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Abstract

In this paper, we consider the Cauchy problem for the incompressible Navier–Stokes

equations with bounded initial data and derive a priori estimates of the maximum norm of all

derivatives of the solution in terms of the maximum norm of the initial velocity field. For

illustrative purposes, we first derive corresponding a priori estimates for certain parabolic

systems. Because of the pressure term, the case of the Navier–Stokes equations is more

difficult, however.
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1. Introduction

In this paper, we consider the Cauchy problem for the 3D incompressible Navier–
Stokes equations

ut þ u � ru þrp ¼ Du; r � u ¼ 0; ð1:1Þ

with initial condition

uðx; 0Þ ¼ f ðxÞ; xAR3: ð1:2Þ
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We will assume that

fALN; r � f ¼ 0: ð1:3Þ

Here r � f ¼ 0 holds in the sense of distributions.
If instead of fALN one assumes fALq for some q with 3pqoN; then it is well

known that there is a unique strong solution in some maximal time interval
0ptoTð f Þ where 0oTð f ÞpN: (The pressure is unique if one requires pðx; tÞ-0
as jxj-N:) See, for example, [5,8] for the case q ¼ 3 and [1] for 3oqoN: The
solution is CN for 0otoTð f Þ:

If fALN then existence of a regular solution follows from [2]. The solution is only
unique if one puts some growth restrictions on the pressure as jxj-N: A simple
example of non-uniqueness where u is bounded and jpðx; tÞjpCjxj is given in [6]. On

the other hand, an estimate jpðx; tÞjpCð1þ jxjsÞ with so1 (see [3]) or the

assumption pAL1
locð0;T ;BMOÞ (announced in [4]) imply uniqueness. For complete-

ness, we briefly outline the construction of a regular solution, with bounded initial
data, in an appendix.

Our main interest in this paper is to prove a priori estimates of the maximum norm
of the derivatives of u in terms of the maximum norm of the initial function,
uðx; 0Þ ¼ f ðxÞ; assuming the solution to exist and to be CN for 0otoTð f Þ:

For illustration we also consider parabolic systems

ut ¼ Du þ DigðuÞ; xARN ; tX0 ð1:4Þ

with initial condition

uðx; 0Þ ¼ f ðxÞ where fALN: ð1:5Þ

Here uðx; tÞ takes values in Rn;

Di ¼ @=@xi

and g : Rn-Rn is assumed to be quadratic in u: The maximal interval of existence is
again 0ptoTð f Þ: We will prove estimates of the maximum norm of the derivatives
of the solution in terms of the maximum norm of the initial data, which we denote by

j f j
N

¼ sup
x

j f ðxÞj with j f ðxÞj2 ¼
X

f 2
i ðxÞ:

To formulate the result, let

Da ¼ Da1
1 yDaN

N for a ¼ ða1;y; aNÞ

and jaj ¼
P

ai: For any j ¼ 0; 1;y; we set

jDjuðtÞj
N

¼ jDjuð�; tÞj
N

¼ max
jaj¼j

jDauð�; tÞj
N
;

i.e., jDjuðtÞj
N

measures all space derivatives of order j in maximum norm.
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Theorem 1.1. Under the above assumptions on f and g the solution of (1.4), (1.5)
satisfies the following:

(a) There is a constant c040 with

Tð f Þ4 c0

j f j2
N

ð1:6Þ

and

juð�; tÞj
N
p2j f j

N
for 0ptp

c0

j f j2
N

: ð1:7Þ

(b) For every j ¼ 1; 2;y; there is a constant Kj40 with

tj=2jDjuð�; tÞj
N
pKjj f j

N
for 0otp

c0

j f j2
N

: ð1:8Þ

The constants c0 and Kj are independent of t and f.

After recalling some elementary estimates for the solution of the heat equation in
Section 2, Theorem 1.1 will be shown in Section 3. Then we prove the analogous
result for the solution of the Navier–Stokes equations in Section 4. Because of the
non-local nature of the pressure, the proof is more complicated, however.

As we will also discuss in Section 4, estimate (1.8) implies that jDjuj
N

can be

bounded in terms of jujjþ1
N

; which is consistent with the scale invariance of the

Navier–Stokes equations. It does not seem to be known under what assumptions a

converse bound of jujjþ1
N

in terms of jDjuj
N

can be established.

2. Auxiliary results for the heat equation

Let fALNðRNÞ: The solution of

ut ¼ Du; u ¼ f at t ¼ 0; ð2:1Þ

is denoted by

uð�; tÞ ¼ uðtÞ ¼ eDtf :

It is well-known that

jeDtf j
N
pj f j

N
; tX0 ð2:2Þ
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and

jDjeDtf j
N
pCjt


j=2j f j
N
; t40; j ¼ 1; 2;y ð2:3Þ

Here, and in the following, C;Cj; c; etc. denote positive constants that are

independent of t and f :

If FALNðRN � ½0;T Þ then the solution of

ut ¼ Du þ Fðx; tÞ; u ¼ 0 at t ¼ 0; ð2:4Þ

can be written as

uðtÞ ¼
Z t

0

eDðt
sÞFðsÞ ds:

One obtains

juðtÞj
N
p

Z t

0

jFðsÞj
N

ds

¼
Z t

0

s
1=2s1=2jFðsÞj
N

ds

p 2t1=2 max
0pspt

fs1=2jFðsÞj
N
g: ð2:5Þ

To estimate the solution of the equation

ut ¼ Du þ DiFðx; tÞ; u ¼ 0 at t ¼ 0;

we note that Di commutes with the heat semi-group. Using (2.3) with j ¼ 1 we have

juðtÞj
N
pC

Z t

0

ðt 
 sÞ
1=2jFðsÞj
N

ds

¼
Z t

0

ðt 
 sÞ
1=2
s
1=2s1=2jFðsÞj

N
ds

pC max
0pspt

fs1=2jFðsÞj
N
g: ð2:6Þ

3. Estimates for parabolic systems: proof of Theorem 1.1

In this section we consider the system ut ¼ Du þ DigðuÞ with initial condition
u ¼ f at t ¼ 0 where fALN: It is well-known that the solution is CN in a maximal
interval 0otoTð f Þ where 0oTð f ÞpN: We set

Fðx; tÞ ¼ gðuðx; tÞÞ for xARN ; 0ptoTð f Þ
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and consider u as the solution of the inhomogeneous heat equation ut ¼ Du þ DiF :
Recall the assumption that gðuÞ is quadratic in u: Therefore, there is a constant
Cg40 with

jgðuÞjpCgjuj2; jguðuÞjpCgjuj for all uARn: ð3:1Þ

All second u–derivatives of g are constant.
We first estimate the maximum norm of u:

Lemma 3.1. Let Cg denote the constant in (3.1) and let C denote the constant in (2.6);

set c0 ¼ 1
16C2 C2

g
: Then we have Tð f Þ4c0=j f j2

N
and

juðtÞj
N
o2j f j

N
for 0pto

c0

j f j2
N

: ð3:2Þ

Proof. If estimate (3.2) does not hold, then denote by t0 the smallest time with

juðt0ÞjN ¼ 2j f j
N
: By assumption, t0oc0=j f j2

N
: Using (3.1) we have

jFðsÞj
N
pCgjuðsÞj2N: Therefore, by (2.2) and (2.6),

2j f j
N

¼ juðt0ÞjN

p j f j
N

þ CCgt
1=2
0 max

0pspt0
juðsÞj2

N

¼ j f j
N

þ CCgt
1=2
0 4j f j2

N
:

This yields

1p4CCgt
1=2
0 j f j

N
;

thus t0X1=ð16C2C2
g j f j2

N
Þ ¼ c0=j f j2

N
: This contradiction implies that (3.2) holds.

The estimate Tð f Þ4c0=j f j2
N

is valid since lim supt-Tð f Þ juðtÞjN ¼ N if Tð f Þ is

finite. &

We now prove estimate (1.8) by induction in j: Let jX1 and assume

tk=2jDkuðtÞj
N
pKkj f j

N
for 0ptp

c0

j f j2
N

and 0pkpj 
 1: ð3:3Þ

Here c0 is the constant defined in the previous lemma.

It will be convenient to denote any space derivative Da ¼ Da1
1 yDaN

N simply by Dl

if jaj ¼ l: Apply Dj to the equation ut ¼ Du þ DigðuÞ to obtain

vt ¼Dv þ Djþ1gðuÞ; v :¼ Dju;

vðtÞ ¼DjeDtf þ
Z t

0

eDðt
sÞDjþ1gðuðsÞÞ ds:

ARTICLE IN PRESS
H.-O. Kreiss, J. Lorenz / J. Differential Equations 203 (2004) 216–231220



Using (2.3) we have

t j=2jvðtÞj
N
pCj f j

N
þ t j=2

Z t

0

eDðt
sÞDjþ1gðuðsÞÞ ds

����
����
N

: ð3:4Þ

Split the integral into Z t=2

0

þ
Z t

t=2

¼: I1ðtÞ þ I2ðtÞ

and obtain

jI1ðtÞjN ¼
Z t=2

0

Djþ1eDðt
sÞgðuðsÞÞ ds

�����
�����
N

pCj f j2
N

Z t=2

0

ðt 
 sÞ
ðjþ1Þ=2
ds

pCj f j2
N

tð1
jÞ=2:

When estimating I2ðtÞ; only one derivative is moved from Djþ1gðuÞ to the heat semi-
group. (If one moves two or more derivatives, then the singularity at s ¼ t becomes
non-integrable.) We have

jI2ðtÞjN ¼
Z t

t=2

DeDðt
sÞDjgðuðsÞÞ ds

�����
�����
N

pC

Z t

t=2

ðt 
 sÞ
1=2jDjgðuðsÞÞj
N

ds: ð3:5Þ

Recall that gðuÞ is quadratic in u: Therefore,

jDjgðuÞj
N
pCjuj

N
jDjuj

N
þ C

Xj
1

k¼1

jDkuj
N
jDj
kuj

N
:

By the induction hypothesis (3.3), the above sum is bounded by Cs
j=2j f j2
N
: Thus the

corresponding part of the integral in (3.5) is bounded by

Cj f j2
N

Z t

t=2

ðt 
 sÞ
1=2
s
j=2 dspCj f j2

N
tð1
jÞ=2:

The remaining part of the integral in (3.5) is bounded byZ t

t=2

ðt 
 sÞ
1=2juðsÞj
N
jDjuðsÞj

N
dspCj f j

N

Z t

t=2

ðt 
 sÞ
1=2
s
j=2sj=2jDjuðsÞj

N
ds

pCj f j
N

tð1
jÞ=2 max
0pspt

fsj=2jDjuðsÞj
N
g:
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We use these bounds for the integral in (3.4) and recall the definition v ¼ Dju: Then,

maximizing the resulting estimate of tj=2jDjuðtÞj
N

over all derivatives Dj of order j

and setting

fðtÞ ¼ tj=2jDjuðtÞj
N
;

we have shown the estimate

fðtÞpCj f j
N

þ Ct1=2j f j2
N

þ Cj f j
N

t1=2 max
0pspt

fðsÞ for 0ptp
c0

j f j2
N

:

Since t1=2j f j
N
p

ffiffiffiffiffi
c0

p
the second term on the right-hand side of the above estimate is

bounded by Cj f j
N
: Therefore,

fðtÞpCjj f j
N

þ Cjj f j
N

t1=2 max
0pspt

fðsÞ for 0ptp
c0

j f j2
N

: ð3:6Þ

For the remainder of the proof, let the constant Cj be fixed so that the above estimate

holds. Set

cj ¼ min c0;
1

4C2
j

( )
:

We first claim that

fðtÞo2Cjj f j
N

for 0pto
cj

j f j2
N

:

Otherwise, let 0ot0ocj=j f j2
N

denote the smallest time with fðt0Þ ¼ 2Cjj f j
N
: Then

we obtain from (3.6),

2Cjj f j
N

¼ fðt0ÞpCjj f j
N

þ 2C2
j j f j2

N
t
1=2
0 ;

thus

1p2Cj j f j
N

t
1=2
0 ; i:e: t0X

cj

j f j2
N

:

This contradiction proves the estimate

tj=2jDjuðtÞj
N
p2Cjj f j

N
for 0ptp

cj

j f j2
N

: ð3:7Þ

If

Tj :¼
cj

j f j2
N

otp
c0

j f j2
N

¼: T0 ð3:8Þ
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then we start the corresponding estimate at t 
 Tj: By the previous lemma we have

juðt 
 TjÞjNp2j f j
N

and obtain

T
j=2
j jDjuðtÞj

N
p4Cj j f j

N
: ð3:9Þ

Finally, for any t with (3.8),

tj=2pT
j=2
0 ¼ c0

cj

� 	j=2

T
j=2
j ;

and (3.9) yields

tj=2jDjuðtÞj
N
p4Cj

c0

cj

� 	j=2

j f j
N
:

This completes the proof of Theorem 1.1. &

4. Estimates for the Navier–Stokes equations

We write the Navier–Stokes equations as

ut ¼ Du þ Q; r � u ¼ 0; u ¼ f at t ¼ 0;

with

Q ¼ 
rp 
 u � ru

¼ 
rp 

X

j

DjðujuÞ:

Here the pressure is determined by the Poisson equation


Dp ¼
X

i;j

DiDjðuiujÞ

¼
X

i;j

ðDiujÞðDjuiÞ:

Dropping the t–dependence in our notation, we have

pðxÞ ¼ 1

4p

X
i;j

Z
jx 
 yj
1

DiDjuiujðyÞ dy: ð4:1Þ

Remark. The Calderon–Zygmund theory of singular integrals guarantees that
pABMO; the space of functions with bounded mean oscillation. See, for example,
[7]. In general, peLN: For the global part, pgl; of p (see below), we will only need
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maximum norm estimates of derivatives. The BMO norm of p will not be used. See
the appendix for an elementary discussion of integral (4.1).

We decompose p into a local and a global part, p ¼ plc þ pgl; as follows: Choose a

CN cut-off function fðrÞ with

fðrÞ ¼ 1 for 0prp1; fðrÞ ¼ 0 for rX2:

Then, for d40; define

plcðxÞ ¼
1

4p

X
i;j

Z
jx 
 yj
1

DiDj fðd
1jx 
 yjÞuiðyÞujðyÞ

 �

dy: ð4:2Þ

The global part, pgl ¼ p 
 plc; is determined correspondingly with f replaced by

1
 f: It is clear that plcðxÞ depends only on the values uðyÞ for jx 
 yjo2d:
Correspondingly, pglðxÞ depends only on the values uðyÞ for jx 
 yj4d: The

decomposition p ¼ plc þ pgl depends on f and on d; which is suppressed in our

notation. Later we will choose d ¼
ffiffi
t

p
:

We first estimate the pressure in terms of u: The estimates are valid at each time t

where 0otoTð f Þ:

Lemma 4.1. There is a constant C40; independent of t; d; and f ; so that the following

holds:

jplcjNpCðjuj2
N

þ djuj
N
jDuj

N
Þ; ð4:3Þ

jDplcjNpCðd
1juj2
N

þ djDuj2
N
Þ; ð4:4Þ

jDpgljNpCd
1juj2
N
: ð4:5Þ

Proof. The argument of f;f0; etc. is always d
1jx 
 yj; which we suppress in our
notation. Integrating by parts in formula (4.2) for plc; we have

jplcðxÞjpC
X

i;j

Z
jx 
 yj
2jDiðfuiujÞj dy:

Clearly,

jDiðfuiujÞjpCðd
1juj2
N

þ juj
N
jDuj

N
Þ:
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(The constant C depends on the maximum norm of f and f0:) Since

Z
jx
yjp2d

jx 
 yj
2
dypCd

we obtain (4.3).
To estimate jDplcjN; we first apply Dk;x ¼ @=@xk under the integral sign in (4.2).

Note that

jDk;xjx 
 yj
1jpjx 
 yj
2

and

jDk;xfjpd
1jf0j
N
:

When estimating the term

T1 ¼
X

i;j

Z
jx 
 yj
2

DiDjðfuiujÞ dy

it is important to note that

X
DiDjðuiujÞ ¼

X
ðDiujÞðDjuiÞ;

i.e., 2nd derivatives of u are not needed to bound T1: One obtains

jT1jpCðd
1juj2
N

þ djDuj2
N
Þ:

The term

T2 ¼
X

i;j

Z
jx 
 yj
1

DiDjððDk;xfÞuiujÞÞ dy

is treated similarly, without integration by parts, and (4.4) follows.
To estimate jDpgljN; we write

pglðxÞ ¼
1

4p

X
i;j

Z
ðDiDjjx 
 yj
1Þð1
 fÞuiuj dy

and apply Dk;x under the integral sign. Using the estimates

Z
jx
yjXd

jx 
 yj
4
dypCd
1
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and, if f is differentiated,

Z
2dXjx
yjXd

jx 
 yj
3
dypC

bound (4.5) is obtained. &

Recall that

ut ¼ Du þ Q; Q ¼ 
rp 
 u � ru; u ¼ f at t ¼ 0:

We write Q ¼ Qlc þ Qgl with

Qlc ¼ 
rplc 

X

j

DjðujuÞ;

Qgl ¼ 
rpgl:

Using the estimates of the previous lemma and the heat equation estimates (2.2),
(2.5), and (2.6), we will prove the following.

Lemma 4.2. Set

VðtÞ ¼ juðtÞj
N

þ t1=2jDuðtÞj
N
; 0otoTð f Þ: ð4:6Þ

There is a constant C40; independent of t and f, so that

VðtÞpCj f j
N

þ Ct1=2 max
0pspt

V 2ðsÞ; 0otoTð f Þ: ð4:7Þ

Proof. Using the previous lemma with d ¼ t1=2; we have

jplcjN þ jujujNpCðjuj2
N

þ t1=2juj
N
jDuj

N
Þ; ð4:8Þ

jQlcjNpCðt
1=2juj2
N

þ t1=2jDuj2
N
Þ; ð4:9Þ

jQgljNpCt
1=2juj2
N
: ð4:10Þ
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Since ut ¼ Du þ Qlc þ Qgl and since Qlc is obtained by applying one space derivative

to the terms plc and uju; we obtain from (2.2), (4.8), (2.6), (4.10), (2.5),

juðtÞj
N
p j f j

N
þ C max

0pspt
ðs1=2juðsÞj2

N
þ sjuðsÞj

N
jDuðsÞj

N
Þ þ Ct1=2 max

0pspt
juðsÞj2

N

p j f j
N

þ Ct1=2 max
0pspt

ðjuðsÞj2
N

þ sjDuðsÞj2
N
Þ

p j f j
N

þ Ct1=2 max
0pspt

V 2ðsÞ:

For vðtÞ ¼ DkuðtÞ we have

vt ¼ Dv þ DkQ

with

jQj
N
pCðt
1=2juj2

N
þ t1=2jDuj2

N
Þ:

Therefore, by (2.3) with j ¼ 1 and by (2.6),

t1=2jvðtÞj
N
pCj f j

N
þ Ct1=2 max

0pspt
ðjuðsÞj2

N
þ sjDuðsÞj2

N
Þ

pCj f j
N

þ Ct1=2 max
0pspt

V 2ðsÞ

The lemma is proved. &

Lemma 4.2 allows us to estimate juðtÞj
N

and jDuðtÞj
N

in terms of j f j
N

in a small

time interval.

Lemma 4.3. Let C40 denote the constant in estimate (4.7) and set

c0 ¼
1

16C4
:

Then Tð f Þ4c0=j f j2
N

and

juðtÞj
N

þ t1=2jDuðtÞj
N
o2Cj f j

N
for 0pto

c0

j f j2
N

: ð4:11Þ

Proof. Recall the definition of VðtÞ in (4.6). If (4.11) does not hold, then denote by t0
the smallest time with Vðt0Þ ¼ 2Cj f j

N
: Using (4.7) we have

2Cj f j
N

¼Vðt0Þ

pCj f j
N

þ Ct
1=2
0 4C2j f j2

N
;
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thus

1p4C2t
1=2
0 j f j

N
;

thus t0Xc0=j f j2
N
: This contradiction proves (4.11), and Tð f Þ4c0=j f j2

N
follows. &

Lemma 4.3 proves bound (1.8) for the solution of the Navier–Stokes equations for
j ¼ 0 and 1. By an induction argument as in the proof of Theorem 1.1 one obtains
the following.

Theorem 4.1. Consider the Cauchy problem for the Navier–Stokes equations, (1.1) and

(1.2), where fALN; r � f ¼ 0: There is a constant c040 and for every j ¼ 0; 1;y;
there is a constant Kj so that

tj=2jDjuðtÞj
N
pKjj f j

N
for 0otp

c0

j f j2
N

: ð4:12Þ

The constants c0 and Kj are independent of t and f.

Remarks. We can apply estimate (4.12) for

c0

2j f j2
N

ptp
c0

j f j2
N

ð4:13Þ

and obtain

jDjuðtÞj
N
pCjj f jjþ1

N
ð4:14Þ

in interval (4.13). Starting the estimate at t0A½0;Tð f ÞÞ we have

jDjuðt0 þ tÞj
N
pCj juðt0Þjjþ1

N
ð4:15Þ

for

c0

2juðt0Þj2N
ptp

c0

juðt0Þj2N
: ð4:16Þ

Then, if t1 is fixed with

c0

2j f j2
N

pt1oTð f Þ;

we can maximize both sides of (4.15) over 0pt0pt1 and obtain

max jDjuðtÞj
N

:
c0

2j f j2
N

ptpt1 þ t

( )
pCj maxfjuðtÞjjþ1

N
: 0ptpt1g ð4:17Þ
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with

t ¼ c0

juðt1Þj2N
:

Estimate (4.17) says, essentially, that the maximum of the jth derivatives of u;

measured by jDjuj
N
; can be bounded in terms of jujjþ1

N
: Clearly, a time interval near

t ¼ 0 has to be excluded on the left-hand side of (4.17) for smoothing to become

effective. The positive value of t on the left-hand side of (4.17) shows that jujjþ1
N

controls jDjuj
N

for some time into the future.

As is well known, if u; p solve the Navier–Stokes equations and l40 is any scaling
parameter, then the functions ul; pl defined by

ulðx; tÞ ¼ luðlx; l2tÞ; plðx; tÞ ¼ l2pðlx; l2tÞ

also solve the Navier–Stokes equations. Clearly,

julðtÞjN ¼ ljuðl2tÞj
N
; jDjulðtÞjN ¼ ljþ1jDjuðl2tÞj

N
:

Therefore, jDjuj
N

and jujjþ1
N

both scale like ljþ1; which is, of course, consistent with

the estimate (4.17). We do not know under what assumptions jujjþ1
N

can conversely

be estimated in terms of jDjuj
N
:

Appendix. The Cauchy problem for the Navier–Stokes equations with bounded initial

data

First let fACN-LN;r � f ¼ 0: Define a sequence unðx; tÞ; pnðx; tÞ of CN

functions by


Dpnþ1 ¼
X

i;j

DiDjðun
i un

j Þ ðA:1Þ

unþ1
t ¼ Dunþ1 
 un � run 
rpnþ1; unþ1ðx; 0Þ ¼ f ðxÞ ðA:2Þ

with u0 � f : The Calderon–Zygmund theory of singular integrals can be used to
discuss the Poisson equation (A.1). An elementary approach is as follows:

If FðzÞ ¼ 1
4p jzj


1 and FijðzÞ ¼ DiDjFðzÞ then (A.1) yields, formally,

pnþ1ðxÞ ¼
XZ

Fijðx 
 yÞðun
i un

j ÞðyÞ dy; ðA:3Þ
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where the dependence on t is suppressed in our notation. Since

FijðzÞ ¼ jzj
3Fijðz0Þ; z0 ¼ z=jzj;

the integrals in (A.3) generally do not exist as Lebesgue integrals. However, the (non-
integrable) singularity of FijðzÞ at z ¼ 0 causes no problems since the functions un

i are

smooth and Z
jzj¼1

Fij dS ¼ 0:

Also, since jDFijðzÞjpCjzj
4; we have by the mean–value theorem

jFijðx 
 yÞ 
 FijðyÞjp
Cjxj
jyj4

for jyjX3jxj ðsayÞ;

and therefore the limits

pnþ1
ij ðxÞ :¼ lim

R-N

Z
jyjpR

ðFijðx 
 yÞ 
 FijðyÞÞðun
i un

j ÞðyÞ dy

can be shown to exist. The function

pnþ1ðxÞ ¼
X

pnþ1
ij ðxÞ

solves (A.1). As in Section 4, we can decompose pnþ1 into a local and a global part,

pnþ1 ¼ pnþ1
lc þ pnþ1

gl : In general, pnþ1
gl eLN; but this is not important since only

derivative estimates of pnþ1
gl are needed to derive estimates for unþ1; compare Lemma

4.1.
Proceeding as in Section 4, we obtain that

tj=2jDjunðtÞj
N
pKj j f j

N
for 0otp

c0

j f j2
N

; j ¼ 0; 1;y

Convergence of unðx; tÞ and its derivatives w.r.t. j � j
N

follows, as usual, by a Picard

contraction argument. As n-N; the global part of the pressure, pnþ1
gl ; converges in

maximum norm in any bounded set jxjpR; and one obtains a well-defined smooth

limit p of pnþ1 ¼ pnþ1
lc þ pnþ1

gl :

If fALN is not smooth, one can approximate f by CN functions f j in maximum

norm, j f 
 f jj
N
-0 as j-N: The f j are not uniformly smooth. However, the

existence interval for the initial functions f j can be chosen uniformly in j since it only

depends on j f jj
N
; which approaches j f j

N
: A simple limit argument, uj-u; pj-p;

yields a solution with initial data f :
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