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Various approaches to Quantum Gravity (such as String Theory and Doubly Special Relativity), as well
as black hole physics predict a minimum measurable length, or a maximum observable momentum,
and related modifications of the Heisenberg Uncertainty Principle to a so-called Generalized Uncertainty
Principle (GUP). We propose a GUP consistent with String Theory, Doubly Special Relativity and black
hole physics, and show that this modifies all quantum mechanical Hamiltonians. When applied to an
elementary particle, it implies that the space which confines it must be quantized. This suggests that
space itself is discrete, and that all measurable lengths are quantized in units of a fundamental length
(which can be the Planck length). On the one hand, this signals the breakdown of the spacetime
continuum picture near that scale, and on the other hand, it can predict an upper bound on the
quantum gravity parameter in the GUP, from current observations. Furthermore, such fundamental
discreteness of space may have observable consequences at length scales much larger than the Planck
scale.

© 2009 Elsevier B.V. Open access under CC BY license. 
An intriguing prediction of various theories of quantum grav-
ity (such as String Theory) and black hole physics is the exis-
tence of a minimum measurable length. This has given rise to
the so-called Generalized Uncertainty Principle, or GUP, or equiv-
alently, modified commutation relations between position coor-
dinates and momenta [1]. The recently proposed Doubly Special
Relativity (or DSR) theories on the other hand (which predict
maximum observable momenta), also suggest a similar modifica-
tion of commutators [2,3]. The commutators which are consistent
with String Theory, Black Holes Physics, DSR, and which ensure
[xi, x j] = 0 = [pi, p j] (via the Jacobi identity) have the following
form [4]1

[xi, p j] = ih̄

[
δi j − α

(
pδi j + pi p j

p

)
+ α2(p2δi j + 3pi p j

)]
(1)

where p2 = ∑3
j=1 p j p j , α = α0/MPlc = α0�Pl/h̄, MPl = Planck

mass, �Pl ≈ 10−35 m = Planck length, and MPlc2 = Planck energy
≈ 1019 GeV. Eq. (1) gives, in 1-dimension, to O(α2)
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�x�p � h̄

2

[
1 − 2α〈p〉 + 4α2〈p2〉]

� h̄

2

[
1 +

(
α√〈p2〉 + 4α2

)
�p2 + 4α2〈p〉2 − 2α

√〈
p2

〉 ]
.

(2)

Commutators and inequalities similar to (1) and (2) were proposed
and derived respectively in [5–8]. These in turn imply a minimum
measurable length and a maximum measurable momentum (to the
best of our knowledge, (1) and (2) are the only forms which imply
both)

�x � (�x)min ≈ α0�Pl, (3)

�p � (�p)max ≈ MPlc

α0
. (4)

Next, defining [4]

xi = x0i, pi = p0i
(
1 − αp0 + 2α2 p2

0

)
, (5)

with x0i , p0 j satisfying the canonical commutation relations
[x0i, p0 j] = ih̄δi j , it can be shown that Eq. (1) is satisfied. Here,
p0i can be interpreted as the momentum at low energies (hav-
ing the standard representation in position space, i.e. p0i =
−ih̄∂/∂x0i ), pi as that at higher energies, and p0 as the mag-
nitude of the p0i vector, i.e. p2

0 = ∑3
j=1 p0 j p0 j . It is normally

assumed that the dimensionless parameter α0 is of the order
of unity, in which case the α dependent terms are important
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only when energies (momenta) are comparable to the Planck
energy (momentum), and lengths are comparable to the Planck
length. However, we do not impose this condition a priori, and
note that this may signal the existence of a new physical length
scale of the order of αh̄ = α0�Pl. Evidently, such an interme-
diate length scale cannot exceed the electroweak length scale
∼ 1017�Pl (as otherwise it would have been observed). This im-
plies α0 � 1017.

Using (5), a Hamiltonian of the form

H = p2

2m
+ V (�r) (6)

can be written as

H = H0 + H1 + O
(
α2), (7)

where H0 = p2
0

2m
+ V (�r) and (8)

H1 = −α

m
p3

0. (9)

Thus, we see that any system with a well defined quantum (or
even classical) Hamiltonian H0, is perturbed by H1, defined above,
near the Planck scale. In other words, Quantum Gravity effects are
in some sense universal! The relativistic Dirac equation is modified
in a similar way, and is expected to give rise to the main result of
this Letter [9], which is unaffected by the inclusion of the O(α2)

terms in H1 as well. Phenomenological implications of the GUP in
diverse quantum systems have been studied (for example see [10]
and references therein).

In this article, we apply the above formalism to a single par-
ticle in a box of length L (with boundaries at x = 0 and x = L),
and show that the box length must be quantized. Since this parti-
cle can be considered as test particle to measure the dimension of
the box, this suggests that space itself is quantized, as are all ob-
servable lengths. The wavefunction of the particle satisfies the fol-
lowing GUP corrected Schrödinger equation inside the box, where
V (�r) = 0 (outside, V = ∞ and ψ = 0)

Hψ = Eψ, (10)

or equivalently (dn ≡ dn/dxn),

d2ψ + k2ψ + 2iαh̄ d3ψ = 0, (11)

where k =
√

2mE/h̄2. A trial solution of the form ψ = emx yields

m2 + k2 + 2iαh̄m3 = 0, (12)

with the following solution set to leading order in α: m =
{ik′,−ik′′, i/2αh̄}, where k′ = k(1+kαh̄) and k′′ = k(1−kαh̄). Thus,
the general wavefunction to leading order in �Pl and α is of the
form

ψ = Aeik′x + Be−ik′′x + Ceix/2αh̄. (13)

As is well known, the first two terms (with k′ = k′′ = k) and
the boundary conditions ψ = 0 at x = 0, L give rise to the stan-
dard quantization of energy for a particle in a box, namely En =
n2π2h̄2/2mL2. However, note the appearance of a new oscillatory
term here, with characteristic wavelength 4παh̄ and momentum
1/4α = MPlc/4α0 (which is Planckian for α0 = O(1)). This re-
sults in the new quantization mentioned above. Also, as this term
should drop out in the α → 0 limit, one must have limα→0 |C | = 0.
We absorb any phase of A in ψ , such that A is real. The boundary
condition

ψ(0) = 0 (14)
implies

A + B + C = 0. (15)

Substituting for B in Eq. (13), we get

ψ = 2i A sin(kx) + C
[−e−ikx + eix/2αh̄]

− αh̄k2x
[
iCe−ikx + 2A sin(kx)

]
. (16)

The remaining boundary condition

ψ(L) = 0 (17)

yields

2i A sin(kL) = |C |[e−i(kL+θC ) − ei(L/2αh̄−θC )
]

+ αh̄k2L
[
i|C |e−i(kL+θC ) + 2A sin(kL)

]
, (18)

where C = |C |exp(−iθC ). Note that both sides of the above equa-
tion vanish in the limit α → 0, when kL = nπ(n ∈ Z) and C = 0.
Thus, when α = 0, we must have kL = nπ + ε , where ε ∈ R (such
that energy eigenvalues En remain positive), and limα→0 ε = 0.
This, along with the previously discussed smallness of |C | ensures
that the second line in Eq. (18) above falls off faster than O(α),
and hence can be dropped. Next, equating the real parts of the re-
maining terms of Eq. (18) (remembering that A ∈ R), we get

cos

(
L

2αh̄
− θC

)
= cos(kL + θC ) = cos(nπ + θC + ε), (19)

which implies, to leading order, the following two series of solu-
tions

L

2αh̄
= L

2α0�Pl
= nπ + 2qπ + 2θC ≡ pπ + 2θC , (20)

L

2αh̄
= L

2α0�Pl
= −nπ + 2qπ ≡ pπ, (21)

p ≡ 2q ± n ∈ N.

These show that there cannot even be a single particle in the
box, unless its length is quantized as above. For other lengths,
there is no way to probe or measure the box, even if it exists.
Hence, effectively all measurable lengths are quantized in units
of α0�Pl! We interpret this as space essentially having a discrete
nature. Consistency with Eq. (3) requires p to run from 1 in the
second case. The minimum length is ≈ α0�Pl in each case. Once
again, if α0 ≈ 1, this fundamental unit is the Planck length. How-
ever, current experiments do not rule out discreteness smaller than
about a thousandth of a Fermi, thus predicting the previously men-
tioned bound on α0.2 Note that similar quantization of length
was shown in the context of Loop Quantum Gravity in [11], al-
beit following a much more involved analysis, and perhaps under a
stronger set of starting assumptions. In general however, we expect
our result to emerge from any correct theory of Quantum Gravity.
It will be interesting to see whether our result can be generalized
to the quantization of areas and volumes, and also to study its
possible phenomenological implications. Furthermore, it is plausi-
ble that if space has fundamentally a “grainy” structure, the effects
may be felt well beyond the Planck scale, e.g. at around 10−4 fm,
the length scale to be probed at the Large Hadron Collider (similar
to Brownian motion observed at scales in excess of 105 times the
atomic scale). We hope to study such effects and report elsewhere.

2 Equating the imaginary parts of (18) yields the auxiliary condition: ε =
−|C | sin(θC )/A and ε = 0, for solutions (20) and (21) respectively.
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