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Abstract

Network science research aims to understand the underlying properties of complex networks. Large-scale modeling and

simulation is the core of network science research. Existing systems take a long time to run large network science experiments

with high performance computing resources. Scientific data management systems currently lack the performance efficiency

needed to support this type of computation and data-intensive research. Memoization provides the ability to index, archive,

and reuse frequently requested and expensive to re-compute datasets. In this paper, a domain independent memoization service

to increase the computational execution process performance within cyberinfrastructure-based systems is described. The

service is formulated as an extensible memoization framework for the computational and simulation network science domains

that is built on top of well-defined metadata objects. We present extensible concepts, discuss the proposed algorithm and

framework architecture, and examine the flexible nature of the framework. The framework was utilized as a part of the CINET

cyberinfrastructure-based digital library (DL). Our experimental results indicate an increase in the efficiency of the system and

recommendation of the service’s inclusion in scientific DLs.
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1. Introduction

Scientific domains are experiencing unprecedented growth of vast interlinked systems called “complex net-

works.” These require rigorous analytics to solve many real world problems. Network science research aims to

understand the underlying principles of complex networks. This branch of science has received much attention

in recent years due to its interdisciplinary problem solving characteristics. Today, researchers conduct a variety

of simulation-based experimentation on complex networks. Large-scale simulation is the core of network science

research. This research requires computing resources including high performance computing (HPC), large data

repositories, and domain-specific user interfaces. However, different researchers conduct similar simulation stud-

ies. Design and completion of simulation-based experimentation requires tedious human effort, which may take

days or weeks to execute on large HPC systems. Storing and reusing studies eliminates unnecessary calculations,

which speeds-up the execution process and throughput. This directly improves the efficiency of utilized national
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and institutional supercomputing resources [1]. The process is similar to the dynamic programming technique of

memoization. A research domain may use memoization to store input configurations and computational results

for given software application versions. If input configurations of new experiments match previously computed

study designs for a specific software application, then stored results are used to prevent recomputing costs [2].

Motivation: Programmers from various fields have not historically used domain-specific memoization ser-

vices to speed-up simulation execution processes. This type of memoization service has dependencies between

the simulation application versions and underlying datasets that arise through the simulation process. The infor-

mation storage and retrieval community gives little attention to large-scale computation-based experimentation

systems. Domain-specific implementations will not manage content generated from multiple applications or cy-

berinfrastructure (CI) based systems. Domain-independent memoization requests require an extensible memoiza-

tion service.

Contributions: We propose an extensible memoization framework for network science. The major contribu-

tions of our work are as follows.

• Extensible Framework: An extensible memoization service required to support network science was con-

ceptualized. Clear description of the proposed framework are provided along with preprocessing, matching,

and storing steps. Deployed systems based on this framework support the ability to plug in multiple scien-

tific domains and simulation systems, without the need to modify deployed DL systems.

• Advanced Capabilities: Our framework and implementation performs the following five major operations:

1) index and archive metadata regarding simulation-based experiments, 2) retrieve the results of an exper-

iment, 3) retrieve metadata regarding an archived experiment, 4) update experiments and metadata, and 5)

remove archived experiments. These functions combine to yield a DL memoization service.

• DL Service: Scientific simulation-based DLs require new services. Memoization services do not exist

in current DL software. Despite large parameter spaces, common simulations are often requested and re-

computed by different researchers. Datasets with large storage footprints can be regenerated so as to reduce

long term storage costs. Memoization provides the ability to index, archive, preserve, curate, and reuse

content. The proposed framework was implemented as a service in a cyberinfrastructure-supporting DL.

A detailed study on the effectiveness and efficiency of the proposed framework and implementations was

conducted.

To the best of our knowledge this is the first attempt to design and develop an extensible memoization service

for network scientific research. The rest of the paper is organized as follows: Section 2 presents the literature

review, Section 3 consists of the CINET overview, our extensible memoization framework is presented in Section

4, Section 5 discusses the implementation, Section 6 reports experiments and results, and Section 7 concludes the

paper.

2. Literature Review

HPC systems rarely utilize simulation reuse mechanisms for the systemic support of large-scale scientific

efforts. Some researchers actively use temporary memoization to implement dynamic programming within ap-

plications. Researchers propose caching intermediate results mechanisms that derive incremental programs from

non-incremental programs [3]. [4] proposes a formal model of function caching and practical cache replacement

strategy. In [5], authors discuss a functional programming language with function call dependencies and caching

of expensive function calls. Others propose a staged monadic combinator library for memoization functions [6].

[7] describes an automatic memoization scheme for software engineering. Costa et al. propose a dynamic trace

memoization technique that uses memoization tables to skip the execution of redundant instructions [8].

A number of researchers investigate partial memoization techniques. [9] introduces partial memoization of

concurrency and communication. [10] mentions several implementations of memoization for partial evaluation.

[11] shows that memoization can help improve performance and power consumption in multimedia systems.

Also, [12] presents memoization techniques for reducing power consumption of caches. Ikegaya et al. proposes

a memoization technique that depends on reuse and margin speculative multithreading based on value prediction

into parallel computations [13]. Acar et al. presents a selective memoization framework to empower programmers
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with equality, space, and dependencies in support of application development [14]. [15] details “how constraints

can be propagated in a memoizing parser (such as a chart parser) in much the same way that variable bindings are,

providing a general treatment of constraint coroutining in memoization.” [16] uses memoization in self-triggered

control. The FastSim simulator uses memoization to speed-up performance [17]. Borodin and Juurlink apply

memoization for fault detection [18]. A number of researchers use memoization techniques in database research

[19, 20].

Scientists generally produce large quantities of data, however, the DL community successfully supports a

limited number of scientific research efforts. Examples of scientific data management projects include earthquake

simulation repositories [21], embedded sensor network DLs [22], and D4Science II [23]. Current simulation-based

research is computationally, data, temporally, and human effort-intensive. There is a great need for an efficient

network science DL that builds upon an integration of scientific content, communities, and services.

3. CINET Overview

This paper focuses on an extensible memoization framework to support network science and simulation based

research. The DL component of the CyberInfrastructure for Network Science (CINET) project [24] implements

the framework. CINET includes a web portal providing a computational and analytic environment for the network

science researcher, educator and student. The CI part of CINET is responsible for coordinating the interactions

between the DL, user interfaces, resource managers, data brokers, and execution broker components. Within

CINET, a blackboard is used as a central communication mechanism that provides asynchronous, loose coupling

of system components. Different types of requests such as execution requests, DL requests, and data requests can

be placed in the blackboard. The resource manager determines the appropriate resource for a request, monitors

the health and load of compute resources, and provides a sandbox environment in the shape of a virtual machine

for requesting components and untrusted software. Brokers frequently communicate with the blackboard and use

corresponding components to fulfill service requests. CINET uses HPC resources to service experiment execution

requests. CINET hosts the Granite system [25] and graph dynamical systems calculator (GDSC) system [26] as

public use applications. CINET provides many realistic graphs for analysis. Galib, NetworkX, and SNAP are the

computational engines that provide the capability to analyze different properties of the graphs. See [24] for more

information regarding CINET.

4. Proposed Extensible Memoization Service Framework

4.1. Concepts

The extensible memoization framework is based on formally defined key concepts. A domain is a col-

lection of software components that implement specifics (e.g., Granite and GDSC). Domains are defined as

D = {d1, d2, ..., dn}, where di ∈ Coll. Here, Coll means collection of software components. Text labels are

used to represent domain information. To store a network science experiment, standard experiment characteristics

called attributes are recorded. “Size=10MB” is an example of an attribute where “Size” is the key and “10MB” is

the value. Sample simulation attributes are systemIdentifier, date, mimeType, description, platform, person, and

size. Attributes must be atomic, strongly typed, and uniquely identifiable. Experiment terms, collection related

terms, and Dublin Core terms [27] define the attribute list. Dublin Core, a metadata standard, stores digital ob-

jects in a structured manner. Let AK = {ak1, ak2, ..., akn} be a set of attribute keys, and each key aki has a valid

set of values AVi. Attribute ATT = {(aki, avi)
+ : aki ∈ AK, avi ∈ AVi}. Text strings are used to store attribute

information. The attribute list is defined based on experiment terms, collection related terms, and Dublin Core

terms [27]. A memo is the metadata information of an experiment. The DL stores each experiment as a memo.

It has unique ID (ID ⊆ N), number of attributes, and domain information. A memo is considered a basic unit

of the DL. A memo can be defined as a 3-tuple MEO = (id, ATT, di). A query is an experiment request that

provides a mapping of key-value pairs. An example of a query is a network science experiment request to execute

“Graph=Miami Network” with a given algorithm. Here “Graph” is the query key and “Miami Network” is the

value. Let QK = {qk1, qk2, ..., qkn} be the set of keys. Each key qki has a set of valid values QVi. A query QER is

defined as {(qki, qvi)
+ : qki ∈ QK, qvi ∈ QVi}. Requested key and value pairs map to the archived system defined
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key and value pairs. Attributes and queries have some similarities. However, queries deal with characteristics

of the experiment request and attributes deal with the characteristics of the experiment itself. For memoization,

experiment metadata and results must be stored after completed software executions. This process is considered

an Event. An event data structure contains domain information that triggered the event and the list of attribute

information. Event EVN is a tuple, defined as EVN = (di, EATT ), where EATT = {(x, y) : x ∈ QER, y ∈ ATT }.
Resource Definition Framework (RDF) triples are utilized for storing data. It is a schema-less data storing tech-

nique where data are stored in a triple format. Each triple contains subject, predicate and object information. As

an example, the fact “Digital object 3’s size is 10MB” is represented as triple (Subject: 3, Predicate: Size, Object:

10MB). Attribute keys are used as a vocabulary for the predicates of RDF triples. The RDF triplestore RDFDB is

a database that contains triples TRI = (S ub ject, Predicate,Ob ject).

4.2. Research Questions

Several open questions spur development of the extensible memoization framework. What scientific data does

a framework need to handle? How can data be stored? What sort of search queries can the users ask of this data

(or the system), and what language will be used to ask the query? What algorithms are used for matching? What

is the meta-algorithm for memoization service? The questions are addressed in the following framework section.

4.3. Framework

The major contribution of the paper is an extensible memoization service framework. The memoization layer

of the framework is built on top of a metadata layer. It provides a communication platform to manage memoization

requests and retrieve results. Different types of domains can submit execution requests. For new domains, only

the plugin part of the framework needs to extend the client, query parser, and event handler modules. This

powerful mechanism makes our framework capable of supporting multiple domains. The framework can be

logically partitioned into different parts and a set domain logic can be added or removed without affecting the core

pieces of the system. Figure 1 presents a high level overview of the framework. Preprocessing, matching, and

storing are three major stages of the framework. The following is a detailed discussion of each stage.

4.3.1. Preprocessing:
The first stage of data pre-processing ensures that data is in the correct form for framework consumption. Pos-

sible dataset types are identified in the initial stage. Commonly available network science tools work with graphs

and analysis algorithm modules called measures to perform experimental studies. The content to be managed

includes network and measure data, complex experimental input configurations, corresponding results, analyses,

statistical plots, and related documents generated from the experiment. For each type of content, the framework

should handle appropriate metadata. As an example, network graphs require descriptive metadata such as graph

name, description, number of nodes, number of edges, file path, network type, graph format, resource identifier,

creator, category, date, contributor, relation, and sources. Software required metadata partially including measure

name, description, parameters, command, category, and version. Functions handle software package metadata,

identify duplicate or overlapping simulation scenarios, track simulation input and environment variables, and pro-

vide performance data. Experimental input and result files must be stored along with their associated metadata.

The client side of a given tool submits an experiment request. The associated digital object is a query. Next,

the query parser is responsible for parsing and handling a query. It takes domain and query information and parses

the query based on key matching. Our framework is capable of containing multiple query parsers.

4.3.2. Matching:
The metadata index uses the RDF triple information from the earlier steps generated for indexing and query-

ing. An incoming study requests first queries the content collections for existing results. If a match is found when

querying, the user will receive the results without further computation. Otherwise, the CI will execute the appro-

priate software and archive the result for future reuse. Our framework returns all the available execution records.

A high level overview of our process is described in Algorithms 1, 2, 3, and 4.

Algorithm 2 takes event information as the input while an event handler processes each event. The event han-

dler takes event information and checks which particular domain generates the event. The handler then prepares
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Fig. 1. High level overview of the memoization framework.

metadata with domain, query and attribute keys and values. It prepares RDF triples, saves the metadata, and adds

output files to the database.

A system administrator or privileged user can utilize the REMOVE-METADATA algorithm (Algorithm 3),

within a curation service, when wanting to remove an archived experiment execution or metadata from the system.

The algorithm removes a specific memo from the RDF database. Users can also update the experimental metadata

and content for memos, see Algorithm 4. Reverse Polish notation (RPN) technique [28] is used within the DL

service when performing all of the queries above.
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Algorithm 1 MEMOIZATION: Pseudo-code for memoization service.

INPUT: domain d ∈ D and query qer ∈ QER.

OUTPUT: List of memo MEO.

1: send d and qer to the metadata service

2: par ← select the query parser QERPAR that can handle the query qer
3: (key, value)← parse the query qer by using parser par
4: generate RDFTriple using (key, value)

5: compute memo ID MEOID from RDF database RDFDB using RDF
6: if MEOID � null then
7: provide list of MEO and new execution option to the user.

8: if user selects new execution then
9: EVENT − REGIS TRAT ION(EVN)

10: else
11: ms← user selects one specific memo MEO from the provided list

12: compute MEO by using ms on RDF database RDFDB
13: end if
14: else
15: EVENT − REGIS TRAT ION(EVN)

16: end if

Algorithm 2 EVENT-REGISTRATION(EVN): Pseudo-code for registering event.

INPUT: new event: evn ∈ EVN
1: event handler EVNHAN register the event by performing the following steps.

2: if event domain is not available in the RDFDB then
3: save domain on RDFDB
4: end if
5: compute MEO with d ∈ EVN and ATT ∈ EVN
6: save memo MEO to RDF database RDFDB

Algorithm 3 REMOVE-MEMO (MEOID): Pseudo-code for removing a memo.

INPUT: Memo ID MEOID
OUTPUT: Memo MEO information that removed from RDF database

RDFDB.

1: compute memo MEO by using memo ID MEOID on RDF database RDFDB
2: remove memo MEO from RDF database RDFDB

Algorithm 4 UPDATE-MEMO: Pseudo-code for updating a memo.

INPUT: memo MEO
1: compute memo ID MEOID from memo MEO
2: send memo ID MEOID to REMOVE(MEOID)

3: save memo MEO to RDF database RDFDB

In the network science domain, researchers actively work with approximation algorithms to identify approxi-

mate solutions to optimization problems. Multiple results from approximation algorithms may be available in the

database. Suppose for a particular approximation algorithm, a user is interested in solutions within 10% of the

optimal. The framework will take that constant factor information and will return the match where the optimal

solution constant is <10%. To support the above filtering option, optimal solution constants need to be added as a

query key.
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4.3.3. Storing
A central repository stores and archives the memoized experiments. Structured, semi-structured, or unstruc-

tured database techniques can be employed to store the experiment information along with simulation output files.

An RDF triplestore technique is ideal for this implementation due to its flexibility with dynamic metadata schemes

in comparison to relational databases. The schemaless nature allows research groups to map any simulation appli-

cation to the RDF triplestore without customizing relational DB tables. RDF triplestore allows administrators to

modify metadata schemas for individual contexts as well as index or search content without changes to a structured

data model or DL.

5. Implementation

The framework was implemented within the CINET DL services. CINET DL is developed using the 5S formal

framework [29]. The 5S framework provides a powerful mechanism to manage a complex information system.

First, a client submits an execution request through the UI, and the blackboard creates a corresponding entry. The

resource manager processes the request to check for any existing, identical study. The resource manager creates a

DLRequest in blackboard, which is picked up by the DLBroker. The request is sent to the appropriate DLService to

fulfill the request. In this case, the DLService selects the memoization service. Based on memoization arguments,

the memoization service queries the database and provides a list of retrievable results. If the experiment does not

already exist, the resource manager creates an execution request. The execution broker recieves the request and

performs the novel execution. After execution, the memoization index saves the results and sends them to the

user. Even if the user requested experiment is available in the memoization DB, the user may optionally perform

a fresh execution.

The implementation is divided into four parts; core, plugins, metadata service, and memoization service.

Memoization uses the metadata service to serve requests. Different domains can submit execution requests. Do-

main specific classes are placed in the plugin part of the system that extends the core classes. To support the

Granite interface for CINET, software was developed with connections to memoization for domain, query, various

graph library specific events (graph event, measure event, measure result event, parameter event), event handlers,

and query parsers (graph query parser, measure query parser, and measure result query parser) plugins. GDSC

system computes dynamics on a network. Memoization in this application involves with graphs, vertices, edges,

vertex functions, initial state, and update scheme elements. Handling applications such as GDSC within CINET

requires specific domain handlers such as domain, query, event, and event handler plugins.

6. Experimental Evaluations

In this section, empirical evaluations for the automated extensible memoization service are provided. Network

science experimentation can achieve improved system-scale efficiency through this service.

6.1. Experimental Setup

Dataset: The experiment used 103 graphs and 109 measures available in CINET.

Network graphs were divided into small, medium, and large categories. The size of a graph G = (V, E) is

defined as | G |=| V | + | E |. A small graph is defined as | G |< 100, 000, medium as 100, 000 �| G |<
10, 000, 000, and large as | G |� 10, 000, 000. The following three are respective examples of the three sizes

of graphs, RND-G(n,p) Random Graph 1 (nodes:1,000, edges:4,971), RND-G(n,p) Random Graph 500 (nodes:

500,000, edges: 5.00E+06), and Seattle contact network (nodes: 3,207,037, and edges: 8.66E+07).

Galib is a scalable Graph Algorithm Library written in C++. Galib consists of more than 60 parallel and

sequential graph algorithms. Galib is capable of handling large graphs up to 100 million nodes for sequential

algorithms and 2 billion nodes for parallel algorithms. Galib employs techniques including streaming, external

memory algorithms, and sampling based approximations [24]. NetworkX is an open source tool developed at Los

Alamos National Laboratory. Compared to Galib, NetworkX doesn’t perform well for large graphs but includes

several useful features. It provides hundreds of graph algorithms [30]. CINET also incorporates eleven measures

from the Stanford Network Analysis Project (SNAP) tool developed at Stanford University. These graph libraries
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contain common algorithms; all of these are useful because of different features provided by different libraries

[31].

Evaluation criteria: The objective of the memoization service is to improve the execution time in compute-

intensive research. Therefore, with and without memoization execution times of an experiment are reported.

Smaller running times after memoization are indicative of better performance, suggesting even a time consuming

experiment will yield a prompt return of results to users.

Machine Configuration: Experiments are performed on Shadowfax, an HPC resource available at the Vir-

ginia Bioinformatics Institute (VBI). Shdowfax contains 912 processor cores, 5.4 TB of RAM, 40Gb/s InfiniBand

network, 80TB parallel storage, 16 nVidia Tesla GPGPUs (7168 CUDA cores), and 3 FPGA based Convey HC-1

systems.

6.2. Results

CINET provides 63 Galib, 35 NetworkX, and 11 SNAP measures. The measures were executed with available

small, medium, and large graphs (103 graphs). Tables 1, 2, and 3 report the top execution timings of a measure

on three types of graphs (small, medium and large) without memoization and with memoization service. With

the memoization service, existing experiments occured at least once in any earlier session. Thus, experiment

requests can be reused from the outputs of previous experiments identified within the repository. In this case, the

execution time with memoization service is comprised of the time required for querying and retrieving the result

from the repository. Therefore, the execution times with memoization service in Table 1, 2, and 3 are less than

the time required without memoization. For many types of experiment results, querying and retrieving times will

be similar. This time may vary based on the number of records currently available in the RDF triplestore. At the

time of this experiment 4,281 records are available in the RDF triplestore. Usage patterns by researchers was not

investigated.

Table 1. Selected Galib measures runtime information

Measure Runtime (Sec) without Memoization Runtime (Sec) with memoization
Small Medium Large Small Medium Large

1. Average shortest path distance 877 135,840 > 360,000 0.64 0.64 0.64

2. Generate a complete graph 240 25,200 > 151,200

3. Shortest path distribution 23 18,000 > 43,200

These results show that memoization services speed-up system throughput in large-scale research systems.

For example, Table 2 shows “closeness centrality” takes more than a week (>720,000) to run on a large graph.

The memoization facility takes only 0.64 second to produce the result from archives. Also from Table 1, 2, and 3,

observe that the memoization service has a more profound impact on large and medium graph experiments than

small graphs. Without memoization, running times for different graph types exponentially increase with graph

size, but with memoization running time remains linear to the collection’s metadata index.

Table 2. Selected NetworkX measures runtime information

Measure Runtime (sec) without Memoization Runtime (sec) with memoization
Small Medium Large Small Medium Large

1. Compute closeness centrality 18,780 > 720,000 > 720,000 0.64 0.64 0.64

2. Check if a graph is biconnected 16.4 517 88,320

3. Generate hypercube graph 60 3,120 64,800

Graph and measure experiments identified the top time consuming experiment statistics and the less time

consuming experiments. The above mentioned Tables (1, 2, 3) show that the top three time consuming measures

are average shortest path distance (Galib), closeness centrality (NetworkX), and betweenness centrality (SNAP).

From this experiment, the bottom three time consuming measures are: generate cycle graph (Galib), generate

star graph (NetworkX), and degree centrality (SNAP). Figure 2 shows that memoization services take more time

to return results than the smallest Galib measure running times. Out of 63 Galib measures, only 8 measures

satisfy this criteria. On the other hand NetworkX (Figure 3) and SNAP (Figure 4) measures always provide
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better efficiency with memoization service. These results demonstrate that memoization framework reduces the

execution time for returning results in most cases.

Table 3. Selected SNAP measures runtime information

Measure Runtime (sec) without Memoization Runtime (sec) with memoization
Small Medium Large Small Medium Large

1. Betweenness centrality 7,380 > 90,000 > 108,000 0.64 0.64 0.64

2. Closeness centrality 2,880 > 72,000 > 90,000

3. Hubauth Centrality 11.97 151 1,598

7. Summary and Future Work

In this paper, the design and implementation of an automated extensible memoization framework for network

science were described. The framework’s concepts, algorithms, and architecture were described. The memo-

ization framework was implemented in the CINET framework case study, which is a CI based environment that

supports computation and analytics. An experiment with diverse graphs and measures quantified the benefits of

memoization. The experimental results show that the proposed extensible memoization framework increases the

efficiency of the CI-based system. This type of system also provides numerous end-user functions. Fast response

times empower teachers to show complex study designs and results in a classroom. Scientific experiments are time

consuming and generate large simulation data. Memoization services assist scientists in fast retrieval of previously

conducted, similar simulations. Researchers are also able to make comparisons between systematically managed

collections of simulation results. This approach is extensible in supporting simulation applications from multiple

network science domains without context-specific software development and integration. As a future work, we

plan to implement higher-order search techniques within the DL service framework.
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