i |Sa—ai,-lnmn|x,~||)nWn,

1, =1
<((£Z) 170 3 s e w,
£,d=1
(1_,, l“L8)”z=1||f,uuqml)nWu,
<2+ Susligl)iwi o 0<s <y
zj-l
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Therefore, for any K € (0, 1) there exists 5, > 0 such that 0 < % < 5, implies
| W— A (W) < K| W] Thus, d=3 I~ 47 so 4] <l — K™
Now we define Ru = 3. fi(u) y; . If J is the canonical map from X to X**,
one verifies directly that R = ATP*J, so that

IRI < QN1 — KX + 8)/(1 — )| Pl

By choosing % and & small we get || R|| < || P|| + €. Further, it is clear that
R*X* = PX*. Now to check the final assertion,

l {f, o R¥f;

j=n-+1

[ &~ ), o

jeul

~| £ w3 noas

j=n+1

b

b

- i 2; Zl 5aa (%) /i

( Z Z Iﬁ(xk)l)z | oy Zlaiklzufi“,

and the first term (being smaller than %) approaches 0 as  — O for each
2:-',‘,1 oy f; . By choosing % smaller if necessary, the conclusion follows.

COROLLARY. If every n-dimensional subspace of X* is complemented with
norm << K, , then every subspace of X having deficiency n is complemented
with norm <1+ K, .

Proof. Let U =[f;,..., fal., P: X* - [f1,..., f»] having norm < K, and
e < K, — || P|l. If R is the projection of the theorem, then (I — R)X =
(R*X*), =Uand [I— R <1 +[RI<1+[Pl+e<l+K,.

This gives an affirmative solution to Problem 8 of [1].

Kadec has recently shown the following (see [2]): If Y is an n-dimensional
subspace of (any Banach space) X, then there is a projection of X onto Y
with norm < n*/%, This allows the following refinement of Theorem 6 of [1].
(This result also appears in [2]).

COROLLARY. If Y has deficiency n in X, and if € > 0 there is a projection
of norm <14+ n'? 4+ eof Xonto Y.

It is not known whether every Banach space has “nicely” complemented
subspaces of arbitrarily large finite dimension. That is, given X, does there exist
a constant M such that for every » there is a subspace U of X having dimen-
sion 2= n and complemented with norm < M. The next corollary says that
one may as well restrict his attention to conjugate spaces in studying this
question.
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COROLLARY. If, for X*, there is a constant M and subspaces V, of X*
with dim V,, = n complemented with norm <. M, then X contains subspaces
U, with dim U, = n and complemented with norm < M.

We must remark that if a finite-dimensional subspace is complemented
with norm < M + € for every € > 0, then it is complemented with norm
<M.

3

The following is a direct application of the Lindenstrauss “compactness
argument” (see e.g. [6]).

THEOREM 3. Let X be an n-dimensional subspace of a Banach space Z and
let P be a projection of least norm of Z onto X. Then || P|| = supg || R || where
R ranges over all “minimum norm™ projections from W to X, W finite-dimen-
sional, XC WCZ.

Proof. Let # C 27 be the collection of all finite-dimensional superspaces
of X partially ordered by inclusion. For each B € 4, let Pz be a best (in terms
of norm) projection of B onto X and extend Pp to all of Z by setting Pgz = 0
if z € Z\B. By the Kadec result above, it follows that || Pzz || < (dim X)V/2{ z||
for every z e Z. Now let

W= []nllzlBx

2€Z

which is compact in the product topology since X is n-dimensional. The net
(P5(2)).cz is in W, and thus has a convergent subnet, say (P.(z)). Thus,
P(z) converges in X for each z in Z. It is clear that, defining P: Z — X by
Pz = lim Pz, P is bounded and Px = x for all x in X. Also, for z;, z, € Z,
and all CD [z, z,, X], Pazy + Bzy) = aPe(z1) + BPc(zp), so P is linear.
Further || Pz || < {lim¢ || Pc 1} || z |} giving the desired result.

Let X be n-dimensional. For any superspace W of X let P(X, W) be the
norm of the best projection of W onto X. Define

P (X) = sup{P(X, W) | dim W = m},
P(X) = sup{P(X, W)| WD X}.

The affirmative solution to problem 9 of [1] is

COROLLARY, P(X) = sup P, (X).
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