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Abstract

In this paper, we consider the Cauchy problem for the incompressible Navier—Stokes
equations with bounded initial data and derive a priori estimates of the maximum norm of all
derivatives of the solution in terms of the maximum norm of the initial velocity field. For
illustrative purposes, we first derive corresponding a priori estimates for certain parabolic
systems. Because of the pressure term, the case of the Navier—Stokes equations is more
difficult, however.
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1. Introduction

In this paper, we consider the Cauchy problem for the 3D incompressible Navier—
Stokes equations

u+u-Vu+Vp=~Au, V-u=0, (1.1)
with initial condition

u(x,0) =f(x), xeR’. (1.2)
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We will assume that
fel”, V-f=0. (1.3)

Here V - f = 0 holds in the sense of distributions.

If instead of f'e L™ one assumes f € L? for some ¢ with 3<¢g< oo, then it is well
known that there is a unique strong solution in some maximal time interval
0<t<T(f) where 0<T(f)< 0. (The pressure is unique if one requires p(x,)—0
as |x|—> c0.) See, for example, [5,8] for the case ¢ =3 and [1] for 3<g< co. The
solution is C* for 0<t<T(f).

If f € L™ then existence of a regular solution follows from [2]. The solution is only
unique if one puts some growth restrictions on the pressure as |x|— co. A simple
example of non-uniqueness where u is bounded and |p(x, ¢)| < C|x| is given in [6]. On
the other hand, an estimate |p(x,#)|<C(1+ |x|”) with o<1 (see [3]) or the
assumption pe L] (0, T; BMO) (announced in [4]) imply uniqueness. For complete-
ness, we briefly outline the construction of a regular solution, with bounded initial
data, in an appendix.

Our main interest in this paper is to prove a priori estimates of the maximum norm
of the derivatives of u in terms of the maximum norm of the initial function,
u(x,0) = f(x), assuming the solution to exist and to be C* for 0<t<T(f).

For illustration we also consider parabolic systems

u, = Au+ Dig(u), xeRN, >0 (1.4)
with initial condition
u(x,0) = f(x) where feL”. (L.5)
Here u(x, 1) takes values in R”,
D; =0/0x;

and g : R" - R" is assumed to be quadratic in u. The maximal interval of existence is
again 0<r<T(f). We will prove estimates of the maximum norm of the derivatives
of the solution in terms of the maximum norm of the initial data, which we denote by

e =sup [£(x)] with [f()F =32 f200).

To formulate the result, let
D* =D} ...DY for o= (ay,...,an)

and |¢| = >  o;. Forany j =0,1, ..., we set
[Du(t)], = [Du(-, 1)l

=max |D*u(-, 1)

o0 .
|or]=7

007

i.e., |D'u(t)|,, measures all space derivatives of order j in maximum norm.
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Theorem 1.1. Under the above assumptions on f and g the solution of (1.4), (1.5)
satisfies the following:

(a) There is a constant ¢y >0 with

€0
T(f)>\f|2 (1.6)

[e¢]

and
¢
-, 0|, <2| 1., for owﬁ. (1.7)
(b) For every j=1,2, ..., there is a constant K;>0 with
o c
/P Du(, 1), <Kl fl,  for 0<z<ﬁ. (1.8)
o0

The constants ¢y and K; are independent of t and f.

After recalling some elementary estimates for the solution of the heat equation in
Section 2, Theorem 1.1 will be shown in Section 3. Then we prove the analogous
result for the solution of the Navier—Stokes equations in Section 4. Because of the
non-local nature of the pressure, the proof is more complicated, however.

As we will also discuss in Section 4, estimate (1.8) implies that |D'u| can be

bounded in terms of |u’§£l7 which is consistent with the scale invariance of the
Navier—Stokes equations. It does not seem to be known under what assumptions a

L ,
converse bound of |uf’}" in terms of |D/u

-, can be established.

2. Auxiliary results for the heat equation
Let fe L”(RY). The solution of
u=A~Au, u=fatr=0, (2.1)

is denoted by

It is well-known that

eS| <Ifles 120 (2.2)
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and
i A —j/2 :
DeMf|, <Cit 7P| f],,, t>0, j=1,2, .. (2.3)

Here, and in the following, C,Cj,¢c, etc. denote positive constants that are
independent of ¢ and f.
If FeL*(R" x [0, T]) then the solution of

uy=Au+ F(x,1), u=0 atr=0, (2.4)

can be written as

One obtains
t
|wmw<ALﬂmw¢

t
:/ sTV2512|F(s)|, ds
0

<212 1/2
< 2677 max {s7|F (s)] oo }- (2.5)
To estimate the solution of the equation
u, = Au+ D;F(x,t), u=0 att=0,

we note that D; commutes with the heat semi-group. Using (2.3) with j = 1 we have
t
o) <€ [ (=9 PFL, b
0

t
:/O(:-s)*l/zs—1/251/2|F(s)|wds

< C max {s"?F(s)|}. (2.6)

3. Estimates for parabolic systems: proof of Theorem 1.1

In this section we consider the system u, = Au+ D;g(u) with initial condition
u=f at t =0 where f e L™. It is well-known that the solution is C* in a maximal
interval 0<7<T(f) where 0<T(f)< 0. We set

F(x,t) = g(u(x,1)) for xeRYN, 0<t<T(f)
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and consider u as the solution of the inhomogeneous heat equation u, = Au + D;F.
Recall the assumption that g(u) is quadratic in u. Therefore, there is a constant
C, >0 with

9| <CluP, 1gu,()| <Cylul  for all ueR”. (3.1)

All second u—derivatives of g are constant.
We first estimate the maximum norm of u.

Lemma 3.1. Let C, denote the constant in (3.1) and let C denote the constant in (2.6);
set ¢y = ﬁ Then we have T(f) >co/|f|iO and

(i), <2|/1,, for O<r<—o-. (3.2)

/1%

Proof. If estimate (3.2) does not hold, then denote by ¢, the smallest time with

lu(t)|, =2|f],- By assumption, to<c0/|f|2w. Using (3.1) we have
[F(s)], < C£,|u(s)|2;C Therefore, by (2.2) and (2.6),

2/l = lu(to)l,
1/2 2
< fle + CCoty” max Ju(s)I%,

2
=/, + CCyty 41 /1%,

This yields
1<4CC,1)* | f

o0 !

thus 7>1/(16C>C;|f 2 Y=¢o/|fI%,. This contradiction implies that (3.2) holds.

The estimate T(f)>cg/|f|2OO is valid since limsup,_, 7 [u(?)], = oo if T(f) is
finite. [

We now prove estimate (1.8) by induction in j. Let j>1 and assume
€o

2

e

2D u(t)| , <Kilf], for 0<t< and 0<k<j—1. (3.3)

Here ¢y is the constant defined in the previous lemma.
It will be convenient to denote any space derivative D* = D{'... D}’ simply by D!
if || = 1. Apply D’ to the equation u, = Au + D;g(u) to obtain

v =Av+ DMg(u), v=Du,

v(?) =DjeA7+/t€A(t‘V>Di+lg(u(s))ds-
0
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Using (2.3) we have

t
ﬂﬂwm%<aﬂw+ﬂ“/eMﬂDmemds. (3.4)
0

o0

Split the integral into

/Ot/2+/,/; =:1,(t) + (1)

and obtain
2
B, = [ DA g(uts) ds
0
12 .
<CUR [ -9 as
0

< C|f|fnt("j)/2.

When estimating I»(¢), only one derivative is moved from D/*!g(u) to the heat semi-
group. (If one moves two or more derivatives, then the singularity at s = ¢ becomes
non-integrable.) We have

t
DA Dig(u(s)) ds
t/2

\L(1)],, =

o0

t
< c/ (t—)""PIDg(u(s))|., ds. (3.5)
/2
Recall that g(u) is quadratic in u. Therefore,

ﬂ’ku|®.

o0

j-1
\Dg(u)|,, <Clu|,,|Dul,, +CY_ |Dru
k=1

By the induction hypothesis (3.3), the above sum is bounded by Cs/?| f |§E Thus the
corresponding part of the integral in (3.5) is bounded by

t
aﬂ;/’u—wﬂ%ﬂﬂm<cvﬁﬂﬂm.
t/2
The remaining part of the integral in (3.5) is bounded by
t t
/grw>”Mwuvmwww<aﬂm4y—w“%W%Hﬂmmwﬁ
t

(1=)/2 121/
< Q1,2 max (2 Dus)], ).
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We use these bounds for the integral in (3.4) and recall the definition v = D/u. Then,
maximizing the resulting estimate of #/2|D/u(t)|
and setting

., over all derivatives D/ of order j

(1) = | Du(1)

oo

we have shown the estimate

< 1/2) 712 1/2 <i< €0 .
HOSCU L+ COPIE + U1 max 91s) for 0<r<—5-

Since #'/2| f|,, <1/ the second term on the right-hand side of the above estimate is
bounded by C|f],,. Therefore,

o
HOSCIS 1+ Gt max 9(6)  for O<r<r i (36)
For the remainder of the proof, let the constant C; be fixed so that the above estimate

holds. Set

We first claim that

G
5
0

for 0<r<

P(1)<2Gf

0

Otherwise, let 0<t0<cj/|f|iO denote the smallest time with ¢(t) = 2C;| f],,. Then
we obtain from (3.6),

261/, = d(t) <Gl +2C3 1217,

thus
2 .
1<2G| 1,07, e 19> :

This contradiction proves the estimate

IPDu(r)], <2G)f], for 0<r<—I-. (3.7)

/1%
If
Cj Co
T =—5-<t<—5 =T (3.8)
V1PNV
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then we start the corresponding estimate at ¢t — 7;. By the previous lemma we have
lu(t — T;)|, <2|f|,, and obtain

T/ Du(r)| , <4G|f],,. (3.9)

Finally, for any ¢ with (3.8),

/2
jrer = (@)
’ G)

and (3.9) yields

J/2
tf'/2|m<r>|@<4c_/<c°) ]

G

This completes the proof of Theorem 1.1. [

4. Estimates for the Navier—Stokes equations

We write the Navier—Stokes equations as
uy=Au+Q, V-u=0, u=f att=0,
with
O=—-Vp—u-Vu
=-Vp-— Z Dj(uju).
j
Here the pressure is determined by the Poisson equation
—Ap = Z D;Dj(u;u;)
ij
= Z (Dju;)(Djus).
ij
Dropping the t—dependence in our notation, we have

P =3 3 [ b= ol DDy 0) (@)

Remark. The Calderon—Zygmund theory of singular integrals guarantees that
peBMO, the space of functions with bounded mean oscillation. See, for example,
[7]. In general, p¢ L™ . For the global part, pg, of p (see below), we will only need
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maximum norm estimates of derivatives. The BMO norm of p will not be used. See
the appendix for an elementary discussion of integral (4.1).

We decompose p into a local and a global part, p = pic + pal, as follows: Choose a
C* cut-off function ¢(r) with

p(r)=1 for 0<r<l, ¢(r)=0 for r=2.

Then, for 6 >0, define
1 _ _
pe) =3 [ = DD, (60 = D) b @2)
ij

The global part, pg = p — pic, is determined correspondingly with ¢ replaced by
1 —¢. It is clear that pic(x) depends only on the values u(y) for |x — y|<29J.
Correspondingly, pg(x) depends only on the values u(y) for |x —y|>d. The
decomposition p = pic + pg depends on ¢ and on ¢, which is suppressed in our
notation. Later we will choose 6 = /7.

We first estimate the pressure in terms of u. The estimates are valid at each time ¢
where 0<t<T(f).

Lemma 4.1. There is a constant C >0, independent of t, d, and f, so that the following
holds:

Prel . < C(lul’, + 6lul . |Dul ), (4.3)
IDpic] o <C@ul’, +6[Dul,), (4.4)
Dpal., <Co~'ul?,. (4.5)

Proof. The argument of ¢, ¢’, etc. is always 5*1|x — |, which we suppress in our
notation. Integrating by parts in formula (4.2) for pi., we have

pe(x)]<C Y / Ix — ¥\ Di(busty)| .
iy

Clearly,

|Di(pus)| < C(6~ ul, + |ul . |Dul.,).
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(The constant C depends on the maximum norm of ¢ and ¢'.) Since
/ I~y 2 dy<Co
[x—y|<26

we obtain (4.3).
To estimate |Dpy|.,, we first apply Dy = 9/0x; under the integral sign in (4.2).
Note that

Dyl =y < |x =y
and
1Dix| <57 ..

When estimating the term
=) /leylsziDj(Wi“j) dy
ij

it is important to note that
> DiDj(uiwy) =Y (D) (Djus),
i.e., 2nd derivatives of u are not needed to bound 7;. One obtains
T <CE ul’, + 0| Dul,).

The term
Ty = Z/ | =y DDy (Dixep)uiny)) dy
i

is treated similarly, without integration by parts, and (4.4) follows.
To estimate |Dpg ., , We write

1 _
pa) =3 3 [ (DiDlx =171 = By dy
i
and apply Dy, under the integral sign. Using the estimates

[ xeartascs
Ix—y|=4
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and, if ¢ is differentiated,

/ x—y[dy<C
26> |x—y| =6

bound (4.5) is obtained. [

Recall that
u=Au+Q, Q=-Vp—u-Vu, u=f att=0.
We write Q = Qi + Qg with
O = —Vpic — Z Dj(uju),
J
Qg1 = —Vpg.

Using the estimates of the previous lemma and the heat equation estimates (2.2),
(2.5), and (2.6), we will prove the following.

Lemma 4.2. Set
V(t) = |u(n)|,, +|Du(r)],,, 0<t<T(f). (4.6)

There is a constant C >0, independent of t and f, so that

V()<Clf], + Ct'? [max V3(s), 0<t<T(f). (4.7)
<SSt

Proof. Using the previous lemma with d = ¢//2, we have

o il o Cluly +12ul | Dul.,), (4.8)

|plc

| el < (e Jul’, + 12 [Dul?,), (4.9)

|04l <Ct™V2u)? . (4.10)
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Since u; = Au+ Qic + Qg and since Q. is obtained by applying one space derivative
to the terms pic and u;ju, we obtain from (2.2), (4.8), (2.6), (4.10), (2.5),

< , 1/2 2 12 2
u(t)], < 11,0 + € max (s2Ju(s)P, + slu(s)|, [Du(s)].,) + 2 max Ju(s)L,

< |/l + €' max (ju(s) P, + s|Du(s)[5,)
- 0<s<t
<|f|, + C'? max V2(s).
- 0<s<t
For v(t) = Dyu(t) we have
v;=Av+ DiQ
with
101, <C(Plufy, + (2 Dul,).
Therefore, by (2.3) with j = 1 and by (2.6),

1'2u()

1/2 2 2
2 < U + 12 mas (u(s)P, + siDuls)P,)
< 1/2 2
< Clflo + €7 max V7(s)
The lemma is proved. [

Lemma 4.2 allows us to estimate |u(z)]
time interval.

and |Du(¢)

., in terms of | f

o » i a small

Lemma 4.3. Let C>0 denote the constant in estimate (4.7) and set

1
0= Tect
Then T(f)>co/|f>, and
(1), + £2Du(t)], <2C|f|,. for 0<z<|;|°2 . (4.11)

Proof. Recall the definition of V(¢) in (4.6). If (4.11) does not hold, then denote by #,
the smallest time with V' (#)) = 2C|f]|.,. Using (4.7) we have

2CIf1,, = V(1)

< CIf], + Cy*ac?|f1,,
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thus

1<4C% |11,

thus #y >c0/\f|ic. This contradiction proves (4.11), and T'(f) >c0/|f|iO follows. O

Lemma 4.3 proves bound (1.8) for the solution of the Navier—Stokes equations for
j =0 and 1. By an induction argument as in the proof of Theorem 1.1 one obtains

the following.

Theorem 4.1. Consider the Cauchy problem for the Navier—Stokes equations, (1.1) and
(1.2), where feL*, V-f =0. There is a constant cy>0 and for every j=0,1, ...,

there is a constant K; so that

Co

72D u(t) —.
/1%

L <Klfl, for 0<i<

The constants cy and K; are independent of t and f.

Remarks. We can apply estimate (4.12) for

Co €o
—<I<

211 IS
and obtain
[Du(i)],, <Gl /1!

in interval (4.13). Starting the estimate at fo€[0, T(f)) we have

[Dlu(ty + 1)] ., < Cilu(to)l}!
for
D <
uto)?,  |ulto)l,
Then, if #; is fixed with
Y <u<T(f)
U] 3
21113,

we can maximize both sides of (4.15) over 0<#y<¢; and obtain

max{|Diu(t)m : ﬂ%gzgzl + r} <Cmax{u(nf 0<r<n}

|5

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)
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with

€o

u(tr)|%

T =

Estimate (4.17) says, essentially, that the maximum of the jth derivatives of u,

measured by |D'u| , can be bounded in terms of |u|j;rl. Clearly, a time interval near
t =0 has to be excluded on the left-hand side of (4.17) for smoothing to become

effective. The positive value of 7 on the left-hand side of (4.17) shows that |u|’;1

controls [D'u| , for some time into the future.
As is well known, if u, p solve the Navier—Stokes equations and A>0 is any scaling
parameter, then the functions u,, p, defined by

wp(x, 1) = Ju(Ax, 2°1),  pi(x,t) = ’p(ix, i’1)
also solve the Navier—Stokes equations. Clearly,

(Ol = Au(221)] ., [Dus(0)],, = 2D (i),

Therefore, [D/u| , and |uf' both scale like #*!, which is, of course, consistent with
the estimate (4.17). We do not know under what assumptions |u|’;1 can conversely
be estimated in terms of [D/u|, .

Appendix. The Cauchy problem for the Navier—Stokes equations with bounded initial
data

First let feC*nL* V-f=0. Define a sequence u"(x,t),p"(x,t) of C*
functions by

ApH = Z DD;( (A1)

uil1+1 — Aun+l — " V" — VpﬂJrl, un+l(x’ 0) :f(x) (A2)
with u° = f. The Calderon-Zygmund theory of singular integrals can be used to

discuss the Poisson equation (A.1). An elementary approach is as follows:
If &(z) = L|z|”" and ®;(z) = D;D;®(z) then (A.1) yields, formally,

P }j/ux ») () () dy, (A3)
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where the dependence on ¢ is suppressed in our notation. Since
-3 0 0
Pj(z) = |z " @y(27), 2" =z/lz,

the integrals in (A.3) generally do not exist as Lebesgue integrals. However, the (non-
integrable) singularity of @;(z) at z = 0 causes no problems since the functions u/ are

smooth and
/ @;dS = 0.
|z]=1

Also, since |DP;(z)| < C|z|™, we have by the mean—value theorem

Clx|

|y(x —y) — %(ﬁKW for [y[=3|x] (say),
and therefore the limits
P (x) = lim (Pij(x — y) — Py(y)) () (v) dy

R=>© Jy|<R

can be shown to exist. The function

n+l n+1
=27

solves (A.1). As in Section 4, we can decompose p"*! into a local and a global part,

prt=pptt —&—p”“. In general, p"*lqéLw, but this is not important since only

n+1 n+1.

derivative estimates of Py are needed to derive estimates for u
4.1.

Proceeding as in Section 4, we obtain that

; compare Lemma

PRD (0], <K)\f], for O<i<—, j=0,1,

€0
%
0

Convergence of u"(x, ¢) and its derivatives w.r.t. | - | , follows, as usual, by a Picard
contraction argument. As n— oo, the global part of the pressure, p”+1 converges in
maximum norm in any bounded set |x| <R, and one obtains a well defined smooth
limitp of pn+l plnc+1 +pn+1'

If f€ L™ is not smooth, one can approximate f by C* functions f7 in maximum
norm, |f —f’/|, —0 as j—oo. The f/ are not uniformly smooth. However, the
existence interval for the initial functions /7 can be chosen uniformly in j since it only
depends on | /7|, which approaches |f]_ . A simple limit argument, ¥/ —>u,p/ —>p,
yields a solution with initial data f.
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