
Science of Computer Programming 74 (2009) 430–445

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Identifier length and limited programmer memory
Dave Binkley ∗, Dawn Lawrie, Steve Maex, Christopher Morrell
Loyola College, Baltimore MD, 21210-2699, USA

a r t i c l e i n f o

Article history:
Received 2 September 2008
Received in revised form 15 February 2009
Accepted 18 February 2009
Available online 11 March 2009

Keywords:
Program comprehension
Memory
Identifier names

a b s t r a c t

Because early variable mnemonics were limited to as few as six to eight characters,
many early programmers abbreviated concepts in their variable names. The past
thirty years have seen a steady increase in permitted name length and, slowly, an
increase in the actual identifier length. However, in theory names can be too long
for programmers to comprehend and manipulate effectively. Most obviously, in object-
oriented programs, entity naming often involves chaining of method calls and field
selectors (e.g., class.firstAssignment().name.trim()).While longer names bring the potential
for better comprehension throughmore embedded sub-words, there are practical limits to
their length given limited human memory resources.
The driving hypothesis behind the presented study is that names used in modern

programs have reached this limit. Thus, a goal of the study is to better understand
the balance between longer, more expressive names and limited programmer memory
resources. Statistical models derived from an experiment involving 158 programmers of
varying degrees of experience show that longer names extracted from production code
take more time to process and reduce correctness in a simple recall activity. This has clear
negative implications for any attempt to read, and hence comprehend or manipulate, the
source code found in modern software. The experiment also evaluates the advantage of
identifiers having probable ties to a programmer’s persistent memory. Combined, these
results reinforce past proposals advocating the use of limited, consistent, and regular
vocabulary in identifier names. In particular, good naming limits individual name length
and reduces the need for specialized vocabulary.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Early compilers limited identifier length starting a long tradition of abbreviation [11]. Modern programming languages
have forgone such limits; thus, programmers have been encouraged to replace abbreviations, such as mnelmns, with
ever longer names, such as max_num_elmns or even max_number_elements. However, a name can become too long.
Consider trying to workwith the_maximum_number_of_elements_seen_in_the_input even given an IDE that performs name
completion.
The effective removal of length limitations provides programmers with considerable freedom to select names that

promote source code understanding. With this freedom comes responsibility. For example, Liblit et al. observe that longer
names, with more embedded sub-words, are more informative [11]. Furthermore, Lawrie et al. note that longer identifier
names provide insight into the code’s meaning [9,10].
Yet, there is a practical limit to the length of identifiers, just as there is with the length of words in natural language.

Jones observes that few developers appreciate how small short-term memory actually is, having the capacity to hold only

∗ Corresponding author. Tel.: +1 410 617 2881.
E-mail addresses: binkley@cs.loyola.edu (D. Binkley), lawrie@cs.loyola.edu (D. Lawrie), smaex@cs.loyola.edu (S. Maex), chm@loyola.edu (C. Morrell).

0167-6423/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2009.02.006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82668062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:binkley@cs.loyola.edu
mailto:lawrie@cs.loyola.edu
mailto:smaex@cs.loyola.edu
mailto:chm@loyola.edu
http://dx.doi.org/10.1016/j.scico.2009.02.006


D. Binkley et al. / Science of Computer Programming 74 (2009) 430–445 431

information on a few statements at most [7]. Thus, overloading a programmer’s short-termmemory is rather easy. One way
to improve its capacity is by constructing identifiers from words that include ties to programmer persistent memory.
This paper presents results from a study of the interplay between programmer short-termmemory limitations and entity

names found within programs. The study is part of ongoing research into the impact that limited humanmemory resources
have on program comprehension. While program comprehension clearly involves more than simple recall, such recall
forms a fundamental and necessary precursor to essentially all comprehension activities. Thus, higher-level comprehension
activities become increasingly difficult as a programmer’s short-term memory becomes overcrowded, particularly when
those activities require access to crowded-out information. It is important to separate this observation from the observation
that low recall is a sign of poor comprehension. Only the former is investigated by the experiment.
In contrast to trends in modern programming languages, the hypothesis that motivates this study is that identifiers can

be too long and thus negatively impact recall and consequently comprehension. While the existence of a theoretic limit is
obvious, the study suggests that this limit has, in fact, been reached. The resulting degradation can be observed, for example,
as a reduced ability to recall particular parts of the code caused by overcrowding of short-termmemory. This is particularly
an issue in object-oriented programming where ‘chaining’ often leads to long names created when several method calls
and field selectors are concatenated together in a chain expression (e.g., name.trim().length()). Informally, Jones notes this
effect in the observation ‘‘experience shows that developers sometimes read source code so quickly that visually similar,
but different, identifiers are treated as being the same identifier [7]’’.
Maximal comprehension occurs when the pressure to create longer more expressive names is balanced against limited

programmer short-term memory resources. Finding this balance point will result in better guidance for creating easy-
to-comprehend names. To this end, results from a study on the impact of name length and persistent-memory ties are
presented. An important part of the study’s construction is the use of production code as a source for the chain expressions
(names). This means that the results are more apt to apply to existing rather than hypothetical programs. However, the
study considers isolated names; therefore, it tends to underestimate the demand on programmer memory because there is
no need to remember surrounding code.
A programmer’s ability to quickly read (visually process an identifier’s text) and to associate it with a concept forms a

fundamental step inmost program comprehension activities. Excessive length can get in the way of both of these processes.
For example, compare the ease of comprehension between the statements cartesian_distance = square_root(distance_be-
tween_abscissae * distance_between_abscissae + distance_between_ordinates * distance_between_ordinates) and dist =
sqrt(dx * dx + dy * dy). While program comprehension is more than simple reading and recall, these two steps are at the
core ofmany program comprehension activities. This problem is exacerbated in source code because it includes an intensive
use of invented words, unlike natural language in which participants share a large and mutually understood, but relatively
fixed lexicon.
The remainder of the paper first presents some necessary background information in Section 2 before describing the

experiment’s design, the five hypotheses considered, and the results in Sections 3–5, respectively. This is followed by a
discussion of related work in Section 6. Finally, Sections 7 and 8 suggest some future work and finally summarize the paper.

2. Background

This section describes background on memory, the findings from two prior motivating studies, and finally the statistical
techniques used.Memory is the retention of information over time. It can be broken down into three stages: sensory, short-
term, and persistent. Sensory memory retains images, sounds, and smells for no more than a second. Interesting information
enters short-term memory. This second kind of memory is working storage. Short-term memory holds new information
for about 15–30 s without rehearsal (repetition) [13]. The capacity of this subsystem is debatable, but limited. Miller first
enumerated the capacity in the 1950s at seven plus orminus two items. However, more recent estimates indicate that it may
be closer to three plus or minus one item [5]. One of the interesting aspects of short-term memory is that similar material
can be combined into a chunk; this appears to increase the total amount of material remembered. Finally, persistent memory
lasts fromminutes to years. Persistent memory can be used to recall previously learned information including, for example,
specific rules and repeated patterns such as those used in programming.
This study focuses on the impact of limited short-termmemory resources. When dealing with natural language reading,

short-term memory is correlated with reading comprehension. For example, Table 4.7 found in the Technical Manual for
the Wechsler Memory Scale andWechsler Adult Intelligence Scale [4] reports that the correlation between working (short-
term) memory and reading comprehension as 0.65. The manual places this value in the high correlation range stating ‘‘. . .
scores are high, usually in the 0.60 s and the 0.70 s . . .’’ [4]. It is interesting to note that the correlation between short-term
memory and IQ is only 0.29, which is just below the moderately-correlated range of 0.30–0.60.
In the first of the two prior studies, programmer comprehension was measured using three different levels of identifiers:

short (often single letter), abbreviated, and full word [9,10]. Unexpectedly, programmers elicited essentially the same
information from full word and abbreviated identifiers. The second prior study used information from the English Lexicon
Project. It showed that longer words required significantly greater time to determine their validity as actual words (greater
lexical decision making time) [14]. One possible explanation for this phenomenon is that longer words require multiple
fixations (landings of the eye) before they can be recognized and correctly classified.



432 D. Binkley et al. / Science of Computer Programming 74 (2009) 430–445

Combined, the results of these two studies suggest a study of the impact of limited short-term memory on source code
comprehension. In other words, can names of the lengths used in modern programs be too long and thus crowd short-term
memory? The study described herein presents statistical models based on data collected to investigate this question.
As the statistical models are constructed from data that includes repeated measures and missing values (e.g., due

to participant drop out) linear mixed-effects regression models were used to analyze the data [17]. Such models easily
accommodate unbalanceddata, and, consequently, are ideal for this analysis. These statisticalmodels allow the identification
and examination of important explanatory variables associated with a given response variable.
The construction of a linear mixed-effects regression model starts with a collection of explanatory variables and may

include a number of interaction terms. The interaction terms allow the effects of one explanatory variable on the response
to differ depending upon the value of another explanatory variable. For example, if Java Experience interacts with Sex in a
model where Correctness is the response variable, then the effect on Correctness of Java Experience depends on Sex (i.e.,
is different for men and women). Backward elimination of statistically non-significant terms (p > 0.05) yields the final
model. Note that some non-significant variables and interactions are retained to preserve a hierarchically well-formulated
model [12]. Therefore, individual p-values for terms participating in an interaction are not reported. The quality of a model
is reported using its Akaike Information Criterion (AIC) [17], which is based on the log-likelihood but is penalized for the
number of parameters in themodel. AIC can be used to comparemixed-effectsmodels. Themodel with the smallest number
is preferred.
When interpreting themixed-effects models described in Section 5, graphs are used to illustrate significant effects in the

model. However, when the models have more than two explanatory variables it is not pragmatic to graph all the variables.
Thus, when plots are constructed, variables not being discussed are set to their means or, in the case of categorical variables,
a representative value.

3. Experimental design

The explanation of the study’s design begins with a description of the source code selected and then presents the layout
of the experiment including theweb-based applet used to collect the data, the explanatory and response variables collected,
and the preparation of the raw data for analysis. The next section presents the five hypotheses formally studied using the
collected data.
To investigate the interplay between memory and identifier selection, the study considers how well subjects retain the

information contained in Java chain expressions. In doing so, it explores two orthogonal questions: what is the impact of the
length of a chain expression on retention and what is the impact of familiarity with the parts (identifiers) that make up the
chain expression on retention.

3.1. Source code selection

The first step in constructing the study was to select the chain expressions to be used in the study. Hereafter, these are
referred to simply as names since, taking a functional viewpoint, they name a runtime entity. In other words, names are the
programing language syntax that identify an object (address) during program execution. (While not studied, an object can
have multiple names.) Each name is composed of a collection of parts separated by Java’s dot operator. Names include field
selectors, expressions denoting a method, and method arguments. One of the parts was selected to be the part of the name
that the subject would have to recall.
To balance the time required to take part in the studywith the need to collect sufficient data fromwhich to draw statistical

conclusions, it was decided that eight questions would be included. Eight questions should encourage initial participation
and lead to a high completion rate by the volunteer participants. The eight names used in the eight questions were extracted
from production code. Choosing names from production code is important because it improves the study’s external validity
as the experiment more accurately captures the code used in the engineer’s environment; thus, it brings the results closer
to those expected when working directly with production source code. However, selecting names from production code
represents a compromise between control (e.g., the high-control of artificially constructed source [7]) and applicability of
results to the code found in real programs.
The selected names were drawn from a collection of approximately 6.3 million lines of code taken from a cross section of

open-source programs (e.g., cvs, jaccounting, cinelerra, sendmail, tomcat, eclipse, jmeter, etc.). In total 508,790 names were
extracted. For each, the number of constituent parts (separated by Java’s dot operator) was then computed. Fig. 1 presents
the distribution of the number of parts per name. For the experiment, those having only one or two parts were dropped
because they were too short to create meaningful questions. The authors then scanned the remaining names and selected
200 representative examples. For each of these, the number of syllables was counted.
The final selection of the eight names was based on two factors affecting performance in recalling recently read

information. The first is the extent to which the information can be maintained in short term memory. This depends on
the short-term memory resources consumed by the encoded information and on other demands on short-term memory
resources between the time the information is originally encoded andwhen it needs to be recalled. The second is influenced
by the extent to which the information is already stored in persistent memory. For instance, this information may



D. Binkley et al. / Science of Computer Programming 74 (2009) 430–445 433

Fig. 1. Extracted names categorized by number of parts (the y-axis uses a log scale).

exist because a character sequence has been encountered before or its sound pattern matches (or rhythms with) that of
a known word.
These two factors are captured in the study by the variables Length and Ties. Length is used to partition the questions

into two groups: short (having about 10 syllables and 4 parts) and long (having about 20 syllables and 7 parts). The variable
Length allows results to be simply stated; for example, ‘‘longer names take 20 s more time to study’’. To provide a finer level
of granularity in themodels, Length is refined in the study into two counts: the number of parts and the number of syllables.

Ties is used to further partition the questions into those expected to be tied to the subject’s persistent memory and
those not expected to be so tied. In general, ties come from familiarity with the domain of a program and with programmer
experience. Thus, each part of a name has a different strength of tie to persistent memory, and these ties are different for
each subject. However, in the experiment, Ties is a binary value that denotes the expectation that the selected part will
have ties to all subjects’ persistent memory. Ties is true when the selected part comes from the standard Java library. This
helps to ensure that the correct value of Ties is assigned to each question. After the assignment was made, it was checked
using a search of theWorldWideWeb. The four parts assumed to have Ties averaged 10million hits (the query included the
search word ‘‘java’’ to avoid false positives). In contrast, the four with no Ties averaged just under 140 thousand (with java
getJournalEntry yielding only 7 hits). Having two orders of magnitude more hits makes it reasonable to assume that these
parts have Ties to (Java) programmer persistent memory.
From the 200 names, Length and Ties were used to select the eight names and then group them into four categories:

short with ties, short with no ties, long with ties, and long with no ties. To create a balanced study, two names from each
category were selected. These are shown in Fig. 2, where the underlined part (identifier) is the selected part of the name
to be recalled during the experiment. Each entry of the figure also includes the package and file from which the name
was extracted.

3.2. Experimental layout

The core of the experiment is laid out as eight questions. Each question is divided into three parts. The first shows a
single name to the subject, who is free to study it for as long as desired. Then, as in similar studies, the subject undertakes
a distracting activity. In this experiment, subjects were asked to enter the kind of application from which they thought the
name might have come. This serves as a distractor, which simulates, for example, the subject considering intervening code.
Finally, the subjectwas shown the namewith one of the identifiers elided and asked to enter themissing identifier. The eight
questions, shown in Fig. 2, were arranged into two groups (labeled ‘‘Group 1’’ and ‘‘Group 2’’ in the figure). The questions
within each group were shown in a random order to avoid systematic learning biases.
The experiment was conducted over the internet using a Java applet, which has several advantages. First, it allows for

wide, quick distribution. Second, the applet prevents the use of the web browser’s back button and thus provides flow
control. Third, the applet allows the timing of how long subjects spend on each question. Finally, the results gathered are
already in a digital format, which supports easy manipulation and statistical analysis and prevents data entry errors.
Before the eight questions, demographic data was collected using the screen shown in the left of Fig. 3. The right of this

figure shows one set of the three screens used for each question. A final screen allows participants to provide comments
and feedback on the study.
Subjects were recruited via email. A message, which described the study and included the applet’s URL, was sent to

current students, alumni of several colleges, and various professional groups.



434 D. Binkley et al. / Science of Computer Programming 74 (2009) 430–445

Fig. 2. The names used in the study’s eight questions, categorized by length and the expectation that the selected identifier has ties to persistent memory.
The selected identifier is underlined.

Fig. 3. Screen shots of the demographics screen and an example question.

3.3. Variables

The variables collected during the experiment include two response variables and twelve explanatory variables. The first
response variable, Time, represents the time spent examining the name shown on the first screen of each question. The
second, Correctness, reflects the average judgement of the correctness of the answer on the third screen. Its determination
is described below.
The explanatory variables come from two sources: the questions and the demographics. The five variables related to

each question include the name’s Length (long or short), Syllables Removed, Syllable Count, Parts, and the existence of Ties
to persistent memory. Length and Ties were described previously. The variable Syllables Removed counts the number of
syllables in the part selected for the subject to recall. The Syllable Count is the number of syllables in the name, and Parts is
counted by separating the name based on Java’s dot-operator.
The seven demographic variables are used to consider patterns that arise from who the subjects are. They include the

Highest Degree earned, years of CS Schooling, years ofWork Experience, Job Title, Age, Sex, and Java Experience (referred
to as comfort in Fig. 3). This last variable is self-determined by the response to ‘‘Rate your comfort programming with Java’’
on a scale of 1–5.



D. Binkley et al. / Science of Computer Programming 74 (2009) 430–445 435

Most variables were collected as categorical variables to eliminate encoding errors. For example, as shown in the left of
Fig. 3, numeric values were collected categorically as ranges, limiting free-form data entry problems (e.g., Age entered as
‘‘142’’ or ‘‘old’’).

3.4. Data preparation

Following administration of the experiment, the collected data was prepared for statistical analysis. The processing
included categorizing free-form answers, considering the demographic data and comments from the final screen, and
removing outliers. Each of these procedures is now discussed in more detail.
Three of the four free-form responses were encoded as categorical variables. The exception was the response to the

memory clearing exercise. The first of the three, Highest Degree was categorized using the North American degree titles
high school, bachelors,masters,MBA, and Ph.D. This required mapping some degrees from non-North American participants.
Second, the title of the last computer science job was categorized as student, researcher, teacher, programmer, or other (e.g.,
professorwas considered a researcher, lecturer a teacher, and architect a programmer).
The final free-form response was the value entered for the missing identifier. The result was scored on a scale of 0–4.

Exactly correct answers (sans case) were scored a 4 and almost correct answers were given a 3. The score 2 was given to
answers which had something right in them, and 1 to answers that were wrong. Zero was used for answers that were blank
(e.g., caused by an errant double click) or where the subject wrote something to the effect that they got distracted. These
entries were removed as they represent erroneous conditions.
Scoring was performed separately by two of the authors using a scale from 0 to 4 and then averaging the results.

Equivalent answers were grouped together to allow the authors to judge each distinct response once in order to ensure
that all responses that were exactly the same received the same score. While not related directly to the study, the number
of distinct responses (i.e., the number of groups) per question averaged 28.25 with a minimum of 14 and a maximum 44
distinct responses per question. Statistically, the scores of the two judges were in almost perfect agreement (κ = 0.802).
Based on information on the final screen or in the demographics, the data for a few subjects was removed. For example,

one subject reported writing down each name. A second subject reported being a biology faculty member with little
computer science training.
Finally, the time spent viewing Screen 1was examined. It was decided that responseswith times shorter than 1.5 s should

be removed because they gave the subject insufficient time to process the code. This affected 18 responses (1.4% of the 1264
responses). In addition, excessively large values were removed. This affected 6 responses (0.5%) each longer than 9 min.

4. Experimental hypotheses

This section presents the five hypotheses studied. Each hypothesis is given an informal name, which is followed by its
formal statement and then its motivation. The next section presents the statistical analyses used to investigate each of the
five hypotheses.

Hypothesis 1. Length increases study time

H10: Study Time is the same regardless of Length
H1A: Length increases study Time

The first hypothesis states that longer names require more Time to consider, process, and, thus, understand. All other
things being equal, increased Time equates to increased software cost (in particular, software maintenance cost). By itself,
this resultmight not seema great surprise and the costmight be recovered through improved comprehension, fewer defects,
ormore efficient changemaking. Names canbe considered too long if any increased costs are not balancedby cost reductions.

Hypothesis 2. Length reduces correctness

H20: Correctness is the same regardless of Length
H2A: Length reduces Correctness

The second hypothesis states that longer names reduce subjects’ ability to recall parts of a name. This is due to the over-
crowding of short-termmemory; thus, subjects are less able to recall particular parts of the name. An affirmative finding for
both Hypotheses 1 and 2 would support the notion that names can be too long.

Hypothesis 3. Memory ties improve correctness

H30: Ties do not effect Correctness
H3A: Ties improve Correctness

The third hypothesis states that common programming idioms are easier to recall and process because they have Ties
to one or more concepts stored in the programmer’s persistent memory. Thus, problems that involve more common Java
expressions will have greater Correctness [7].



436 D. Binkley et al. / Science of Computer Programming 74 (2009) 430–445

Fig. 4. Hypothesis 5b expected output.

Hypothesis 4. Experience improves correctness

H40: Java Experience has no effect on Correctness
H4A: Java Experience improves Correctness

The fourth hypothesis essentially reinforces Hypothesis 3 as greater experience is expected to lead to greater persistent
memory Ties. Thus, together Hypotheses 3 and 4 support the notion that Java Experience improves Ties to persistent
memory that can be exploited in code comprehension and, in this case, lead to higher Correctness.

Hypothesis 5. The impact on correctness of ties to persistent memory, length, and experience are interdependent

H50: The impact on Correctness of Ties, Length, and Java Experience are independent
H5A: The impact on Correctness of Ties, Length, and Java Experience are interdependent

Hypothesis 5 investigates whether or not Ties to persistent memory, Length, and Java Experience interact with each
other. To obtain a clearer picture, this hypothesis is separated into three sub-hypotheses. In each case the hypothesis states
the interaction in its ‘natural order’; however, each is in fact symmetric. In other words if the impact of a increases (or
decreases) with b then the impact of b increases (or decreases) with a.

Hypothesis 5a. The impact on correctness of memory ties increases with length

H5a0: The impact on Correctness of Ties to persistent memory is independent of Length
H5aA: The impact on Correctness of Ties to persistent memory increases with Length

Hypothesis 5b. The impact on correctness of experience increases with ties

H5b0: The impact on Correctness of Java Experience is independent of persistent memory Ties
H5bA: The impact on Correctness of Java Experience increases with persistent memory Ties

Hypothesis 5c. The impact on correctness of length decreases with experience

H5c0: The impact on Correctness of Length is independent of Java Experience
H5cA: The impact on Correctness of Length decreases with Java Experience

The first of the three sub-hypotheses, Hypothesis 5a, states that Ties to persistent memory becomes more valuable as
short-term memory becomes more crowded. Alternatively, with shorter names, Ties to persistent memory have less value.
Hypothesis 5b states that Java Experience becomes more valuable in the presence of Ties to persistent memory. Finally,
Hypothesis 5c states that Length becomes less influential with greater Java Experience.
Support for these hypotheses will be evident in the statistical significance of an interaction between the relevant pair of

explanatory variables. In a model, this kind of interaction appears as a difference in slopes. For example, as shown in Fig. 4,
if the null hypothesis for 5b were rejected, the lines for Ties and no Tieswould have different slopes.

5. Experimental results

This section first describes the subject demographics and then, in the first five subsections, it considers the statistical
models generated to investigate the five hypotheses. This is followed by a summary of the results, a discussion of threats to
validity, and finally, a consideration of several related experiments suggested by the initial analysis. The study included 158
subjects, most of whom (97%) had earned a university degree. In terms of the years of CS Schooling, 7% had 1–2 years, 34%



D. Binkley et al. / Science of Computer Programming 74 (2009) 430–445 437

had 3–4 years, 24% had 5–6 years, and 35% had 7 ormore years. The distribution of Age shows that amajority of subjects fell
in the 26–35 age range (42%) followed by the 20–25 age range (25%). As would be expected, the years ofWork Experience
reflect Age with the peak being 34% falling into the 4–10 years category. The other groups were distributed between
13% and 20%. The gender demographics (87% male) shows that the subject population mirrors the field in terms of men
and women.
The study did draw more heavy from the research community than would be expected in a purely random sample with

34% researchers, 37% programmers, 15% other, 12% students, and 3% teachers. This bias towards researchers can be expected
to be associated with greater schooling. The statistical models show neither of these demographic variables as significant.
Hence, neither effect is a significant concern. Finally, the distribution of the self-reported Java Experiencewas fairly uniform.
This rating of subjects’ comfort with Javawas on a scale from 1 (low) to 5 (high) and breaks down from low to high as 16%,
14%, 18%, 27%, 25%; thus, just over half of the participants rated themselves above the average.

5.1. Hypothesis 1 — Length increases study time

Themodels considered for each hypothesis startwith a collection of explanatory variables. Backwards elimination is then
applied to iteratively remove those variables that are not statistically significant. When only a single explanatory variable
is of interest, as is the case in the first model, then elimination will either remove the variable indicating no effect or it will
retain it, indicating an effect.
After a discussion of the model’s statistical significance, each section then considers the practical significance of the

variable coefficients in each model. Practical significance concerns the influence of each statistically significant variable in a
model. While this judgement is less scientific in nature, it is still useful to consider, in practical terms, the influence of each
significant variable.
To investigate the first hypothesis, the initial model includes the explanatory variable Length. This variable is significant

(p < 0.0001), and indicates that longer names take an average of 20.1 s longer to process. Because of this significance, an
attempt to further understand this effect was undertaken. A secondmixed-effects model was constructed, this time starting
with the explanatory variables Syllable Count and Parts in place of Length. Parts is eliminated; thus, the final model includes
onlySyllable Count. In thismodel, it takes an average of 1.80 s longer (p < 0.0001) for participants to process each additional
syllable. Both models, particularly the more detailed second model, support the alternative hypothesis that as the length of
a name increases, the Time required to process the name also increases.
Unlike statistical significance, practical significance requires making a judgement. In this case, does 1.80 s per syllable

amount to ameaningful amount of time. Here the answer is clearly yes, especially for activities that consider a large amount
of code (e.g., code reviews).

5.2. Hypothesis 2 — Length reduces correctness

Similar to the first hypothesis, the initial model for Hypothesis 2 includes the explanatory variable Length. However, this
variable is not significant (p = 0.778). To investigate possible reasons for this unexpected result and to parallel the analysis
of Hypothesis 1, a second model was constructed beginning with the explanatory variables Syllable Count and Parts. Here
both variables are significant: Correctness decreases by 0.0315 with each additional syllable (p = 0.0019) and increases by
0.0768 for each additional part (p = 0.0174).
The interpretation of this second model is complicated by two factors. First, the coefficients of the two variables are

opposite in sign (but when tested for, there was no interaction). This, in part, explains Length not being significant. The
second complicating factor is that Parts and Syllable Count are (unsurprisingly) highly correlated (r = 0.859); thus, names
with more Parts also tend to have more syllables. Regarding the first factor, it is relevant to note that the interpretation
of coefficients in a statistical model is meant to be done ‘‘while holding other variables constant’’. However, in this case it
is not practical to talk about varying Syllable Count while holding Parts constant (or visa versa) as the two are so strongly
correlated.
Because the model indicates that both factors together are important in predicting Correctness two further models,

which consider each of the variables independently, were constructed. Interestingly, both variables’ significance decrease
(p = 0.0362 for Syllable Count alone and p = 0.5582 for Parts alone). For Syllable Count alone, Correctness decreases by
0.0109 with each additional syllable. For Parts, the slope is negative, as initially expected, but not significant.
Comparing the coefficient of Syllable Count in the twomodelswhere it appears is instructive in gaining an understanding

of the impact of the two variables. In the model containing only Syllable Count, the coefficient of Syllable Count is less than
in the joint model where Parts helps to dampen the (overzealous) prediction of Syllable Count alone; thus, the combination
produces a better prediction. Although more complex than the models for Hypothesis 1, Hypothesis 2 models involving
Syllable Count support the alternative hypothesis that Length reduces Correctness (recall). Combined with the first result,
longer names are more costly as they take more time to process and lead to lower recall Correctness.
Unlike Hypothesis 1, where the statistical significance is accompanied by practical significance, practical significance

is harder to argue for Hypothesis 2. The largest influence is Syllable Count’s coefficient of 0.0315; however, here each
additional syllable brings only a small decrease: it takes 15 syllables to produce a half a point decreases in Correctness.



438 D. Binkley et al. / Science of Computer Programming 74 (2009) 430–445

Even considering the 95% confidence interval for Syllable Count (0.0118, 0.0513), does not admit the possibility of a large
coefficient. One explanation for this is that the names studied are already sufficiently long to overload short-term memory
and thus additional syllables over the range studied provide very little additional degradation.

5.3. Hypothesis 3 —Memory ties improve correctness

The initial model for Hypothesis 3 includes the explanatory variable Ties. This variable is significant in the final model
where it increases Correctness by 0.189 (p = 0.0009). Because Ties might be affected by the demographic data, a
second model was created that includes the demographic variables Highest Degree, CS Schooling, Work Experience, Java
Experience, and the interaction Java Experience * Ties. The final model here includes only Ties and Java Experience. Ties has
the same coefficient and p values. This indicates the independence of its effect. The impact of Java Experience on Correctness
is discussed in the next section. In conclusion, there is statistical support to reject the null hypothesis and conclude that Ties
to persistent memory improve recall Correctness. In practical terms, Ties is associated with a fifth of a point increase in
Correctness, which indicates that, in addition to statistical significance, Ties has practical significance.

5.4. Hypothesis 4 — Experience improves correctness

The initial model, for Hypothesis 4 includes the explanatory variable Java Experience. This variable is significant in the
final model where it increases Correctness by 0.0849 (p = 0.0156) per unit of Java Experience. As with the previous model,
the demographic data (e.g., profession or schooling) may influence Java Experience; thus a second model was run that
included the demographic variables Highest Degree, CS Schooling, Work Experience. The final model here includes only
Java Experience, with the same coefficient and significance. The independence of Java Experience is evident in the second
model used when investigating Hypothesis 3, in which only Java Experience and Ties are retained in the final model. As
described in Section 5.3, Ties has the same effect as in the simpler models for Hypothesis 3. Attesting to the independence of
Java Experience, each unit of Java Experience again increases Correctness by 0.0849 (p = 0.0156). Thus, like Ties above, it
has a largely independent effect. In conclusion, there is statistical support to reject the null hypothesis and conclude that Java
Experience improves recall Correctness. However, in practical terms this effect is not large as Java Experience is measured
on a scale from 1 to 5. Thus, over the entire range the difference amounts to only one third of a point increase in Correctness.

5.5. Hypothesis 5 — The effect on correctness of ties to persistent memory, length, and experience are interdependent

5a — The impact on correctness of memory ties increases with length
5b — The impact on correctness of experience increases with ties
5c — The impact on correctness of length decreases with experience.

To test Hypothesis 5, the initial model includes the explanatory variables Length, Java Experience, and Ties, and all
three pairwise interaction: Ties * Length, Java Experience * Ties, and Length * Java Experience. After the removal of non-
significant terms, the final model includes the three explanatory variables and the interaction Length * Java Experience.
In this model there are two effects on Correctness. First, Ties to persistent memory brings an increase of 0.189 to

Correctness (p = 0.0009). This means that, independent of other factors, subjects did better with more common Java
names. Second, Length and Java Experience take part in an interaction (p = 0.0336) (thus their individual impacts on the
model cannot be stated separately).
This means that statistically the null hypothesis cannot be rejected for Hypothesis 5a nor 5b; however, for Hypothesis 5c,

the null hypothesis can be rejected. The interaction Length * Java Experience is shown in the left of Fig. 5 by the different
slopes of the two lines. Here, Java Experience has a greater impact when Length has the value long (the line with the greater
slope). Symmetrically, to see that the impact of Length decreases with Java Experience observe that the gap between the
two lines reduces with increased Java Experience. Interestingly, for those with the most experience, there is no difference
in Correctness between short and long names.
Following the example used in previousmodels, the significance of Length led to the replacement of Lengthwith Syllable

Count and Parts in the generation of a new model. The final model includes Java Experience, Ties, Parts, and Parts * Java
Experience. Here again there are two effects on Correctness. First, Ties to persistent memory brings an increase of 0.209 to
Correctness (p = 0.0004). The consistency of the occurrence and coefficient for Ties is indicative of a variable with a strong
independent effect. Second, Parts and Java Experience take part in an interaction (p = 0.0249).
This again means that, statistically, the null hypothesis can be rejected for only Hypothesis 5c. The interaction Parts *

Java Experience is shown in the right of Fig. 5 by the four lines all having different slope (no 6-part names were used in the
study). Comparing the two graphs in Fig. 5, the greater detail provided when using Parts is visually evident. Similar to the
Lengthmodel, Java Experience has a greater impact as the number of Parts increases (appearing as lines with greater slope).
Symmetrically, for those with low Java Experience, Parts has a greater impact.

Java Experience is potentially influenced by subject demographics. Thus, a third model was constructed by adding to the
priormodel the (remaining) demographic variables:Highest Degree, CS Schooling,Work Experience, Job Title,Age, and Sex.
This allows the model to determine if more general background or computer science experience plays a role in Correctness.



D. Binkley et al. / Science of Computer Programming 74 (2009) 430–445 439

Fig. 5. Interactions between Length and Java Experience and between Parts and Java Experience.

The final model includes Java Experience, Ties, Parts, and Parts * Java Experience, just as before, with the same p-values and
interpretation. This means that the effects measured in the study are not influenced by the additional demographic factors.
In summary, the interactions Length * Java Experience and Parts * Java Experience provide statistical evidence to reject

the null hypothesis of Hypothesis 5c, and conclude that Java Experience’s value increases with Length. It is not possible to
reject the other two null hypotheses. In short, Ties appears to be of uniform value to all participants. Here it is important
to understand that although one might expect a positive correlation would exist between Java Experience and Ties, this
is not supported by the data. In this case the result is likely an artifact of the study design. As can be seen in Fig. 2, the
questions having Ties involve commonmethods from the Java library. Thus for these questions all participants had sufficient
Java Experience to gain benefit from Ties. To fully test the validity of this observation would require the design of a new
study that included parts (identifiers) expected to be known only by programmers who have attained a certain level of
Java Experience. It is possible, given the data collected, to check if the interaction between Length and Java Experience is
masking an interaction between Ties and Java Experience. This is done by simply omitting Length * Java Experience from the
initial model and re-running the analysis. Doing so, the final model includes only Java Experience and Ties. Being devoid of
interactions supports the observation above that Ties brings the same benefit to all subjects and is not having an interaction
masked by Length * Java Experience.

5.6. Implication of main study results

This section summarizes the results of the study and relates the results to program comprehension during maintenance
and evolution and during initial code construction. In particular, program comprehension activities include inspection,
maintenance, and extension of existing software systems. The next section considers several additional questions that were
not addressed in the main hypotheses.
In summary, thenumber of syllables in an identifier greatly influences the time required for a programmer to comprehend

source code and, to a lesser extent, the correctness with which a programmer can recall a particular part (identifier). More
commonly used identifiers, by having increased ties to persistent memory, and greater experience programming in Java
improve recall correctness. Furthermore, as the length of a name increases, Java experience has a greater influence on
the performance of a programmer. Finally, no demographic information apart from experience with Java was found to be
significant.
Combined, these results reinforce past proposals advocating the use of limited, consistent, and systematic vocabulary

in identifier names [1,3,6,9,15]. From Hypotheses 1 and 2, ‘excess’ length negatively impacts time and recall correctness.
Furthermore, care in choosing a consistent vocabulary, and refraining from needlessly adding to the vocabulary, is
emphasized by the support for Hypotheses 3 and 4. Together, good naming principles limit length and reduce the need
for specialized vocabulary. Finally, the support for Hypotheses 1, 2 and 5c indicates that to a limited extent programmers
can be trained to handle length related issues; however, this inevitably consumes mental resources that might be better
spent on other activities.
The initial activity undertaken by an engineer when making a maintenance fix or enhancement to a program, is to

understand (at least the part of) the program beingmanipulated. This inevitably involves reading parts of the source code. It
is this aspect of program comprehension that is the study’s primary interest. In particular, following the adage time is money,
longer reading time for code translates directly into increased cost.
During initial code construction the primary source code reading activities include reading one’s own code and the

examination of third party libraries. The author of a code can expect to take advantage of ties to persistent memory, (unless
they choose particularly bad names). Thus, the author stands the best chance of benefiting fromwell-chosen names that are
not too long and include sufficient ties to persistent memory.
Finally, when using (unfamiliar) third-party library code, programmers can make use of an IDE’s auto-complete function

to learn the library code. However, auto-complete is not a substitute for good upfront library name design. For example,
accepting an auto-complete proposal can lead to using the wrong method. One implication of the study’s results is that this



440 D. Binkley et al. / Science of Computer Programming 74 (2009) 430–445

kind of mistake is more likely in the presence of longer names. Thus, the results serve to reinforce the push for concise and
consistent names [6]. Another downside to auto-complete is that it makes de facto abbreviations out of identifier prefixes.
Lacking planning, these are unlikely to be good abbreviations.

5.7. Further analysis

Although the main hypotheses were addressed in the discussion above, their consideration raises several additional
questions in addition to the five hypotheses. This section examines four such questions.

(1) What is the impact of Syllables Count when Parts is held constant?
Although the study did not hold Parts constant, the answer can be obtained using statistical techniques. In this case,
backward elimination produces models that estimate the effect of each variable while controlling for the other variables
in the model. For instance, in Section 5.1 the secondmodel includes both Parts and Syllable Count. In this newmodel where
Parts is held constant, it takes an average of 1.80 s longer for participants to process each additional syllable.

(2) What impact does Prefixing Parts (defined below) have on Correctness?
For many comprehension activities undertaken by programmers, the method being called is more important than its
arguments. To investigate the influence of the method name, an additional variable, Prefixing Parts, was computed. For
example, the name account.invoice.setScale(Decimal.ROUNDUP) has 5 parts, but only 3 Prefixing Parts. The analysis for all
Hypotheses involving Length were then re-run with Length and Prefixing Parts used in place of just Length. In all models
Prefixing Parts and interaction terms involving it dropped out. An explanation for this is that participants were told to study
the entire name and not just the prefix; programmers trying to get an initial understanding of the code often focus on
the method names and only later the actual parameters. Therefore, it is possible that in a more general compression task,
Prefixing Partswould prove significant.

(3) Is greater Time associated with increased Correctness?
The third question is motivated by the observation that verbal story tellers often do not exactly reproduce a story. This
is because it is sufficient to recall a general concept and then fill in words that were not recalled exactly. In light of this
observation, participants in this study who spent longer examining a name might develop a better understanding of the
name and thus be able to reconstruct it even if the exact missing part was not available in their short-term memory.
The data collected allows this effect to be tested. In particular, Correctness is not a simple boolean variable, but rather

was rated on a scale from 0 to 4. Informally, looking at the incorrect but close answers, it is possible that some were
reconstructions. To test for this possibility formally, a model predicting Correctness using Time as the sole explanatory
variable was constructed. In this model, Time is not statistically significant. To reinforce this result, the model was
reconstructed ignoring perfectly correct answers. In this case, Time might play a role for those participants who have to
perform reconstruction, but not those who could precisely recall the removed part. However, Time is not significant in this
model either. Finally, a complete backward elimination was performed including the other explanatory variables. Again
Time drops out of the model and is thus not statistically significant.
This result does not mean that a better understanding of when a programmer is reconstructing and when she is recalling

is uninteresting. Indeed it is quite plausible thatmore experienced programmers rely heavily on reconstruction. To correctly
test for this effect would require a study specifically designed to isolate the effects of recall and reconstruction. Such a study
is left to future work.

(4) Does the length of the removed portion of the name play a significant role in explaining Correctness?
In order to examine this question, additional models were constructed adding Syllables Removedwherever Syllable Count
appeared (including interactions) for hypotheses concerning Correctness. A model for Hypothesis 1, which concerns Time
spent on Screen 1, was not constructed because Syllables Removed, which is unknown during the reading of Screen 1 cannot
logically effect Time. Although Syllables Removedwas not controlled in the design of the study, these lengths for the shorter
and longer names are very similar. A total of 14 syllables were removed from the short questions and a total of 12 from the
long questions. As seen earlier in this section, larger values of Syllable Countweremore likely to overload participant short-
term memory. The impact of Syllables Removed would be expected to come from longer removed words being hard to
reconstruct. Thus, both variables potentially play a role in the new models.
The implications of these changes on each Correctness hypothesis are now separately considered. For Hypothesis 2,

starting with Syllable Count, Parts, and Syllables Removed, all three are present in the final model. Including Syllables
Removed improves the model for Hypothesis 2 dramatically (AIC decreases from 1890.1 to 1848.6). In the final model
Correctness decreases by 0.1016with each additional syllable (p < 0.0001) and by 0.1562with each syllable in the removed
part (p < 0.0001), but again increases, now by 0.3251, for each additional part (p < 0.0001). The interpretation of the signs
of the coefficients is the same with Parts dampening an over-approximation obtained using Syllable Count and, in this case,
Syllables Removed.
Thus, the new model for Hypothesis 2 is better. All variables have higher significance, and AIC is smaller. This

improvement indicates that the original model was missing important factors. In this case, after accounting for Syllables
Removed, both other variables become more statistically significant as well as have larger (absolute) values.



D. Binkley et al. / Science of Computer Programming 74 (2009) 430–445 441

The models for Hypotheses 3 and 4 do not involve Length and are thus unchanged. For Hypothesis 5, the new model
starts with the variables Parts, Ties, Java Experience, Syllables Removed, Syllable Count, and all pair-wise interactions.
Unfortunately, the design of the original study does not provide sufficient data to estimate all of the interactions
simultaneously. Thus interactions must be prioritized. In this case those that related to the Hypothesis (e.g., Ties * Syllables
Removed) are preferred over others (e.g., Parts * Syllables Removed, which involve two lengthmeasures). The largest initial
model that was feasible to run started with the interactions Syllable Removed * Java Experience, Syllable Removed * Ties,
Syllable Removed * Parts, Syllable Removed * Syllable Count, Parts * Java Experience, Syllable Count * Java Experience, and
Ties * Java Experience. Separately testing the significance of the remaining three interactions Parts * Ties and Parts * Syllable
Count are far from being significant, while Syllable Count * Ties, with a p value of 0.0466, is just barely significant. All three
are therefore assumed to not be significant. The final model includes the three interactions Syllable Removed * Ties, Syllable
Removed * Syllable Count, and Syllable Count * Java Experience. As with the models from Section 5.5 there is support for
Hypothesis 5c. This time from the interaction Syllable Count and Java Experience rather than the interaction between Parts
and Java Experience. Nonetheless, both models include support for the interaction between some measure of length and
Java Experience. In addition, the new model shows support for Hypothesis 5a in the interaction Syllables Removed * Ties.
As with the other new model, this model is a far better model (AIC drops from 1880.2 to 1835.1, a considerable drop). This
is perhaps unsurprising because it has more statistically significant terms. It is this improvement in descriptive capability
of the model obtained by incorporating Syllables Removed that allows the interactions with Ties to participate in the final
revised model.

5.8. Threats to validity

There are four threats relevant to this research: external validity, internal validity, construct validity, and statistical
conclusion validity. External validity, sometimes referred to as selection validity, is the degree to which the findings can
be generalized to other (external) settings. In this experiment, selection bias is possible in the selected names; thus, results
from the experiment may not be applicable to other source code. Careful selection of code from a large code base mitigates
the impact of any such bias. It is also possible that taking the code out of context changes the recall process and thus the
results when reading code in context would differ. Inclusion of the memory clearing step was added to simulate the subject
looking at related code. Finally, selection bias is also possible in the selection of participants, which is clearly a convenience
sample. However, the demographic variables were not statistically significant, which indicates the absence of a problem
related to the subject sampling.
Second, there exist several threats to internal validity, the degree to which conclusions can be drawn about the causal

effect of the explanatory variable on the response variables. First, statistical associations do not imply causation; though,
given the experimental setup, one should be able to infer that differences in performance are due to the explanatory variables
considered. Second, learning effects occur when subjects believe that they have detected a pattern in the problems and
attempt to exploit it to improve their performance on later problems. Questions were shown using a random order to avoid
any systematic learning bias. Furthermore, the independence of the questions reduces the ability of subject to learn from
past problems. Finally, some threats to internal validity are not easily controlled during an internet study. For example,
there is no good way to prevent subjects from taking notes nor is it easy to determine their level of motivation. Subjects
being volunteers and not receiving any reward (in particular any performance-based reward) shouldminimize these threats.
Other potential threats to internal validity, for example, history effects, attrition, and subject maturation [2] are non-issues
given the short duration of the experiment.
Construct validity assesses the degree to which the variables used in the study accurately measure the concepts they

purport to measure. Most of the study variables (e.g., Length and Age) can be measured precisely. This threat is only a
concern for the variables Ties and Parts. For Ties the authors assessment of which parts are tied to persistent memorymight
differ form those with actual Ties. The web hits reported in Section 3.1 provide a measure of unbiased confirmation that
the parts assumed to have ties to persistent memory were more common and thus more likely to have such ties. Partsmay
represent an over estimate because of chunking (e.g., Math.min may be processed as a single chunk rather than two parts.
Chunking is a common trick used by the brain to extend limited short termmemory resources. Finally, a threat to statistical
conclusion validity arises when inappropriate statistical tests are used or when violations of statistical assumptions occur.
The models applied are appropriate for analyzing unbalanced, repeated-measures data, so that the conclusions drawn from
the statistics should be valid.

6. Related work

Relatedwork comes on two ‘sides’ of this study: at a ‘lower’ level there is research onhumanmemory and cognition and at
a ‘higher’ level there is research on the impact of naming on programmer comprehension. To beginwith, New et al. study the
impact of word length on lexical decision latencies [14]. The study considered words that range from 3 letters to 13 letters,
which, unlike its predecessors, represents the entire range of normally encountered English word lengths. They found that
the number of syllables, letters, and, orthographic neighbors, eachmade significant independent contribution toward lexical
decision latencies. For example, each syllable added 20 ms to the time needed to recognize a word. In comparison, subjects



442 D. Binkley et al. / Science of Computer Programming 74 (2009) 430–445

in this study were not simply reading, but studying code; thus, it is unsurprising that each syllable added 1.65 s (1650 ms)
to the study time.
In terms of letters, the analysis revealed an unexpected U-shaped curve — decision latencies were greater for short and

longwords:word lengthwas facilitatory from3–5 letters, null from5–8 letters, and inhibitory from8–13 letters. This pattern
existed even within the 12,987 bisyllabic words; thus, the U-shaped curve is not a confound of the number of syllables. In
fact, the inhibitory effect of number of letters is robust in that it is not a confound of any other lexical factors. The U-shaped
result potentially explains the mixed results of past studies (twelve summarized studies find length to be either inhibitory
or null in effect) probably because these studies used restricted length ranges.
One explanation offered for this phenomenon is that the reading of words with a length of 6–9 letters has the highest

chance of being done in a single fixation. Shorter words are often skipped and longer words must be re-fixated as letters are
more difficult to perceive the farther they are from the fixation point. In addition, parallel word processing is observed only
in a small region of the visual field, with highly skilled readers, and with a familiar font.
In terms of lexical decision latencies, most Java names are quite long because camelCasing provides insufficient

separation (e.g., the identifier equalsIgnoreCase is read as a single sixteen letterword). Thus, they arewell into the inhibitory
range in terms of decision latency. This result underlies the study presented herein. It provides a general understanding of
human lexical processing.
New et al. conclude that ‘‘the relationship between word length and lexical decision times is less straightforward than

has been assumed’’. The models presented in Section 5 indicate that reading of source code by programmers is also less
straightforward than might be assumed.
The second related experiment considers the consequences of limited short-term memory capacity on subjects’

performance comprehending short artificial code sequences [7]. This study provides results regarding the impact that
different character sequences have on the cognitive resources required during program comprehension. Two identifier
attributes were studied: the amount of short-termmemory required to hold an identifier’s spoken form (i.e., the number of
syllables) and pre-existence (i.e., ties to persistent memory). Thus, identifiers belonged to one of four possible sets: a single
character whose spoken form contained a single syllable (short, no ties), an English word whose spoken form contained one
syllable (short, ties), three characters not forming a word whose spoken form contained three syllables (long, no ties), and
a word whose spoken form contained three syllables (long, ties).
This study found that processing character sequences is effected by the kind of sequence. In terms of correct answers,

one syllable words received the most correct answers. This corresponds to short names with ties to persistent memory.
The worst results were for three unrelated letters, which corresponds to long names with no ties to persistent memory and
provides evidence of the crowding effect. Thus frequently used character sequences (i.e., words) are recognized faster and
are more readily recalled than rare ones. In addition, many performance characteristics are slower andmore error prone for
non-words compared to words.
In comparison, the study laid out in Section 3, is less artificial in that the code came from production programs rather

than being constructed to satisfy initial experimental conditions. In exchange, the experimental conditions are not as tightly
controlled. For example, the number of syllables for long names varied from19 to 21. Thismakes the results harder to analyze
and interpret, but places the result closer to the experience of programmers.
The third study considers thework of Liblit et al., which aims to relate standard programming practice tomodern theories

of human language and cognition [11]. The authors find that ‘‘programmers use names in regular, systematic ways that
reflect deep cognitive and linguistic influences. This allows names to carry [natural language] semantic cues that aid in
programunderstanding and support software development. However, overuse of abbreviations can lead to a preponderance
of unique symbols programmers must decipher [8], which may lead to inhibited understanding [11].
Liblit et al. observe, but do not study, that ‘‘if names are informative, then longer names, withmore embedded sub-words,

should be more informative. Yet there are practical limits to the lengths of names, just as there are practical limits to the
lengths of words in natural language. Longer namesmay bemore informative, but they are also more cumbersome to read’’.
As an example, they present the two snippets shown in Fig. 6 that each calculate Euclidean distance. In one, identifiers
have names such as distance_between_abscissae and first_ordinate, and in the other, identifiers have the more traditional
names such as dx and y1. Of the two, Snippet 1 has the longer more informative identifiers. In contrast, their lengths require
multiple fixations and more quickly overcrowd short-term memory; thus, requiring re-fixating and greater concentration.
For a reader familiar with the abbreviations used in Snippet 2, its shorter names are easier to process as it requires less effort.
However, imagine reading Snippet 2 without previously knowing the Euclidean distance formula. Most programmers can
recall this kind of situation in which a fragment of code was meaningless until the semantics of the names became known.
Liblit et al. conclude that terse and abbreviated names enhance readability at the expense of expressiveness. The results

from Section 5 dampen the expressiveness advantage by studying the memory demand of longer names. Similar to lexical
decision latency studied by New et al., this suggests a U-shaped comprehension result in which names that are too short
inhibit comprehension by failing to be sufficiently expressive, while those that are too long inhibit comprehension by
overtaxing programmer short-term memory; thus, the results from Section 5 combined with those of Liblit et al. extend
the results of New et al. to software.
Other researchers have studied naming’s impact on comprehension at a higher level. For example, Takang et al. investigate

the hypothesis that programswith full-word identifiers are more understandable than those with abbreviations [16]. While



D. Binkley et al. / Science of Computer Programming 74 (2009) 430–445 443

Fig. 6. Comparison of informative versus easy-to-read names.

a surprise to the authors, this hypothesis is not supported by the quantitative data collected. The study from Section 5 may
shed some light on this unexpected result as the longer names may have overcrowded subject’s short-term memory.
The work of Deissenböck and Pizka is also of interest as it presents a formal model based on bijective mappings between

concepts and names for adequate identifier naming [6]. The model is based on the observation that ‘‘research on the
cognitive processes of language and text understanding shows that it is the semantics inherent to words that determine the
comprehension process’’. It includes rules for the correct and concise naming of identifiers. The core idea is thatwithin a given
program a concept should always be referred to by the same name. Their goal is that names contain enough information for
an engineer to comprehend the precise concept involved without too large a strain on short-term memory.
The challenge that the results from Section 5 raise for keeping a one-to-one relationship between names and concepts

comes from the need to differentiate concepts normally leading to longer names. For example, a program with a single
position concept (e.g., absolute positions) might use the variable position. If later evolution of the code requires the concept
of relative positions, then the names need to differentiate these two. In this case relativePossitions and absolutePossitions
are sufficient. However, this is not a sustainable pattern. For example, the program eMule includes the method name
GetFileTypeDisplayStrFromED2KFileType. The length of this name highlights an attempt to capture a concise concept.
However, this was clearly done at the cost of readability making it an awkward choice.
Next, Laitinen studied the impact of Natural Naming by introducing a method for estimating the understandability

of source code [8]. The core idea of this work is that every program has its own unique language made up of the
technical and textual symbols found in the program. Programs contain symbols that cannot be considered to belong to
the programming language. For example, consider a C function named ‘‘ispdrome’’. The symbol ‘‘ispdrome’’ does not belong
to the C programming language (it is not mentioned in the C standard). Neither can we say that the symbol ‘‘‘ispdrome’’
belongs to some natural language (it is not in the English dictionary). Source that avoids unnecessary symbols is considered
better.
Laitinen treats languages as sets of symbols and defines the understandability of a program as proportional to how

understandable the language it contains is. This is inversely proportional to how complex the language is. Two rules are
defined to estimate the understandability of a language [8].

• Rule I: Smaller languages are usually easier to understand than larger languages: the number of symbols in a language
affects its understandability.
• Rule II: It is easier to understand closely related languages thanmore distantly related languages. Thus, a personwho has
mastered, for example, Italian would find French easier to understand than Mandarin.

The key result of a study of four programs showed that programs using abbreviations have larger languages that grow
faster as the program matures. Laitinen concludes that not allowing unnecessary symbols to enter the language (e.g.,
abbreviations) can improve the programming process by controlling linguistic complexity during software development.
He thus advocates avoiding abbreviations or other unnecessary symbols and thus controlling the linguistic process during
software development.

7. Future work

This paper reports on an experiment using single lines of production code. It thus builds on similar past experiments,
most notably that of Jones [7] who use artificial code and Lawrie et al [9,10] who artificially manipulated the identifiers
in production code. The next step in this direct line will use the experience obtained from conducting this experiment
to consider increasingly realistic environments. While considerably more complex to set up and administer, the next
experiment will consider larger syntactic units (e.g., individual methods) extracted from production code.
To help plan such a study, a prototype was recently conducted using an applet over the internet. It involved 89

participants. While a smaller group, the demographic breakdown of the 89 is essentially the same as the study reported
on in this paper.
The task involved debugging one of three versions of a function. The versions differ only in the length of their identifiers:

short (abbreviated), full word, and phrase (artificially long identifiers). The full-word variant is shown in Fig. 7 from which
the level of complexity in the task can be gauged. This preliminary version required the creation of two alternate versions



444 D. Binkley et al. / Science of Computer Programming 74 (2009) 430–445

Fig. 7. An example problem from the pilot function debugging study. Participants were shown one of three version of the code: one using abbreviations,
one using full words (shown here), and one using elongated phrases. In this example the assignment in the for loop should read newBalance +=
(newBalance*appliedInterestRate).

Fig. 8. Data from debugging experiment.

of each function. This allows control on the complexity and the differences between the versions and focuses the difference
on the identifiers.
Fig. 8 summarizes data collected from the preliminary study. Here the y-axis shows time in seconds on the debugging

exercise and the x-axis shows the three variants. Each line represents a level of subject experience from 1 (low) to 5 (high).
Two trends are evident from the graph.
First, from words to artificially long phrases all five different experience levels show an increase in time taken; thus,

reinforcing the notion that, at least when debugging, names can be too long. It is interesting to note that the impact is
less pronounced for the least experienced (the slope of the top line is lower). Further study is needed to understand this
affect. The second, and far more interesting, observation comes from the trend between the abbreviated names and those
constructed from full words. Here there appears to be an interaction between length and experience with length aiding
experienced programmers (experience levels 3, 4, and 5 shows a reduction in time taken to perform the debugging task).
However, increased length hurt inexperienced programmers. Further study of this affect is warranted.
Presentation anddiscussion of the study fromSection 5has often led to a discussion concerning the impact of camelCasing

on program comprehension. Thus a followup study comparing the comprehension correctness and speed using camelCasing
(asInJava) and underscores (as_in_C) is planned. Researchers who study the reading of natural language, observe that
identifiers constructed using camelCasing would be read as one long word, but the use of underscores would be read



D. Binkley et al. / Science of Computer Programming 74 (2009) 430–445 445

more quickly as two words (e.g., compare polarPoint with polar_point). This raises the question: will this hold true for
programmers or can programmers be trained to read camelCasing as quickly as multiple words?
Finally, persistent memory has two dominant modes: spatial and sequential. Spatial recall is limited to approximately

7 entities; thus, for example, limiting the size and complexity of useful UML diagrams. In contrast, much larger (longer)
material can be stored in sequential memory (e.g., the words or notes of a song or blocks of source code). Finding an
appropriate mix of these two and exploiting it in comprehension activities represent more distant future research.

8. Summary

The study described in this paper shows that names used in existing production code are long enough to crowd
programmer’s short-term memory. This provides evidence that software engineers need to consider shorter, more concise
names [6]. As the study considers individual names extracted from production code, it tends to underestimate the demand
onmemory because there is no need to remember context as well. At a minimum this study shows that results from general
reading comprehension apply to programmers reading code. More generally, the study extends prior results [7] from a
highly controlled setting to a less controlled setting that, by using production code, more accurately reflects programmer
behavior.

Acknowledgments

Special thanks go to all the participants as this work would not have been possible without their help. Thanks are also
due to John Blair and Matt Hearn for their help in setting up the survey and to Mary Jo Coiro for help with aspects related
to memory and comprehension. Finally, we thank the anonymous reviewers for their careful reading of the experiment
and suggestions for improvements to this paper and for related experiments to be considered. Also we thank the ICPC
participants for their conversation, suggestions, and suggested clarifications. This work is supported by NSF grant CCR-
0305330.

References

[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, E.Merlo, Recovering traceability links between code and documentation, IEEE Transactions on Software
Engineering 28 (10) (2002).

[2] D. Sjøberg, J. Hannay, O. Hansen, V. Kampenes, A. Karahasanovic, N. Liborg, A. Rekdal, A survey of controlled experiments in software engineering,
IEEE Transactions on Software Engineering 19 (4) (1993).

[3] B. Caprile, P. Tonella, Restructuring program identifier names, in: ICSM, 2000.
[4] The Psychological Corporation, WAIS-III WMS-III Technical Manual, Harcourt Bract and company, 1997.
[5] N. Cowan, The magical number 4 in short-term memory: A reconsideration of mental storage capacity, Behavioral and Brain Sciences 24 (1) (2001).
[6] F. Deißenböck, M. Pizka, Concise and consistent naming, in: Proceedings of the 13th InternationalWorkshop on Program Comprehension, IWPC 2005,
St. Louis, MO, USA, May 2005.

[7] D. Jones, Memory for a short sequence of assignment statements. C Vu, 16 (6) (2004).
[8] Kari Laitinen, Estimating understandability of software documents, SIGSOFT Software Engineering Notes 21 (4) (1996).
[9] D. Lawrie, C. Morrell, H. Feild, D. Binkley, What’s in a name? A study of identifiers, in: 14th International Conference on Program Comprehension,
2006.

[10] D. Lawrie, C. Morrell, H. Feild, D. Binkley, Effective identifier names for comprehension and memory, NASA Journal of Innovations in Systems and
Software Engineering 3 (4) (2007).

[11] B. Liblit, A. Begel, E. Sweetser, Cognitive perspectives on the role of naming in computer programs, in: 8th Annual Psychology of Programming
Workshop, Brighton, UK, September 2006.

[12] C. Morrell, J. Pearson, L. Brant, Linear transformation of linear mixed effects models, The American Statistician 51 (1997).
[13] J.S. Nevid, Psychology Concepts and Applications, Houghton Mifflin Company, Boston, MA, 2003.
[14] B. New, L. Ferrand, C. Pallier, M. Brysbaert, Reexamining the word length effect in visual word recognition: New evidence from the English Lexicon

Project, Psychonomic Bulletin & Review 13 (1) (2006).
[15] J. Rilling, T. Klemola, Identifying comprehension bottlenecks using program slicing and cognitive complexity metrics, in: Proceedings of the 11th IEEE

International Workshop on Program Comprehension, Portland, Oregon, USA, May 2003.
[16] A. Takang, P. Grubb, R. Macredie, The effects of comments and identifier names on program comprehensibility: An experiential study, Journal of

Program Languages 4 (3) (1996).
[17] G. Verbeke, G. Molenberghs, Linear Mixed Models for Longitudinal Data, second ed., Springer-Verlag, New York, 2001.


	Identifier length and limited programmer memory
	Introduction
	Background
	Experimental design
	Source code selection
	Experimental layout
	Variables
	Data preparation

	Experimental hypotheses
	Experimental results
	Hypothesis 1 -- Length increases study time
	Hypothesis 2 -- Length reduces correctness
	Hypothesis 3 -- Memory ties improve correctness
	Hypothesis 4 -- Experience improves correctness
	Hypothesis 5 -- The effect on correctness of ties to persistent memory, length, and experience are interdependent
	Implication of main study results
	Further analysis
	Threats to validity

	Related work
	Future work
	Summary
	Acknowledgments
	References


