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SUMMARY

Sin resolvase is a site-specific serine recombinase
that is normally controlled by a complex regulatory
mechanism. A single mutation, Q115R, allows the
enzyme to bypass the entire regulatory apparatus,
such that no accessory proteins or DNA sites are
required. Here, we present a 1.86 Å crystal structure
of the Sin Q115R catalytic domain, in a tetrameric
arrangement stabilized by an interaction between
Arg115 residues on neighboring subunits. The sub-
units have undergone significant conformational
changes from the inactive dimeric state previously
reported. The structure provides a new high-resolu-
tion view of a serine recombinase active site that is
apparently fully assembled, suggesting roles for
the conserved active site residues. The structure
also suggests how the dimer-tetramer transition is
coupled to assembly of the active site. The tetramer
is captured in a different rotational substate than that
seen in previous hyperactive serine recombinase
structures, and unbroken crossover site DNA can
be readily modeled into its active sites.

INTRODUCTION

Site-specific recombinases are meticulous enzymes that bind

specific nucleotide sequences and are able to break, rearrange

and rejoin DNA segments in a highly controlled manner (Grindley

et al., 2006). These recombinases do not require ATP or other

high-energy cofactors because the energy of the broken phos-

phodiester bonds is stored in covalent protein-DNA intermedi-

ates, and because the reactants and products are chemically

isoenergetic. However, precise regulation is needed to prevent

potentially deleterious outcomes. Some methods of regulation

utilized by these recombinases involve accessory proteins and

binding sites as well as cues from the topologies of their

substrates (Stark and Boocock, 1995). Two distinct families of

site-specific recombinase exist, the serine recombinases and

the tyrosine recombinases, which are so named after the active

site nucleophile responsible for the initial DNA cleavage event.

Sin, the focus of this study, is a serine recombinase that was first

identified on the Staphylococcus aureusmultiresistance plasmid

pI9789, but has since been found on other mobile elements
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(Derbise et al., 1995; Highlander et al., 2007). Its hypothesized

role in vivo is to resolve plasmid dimers, which may arise during

replication, into monomers (Paulsen et al., 1994; Rowland and

Dyke, 1989).

Serine recombinases generally bind their individual crossover

sites as dimers, but the strand exchange reaction itself occurs

within a tetramer (Figure 1). Double-strand breaks are introduced

by the attack of each protomer’s active site serine on a scissile

phosphate group, leading to 2-nucleotide 30 overhangs. Two

subunits are then hypothesized to rotate 180� relative to the

other two, aligning the cleaved DNA ends with new partners

(Dhar et al., 2009a, 2009b; Grindley et al., 2006; Li et al., 2005).

The religation reaction is chemically the reverse of the cleavage

reaction, with the 30 hydroxyl groups attacking the phosphoser-

ine linkages. Many lines of evidence imply that regulation is

achieved by controlling the dimer-tetramer transition (Grindley

et al., 2006; Smith et al., 2010), and recent data for Sin indicate

that even the initial DNA cleavage reaction requires tetrameriza-

tion (Mouw et al., 2010). However, more structural data have

been needed to better understand the conformational changes

that take place during the dimer-to-tetramer transition, and

how they stimulate catalytic activity.

What triggers formation of the catalytically active tetramer?

For all well-studied serine recombinases, formation of an appro-

priate protein-DNA synaptic complex is critical. The details of

this complex vary with the system. For Sin, each full recombina-

tion site, termed res, consists of a crossover site and two regu-

latory sites. One dimer of Sin binds the crossover site, site I,

another dimer of Sin binds the regulatory site, site II, and

a nonspecific DNA bending protein, HU, binds a second regula-

tory site (Rowland et al., 2002). The two res sites are synapsed

to create an elaborate synaptosome that traps three negative

nodes and aligns the two crossover sites in parallel fashion

(Rowland et al., 2002). For WT Sin, assembly of the full synapto-

some is required to trigger conversion of the two site I-bound

dimers into a catalytically active tetramer. However, activated

mutants of Sin (and other serine recombinases) have been iden-

tified that are active in the absence of the regulatory apparatus,

and can recombine two separate linear site I’s (Arnold et al.,

1999; Burke et al., 2004; Haffter and Bickle, 1988; Klippel

et al., 1988; Olorunniji et al., 2008; Rowland et al., 2009; Sarkis

et al., 2001).

The only serine recombinase for which crystal structures of

both dimeric and tetrameric forms are available is gd resolvase.

gd is 31% identical to Sin and shares a similar domain structure,

with an N-terminal catalytic domain followed by a semiflexible

linker and a C-terminal helix-turn-helix DNA binding domain.
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Figure 1. Structure of a Sin Tetramer

(A) Cartoon showing the reaction pathway. Two inactive site I-bound dimers come together and form a catalytically active tetrameric species. DNA cleavage

resulting in phosphoserine intermediates (red dots) is followed by a 180� rotation of one rotating dimer relative to the other, then religation, yielding the

recombinant products. Formation of the tetrameric species can be triggered by accessory proteins bound to regulatory sites on the DNA, very high local

concentration, or mutations in the protein. Here, an activating mutation, Q115R, was used. DNA cleavage, strand exchange, and rejoining occur within the

tetramer.

(B) Structure of an activated tetramer of the Sin Q115R catalytic domain. One tetramer of the three in the asymmetric unit is shown. Individual subunits are shown

in purple, green, orange, and blue; Arg115 and Glu54 as matching sticks, and the Ser9 nucleophiles as red sticks. The N terminus and residue 124, after which

helix E becomes disordered, are labeled on the green subunit. See also Figure S1.

(C) Closeup of the interactions between subunits of one rotating dimer (colored as in B). Asp111 and Arg115 from each subunit and the sulfate ion bound by the

arginines are shown as sticks. Putative hydrogen bonding interactions with the sulfate are shown as dashed lines.

(D) Model of intersubunit interactions in the wild-type protein, which was made by substituting Arg115 with glutamine residues.
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Structure of an Activated of a Serine Recombinase
Structures of WT gd resolvase in the apo- and site-I bound forms

are dimeric (Rice and Steitz, 1994a; Yang and Steitz, 1995). Both

structures represent a catalytically inactive conformation: some

essential residues (e.g., Arg71) point away from the catalytic

serines, and in the DNA complex structure those serines

are >13 Å from the scissile phosphates. More recent structures

of activated mutants depict the protein in a tetrameric state

and reveal that activation entails large conformational changes

(Kamtekar et al., 2006; Li et al., 2005). The protein-protein inter-

face of the inactive dimer is remodeled, and within each catalytic

domain the last helix (helix E) shifts dramatically. This repacking

leads to a large, flat central interface with helix E at its center,

about which subunit rotation could occur (as cartooned in Fig-

ure 1). Three of these activated gd resolvase mutant structures

include site I DNA and provide independent snapshots of the

covalent intermediate resulting from DNA cleavage. In these,

the two halves of site I have moved over 10 Å apart, placing

the free 30 hydroxyl leaving group over 13 Å from the phospho-

serine linkage: the mechanism for religation thus remains

unclear. The resolution of these structures (3.4–3.9 Å) renders
800 Structure 19, 799–809, June 8, 2011 ª2011 Elsevier Ltd All rights
the detailed placement of side chains uncertain (Li et al., 2005).

However, in maps calculated from the deposited data, two of

the highly conserved arginines (8 and 68) were well-ordered

and engaged with the phosphoserine, but there was little to no

electron density for the side chains of 2 others (45 and 71),

implying that the active site was no longer fully assembled. The

structure of the isolated catalytic domain of an activated mutant

was reported at much higher resolution, but the active site

residue Arg68 has been mutated to a histidine, the loop contain-

ing the serine nucleophile is poorly ordered, and in two of the

subunits the packing of helix E relative to the core is closer to

that seen in the inactive dimer than in the DNA-bound tetramer

(Kamtekar et al., 2006). Finally, the WT catalytic domain of

a more distantly related serine integrase crystallized as a

tetramer even though it was dimeric in solution (Yuan et al.,

2008). In this structure, the internal packing of each subunit

also resembles that seen in the inactive dimer. In all five of these

tetrameric structures, the relative orientation of the four central

E-helices is approximately the same, implying that they have

all trapped the same rotational substate.
reserved



Table 1. Crystallographic Statistics

Data Collection Statistics Native SeMet

Wavelength (Å) 0.9794 0.9794

Resolution range (Å) 50–1.86 50–2.07

Unique reflections 156,340 37,646

Rmerge
a 0.062 (0.734) 0.082 (0.560)

<I>/<sI>
b 28.9 (2.4) 45.7 (2.3)

Redundancy 6.3 (6.3) 10.4 (4.9)

Completeness (%) 99.9 (100.0) 99.2 (97.3)

Refinement Statistics

Space group P65 P65

Unit cell dimensions

a = b (Å) 128.208 74.059c

c (Å) 182.015 182.275

a = b (�) 90 90

g (�) 120 120

Solvent content (%) 52 52

Resolution range (Å) 50–1.80

Number of atoms 13,151

Protein 12,141

Ligand (glycerol,

ethylene glycol, sulfate)

120

Water 890

Rmsds

Bond length (Å) 0.007

Bond angle (�) 0.936

Rworking/Rfree
d 20.7/24.6

Ramachandran analysis (%)e

Most favored 91.9

Additionally allowed 7.8

Generously allowed 0.2

Disallowed 0.0

Selected statistics from data collection, phasing and refinement

are shown. Values in parentheses are data from highest resolution shell.
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Structure of an Activated of a Serine Recombinase
Most recently, a crystal structure of dimeric WT Sin bound to

a regulatory site (site II) has transformed our understanding of

the architecture of the regulatory apparatus (Mouw et al.,

2008). A plausible structural model of the full synaptosome

was constructed entirely from experimentally determined crystal

structures, and is consistent with extensive genetic and

biochemical data (Rowland et al., 2005, 2009). This model

implies that the synaptosome biases the conformational equilib-

rium at site I toward the tetramer at least in part bymass action: it

brings the two site I’s into close proximity and also aligns them

properly. The model also accommodates the evidence for direct

contacts between site II- and site I-bound subunits. However,

this model used a gd resolvase tetramer at site I as a substitute

for the unknown structure of an activated Sin tetramer.

While the structural studies outlined above brightened our

understanding of these complex recombination systems, some

areas of mystery remained. For instance, how is the oligomeric

state coordinated with catalytic activity at site I? The dimer-to-

tetramer change could clearly facilitate subunit rotation after

DNA cleavage, but how does it initially activate the catalytic

sites? As discussed above, no current structure has offered

a glimpse of a fully assembled active site, or of the tetramer

that catalyzes strand cleavage. It has also been unclear to

what extent the lessons learned from the activated gd resolvase

structures could be applied to other serine recombinases. To

address these questions at as high a resolution as possible,

we determined the structure of the catalytic domain of an acti-

vated Sin variant. The mutation used, Q115R, has the strongest

activating effect of any single mutation yet studied, and allows

complete bypass of the regulatory mechanism of the synapto-

some (Rowland et al., 2009). This variant tetramerizes readily

even in the absence of DNA (at high nM concentrations), and

efficiently recombines isolated site Is (Rowland et al., 2009).

The resulting structure provides a new basis for modeling the

cleavage-ready synaptic tetramer, and provides a snapshot of

a serine recombinase tetramer in a different rotational substate

from that seen previously, lending strong support to the subunit

rotation hypothesis.

Figure of merit values were calculated prior to density modifications.
a Rmerge is SjjIj-<I>j, where Ij is the intensity of an individual reflection and

<I> is the mean intensity for multiply recorded reflections.
b <I>/<sI> is the mean intensity divided by the mean error.
c The unit cell dimensions change only when ignoring the systematically

weak reflections.
dRworking is SkFoj- jFck/SjFojwhere Fo is an observed amplitude and Fc is

a calculated amplitude; Rfree is the same statistic calculated over a subset

of the data that have not been used for refinement.
e Ramachandran analysis from PROCHECK (Laskowski et al., 1993).
RESULTS AND DISCUSSION

Structure Determination
The catalytic domain of Sin R54E/Q115R, residues 1–128, was

purified and crystallized as described in the methods section.

Since Q115R greatly reduces the protein’s solubility relative to

WT, the R54E mutation was included to reduce aggregation:

Arg54 is a surface residue that is important for site I-site II inter-

actions in the full synaptosome, but is irrelevant in the context of

recombination between isolated site Is (Figure 1B) (Rowland

et al., 2009). The structure was solved through SAD phasing

using selenomethionine-containing crystals. The crystals con-

tained 12 protomers in the asymmetric unit, assembled into three

nearly identical tetramers (see Figure S1 available online). These

tetramers are related to one another by strong pseudotransla-

tional symmetry, as described under ‘‘methods.’’ The final model

was refined against native data to 1.86 Å to an Rworking of 20.7%

and an Rfree of 24.6%. Diffraction and refinement statistics can

be found in Table 1.
Structure 19
Quaternary Structure and Comparison to the Regulatory
Dimer
The Sin tetramer has an approximate 222 symmetry, and one

can define three different dimeric pairs within it. The first set

comprises the ‘‘cutting dimers,’’ the A/D and B/C pairs, that

are expected to cleave the two strands of each DNA duplex

in a concerted fashion (Mouw et al., 2010). The second set

comprises the ‘‘rotating dimers,’’ the A/C and B/D pairs, that

would maintain their internal interactions throughout the hypoth-

esized 180� subunit rotation during strand exchange (Figures 1A
, 799–809, June 8, 2011 ª2011 Elsevier Ltd All rights reserved 801
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Figure 2. Conformational Changes Linked

to Sin Activation

(A) Helix E repacks. One subunit from the inactive

WT site II-bound dimer (yellow) and one from the

activated tetramer (purple) are superimposed,

using the cores as guides. The active site Ser9

nucleophiles are shown as sticks.

(B) Inactive dimer. The dimeric catalytic domain

from the WT Sin structure is shown in yellow and

gray, with the Ser9 nucleophiles shown as sticks,

36.3 Å apart (Ca-Ca). Compare to the cutting dimer

in Figure 1B in which the serines are 24.7 Å apart.

(C) Closeup of helix E packing in the activated Sin

Q115R tetramer. The solvent-accessible surface

of the left-hand protomer’s core region is shown

as a transparent gray surface, and colors are as in

Figure 1B. Helix E packs in cis against helix C,

requiring the movement of Y71. E122 hydrogen

bonds to the N terminus of helix D. R69 swings by

�120� and forms a salt bridge with E124 of the

same protomer’s helix E.

(D) Closeup of helix E packing in the inactive WT

Sin dimer. One protomer is yellow and the other

gray. R69 is flipped away from helix E and the

active site, and helix E from the opposite protomer

packs against helix C.

Structure

Structure of an Activated of a Serine Recombinase
and 1B). The interface between these two dimers is flat and

almost exclusively hydrophobic, as seen with the gd and

TP901 tetramers (Kamtekar et al., 2006; Li et al., 2005; Yuan

et al., 2008). The third set comprises the A/B and C/D pairs,

which would exchange partners during the 180� rotation to

become ‘‘religation dimers,’’ structurally identical to cutting

dimers. Previous work on gd resolvase used different notations

for the same concept: the L/R dimer (cutting dimer), the L/L0

dimer (rotating dimer), and the L/R0 dimer (religation dimer)

(Li et al., 2005).

Theoverall fold of thecatalytic domainpresentedhere is similar

to that seen in other serine recombinase structures (Li et al., 2005;

Rice and Steitz, 1994b; Yang and Steitz, 1995; Yuan et al., 2008):

a core comprised of a four- stranded b sheet (strands 1–4) and

four a helices (A–D), that are connected by a flexible coil to

a long helix, E, that mediates oligomerization. The C-terminal

DNA binding domain of Sin, which is not present in this structure,

would follow helix E. The region between the core and helix E is

a b strand in gd resolvase, but was more a-helical in the inactive

Sin dimer (Mouw et al., 2008), and was thus denoted helix D0.
However, in the tetrameric Sin structure, this region is variable

among protomers and is largely random coil. All 12 protomers

in the asymmetric unit superimpose quite well on one another,

except in this region and into the beginning of helix E (Ser92-

Ile113), indicative of inherent flexibility relative to the rest of the

protein (Figure S1). The active sites and tetrameric architectures

are very similar among the three tetramers. Helix D0 was rather

poorly ordered in the inactive Sin dimer as well, also indicative
802 Structure 19, 799–809, June 8, 2011 ª2011 Elsevier Ltd All rights reserved
of inherent flexibility. As has been previ-

ously hypothesized, this region acts as a

hinge that likely facilitates relativemotions

between the more rigid core and the E

helix (Kamtekar et al., 2006).
The catalytic domains of the inactive Sin dimer and the active

Sin tetramer superimpose well, with a fewmajor exceptions (Fig-

ure 2). The most striking is the repacking of helix E. In the dimer,

its C terminus extends away from the core and packs against the

opposite protomer (Figures 2B and 2D), whereas in the tetramer

it extends toward the core and packs into a small cleft between

helix C and the N terminus of helix D (Figures 2A and 2C). This

repacking leads to a new helix-capping hydrogen bond between

the N terminus of helix D and Glu122 from helix E. Among the

well-studied serine recombinases, this position (Sin Glu122, gd

resolvase Gln116) is conserved as a hydrophilic residue capable

of accepting a hydrogen bond. The flexibility in helix E packing

may be conferred in part by an unusually high concentration of

methionines, themost flexible of the large hydrophobic residues:

there are 5 methionines within the 31 residue segment from

Met89 at the end of strand 4 to Met119 in helix E. Tyr71 also

repacks dramatically in the dimer-to-tetramer transition.

However, this residue is not highly conserved and the signifi-

cance of this observation is unclear.

Although the tertiary structure of the core of the catalytic

domain (residues 1–92) changes very little in the dimer- to-

tetramer transition, at a more detailed level there are several

changes in the vicinity of the active site that may explain the

enhanced catalytic activity of this conformation. The side chain

of Arg69 (corresponding to Arg71 of Tn3 and gd resolvases),

which extends from the helix C-D linker, reorients by roughly

120� and forms salt bridges with a sulfate ion adjacent to the

nucleophile Ser9 and with Glu124 from the repacked helix E
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Figure 3. Comparison of the Sin and gd

Activated Tetramers

(A) Quaternary structure of Sin Q115R, shown as

a cartoon with cylindrical helices.

(B) Quaternary structure of gd resolvase. The

catalytic domain of a postcleavage structure of an

activated mutant of gd resolvase (1ZR4) is shown

from the same vantage point as Sin in part A.

(C) E helices of Sin. Only the E helices at the center

of the activated tetramer are displayed. The two

pairs cross at an angle of �50�.
(D) E helices of gd resolvase. Only the E helices

from the activated gd resolvase catalytic domain

structure (2GM5) are shown. In all the activated gd

resolvase structures, these cross at �85�.
(E) Comparison of activated Sin and gd protomers.

One protomer from each activated tetramer is

superimposed, guided by the core region. Sin is in

purple and gd (1ZR4) gray. The active site serines

and the conserved glutamate from helix E are

shown as sticks (Sin E124 and gd E118). Helix E of

Sin has a 1-turn extension at its N terminus that is

highlighted in red. The angle between the axes of

the two E helices is �20�, and the difference in

rotation about the helical axes is �25�.
(F) Comparison of Sin and gd rotating dimers. One

rotating dimer from each activated tetramer was

superimposed by aligning the approximate 2-folds

between the E-helices. Sin is colored as in (A), and

gd gray (1ZR4). See also Figure S2.
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(Figures 2C, 2D, and 5). Both Arg69 and Glu124 are highly

conserved, and the corresponding gd resolvase residues were

shown to be important for cleavage of the ‘‘proximal’’ DNA

strand (Boocock et al., 1995; Stark and Boocock, 1995). The

loop preceding the highly conserved Arg43 (aa 35–41) was not

modeled in the inactive Sin dimer, but is more structured in the

active tetramer, where it packs against the linker between

helices C and D. Finally, the loop containing the active-site

Ser9 itself shifts, as described in more detail under ‘‘active site.’’

A Cleavage-Competent Rotational Substate
of the Tetramer
A striking difference between our new structure of Sin and the

tetrameric structures of gd resolvase is the crossing angle of

the E helices at the hydrophobic rotational interface (Figure 3).

In the gd resolvase structures as well as the TP901-1 integrase

tetramer, the two antiparallel E helices of one ‘‘rotating dimer’’

cross those of the other rotating dimer at �85� (Kamtekar

et al., 2006; Li et al., 2005; Yuan et al., 2008). However, in Sin,

these pairs of E helices cross each other at �50�, aligning the

two rotating dimer pairs at a different rotational state than is

seen in gd resolvase (Figures 3A–3D). The subunit rotation

theory for strand exchange predicts that the complex must be

able to assume multiple rotational states, at least transiently.

Crosslinking experiments on Hin invertase in the presence of

ethylene glycol did reflect two distinct rotational stopping points

in vitro of �90� and �180� (Dhar et al., 2009a). However, the

structure reported here is the first direct visualization of an

activated serine recombinase in a different rotational state

from those previously observed in other tetrameric serine re-

combinase structures. Another important difference is that the
Structure 19
active-site pockets of the cutting dimers are much closer

together in the Sin Q115R tetramer than in the gd resolvase

tetramers: the sulfate ions in the Sin pocket are 18 Å apart,

versus 27 Å for the scissile phosphates in the postcleavage gd

resolvase tetramer (Figures 3A, 3B, and 4). As described below,

this allows unbroken site I DNA to be modeled onto the cutting

dimers without major distortions. In part, the closer spacing in

the Sin tetramer is a consequence of the smaller crossing angle

between the E helices, but the individual catalytic sites are

also closer to their respective E helices in the Sin tetramer

(Figure 3E).

It is not immediately obvious why the Sin tetramer crystallized

in a different rotational state from gd resolvase and TP901-1 in-

tegrase. As described below, the Q115R mutation used to

stabilize the activated form mediates interactions within rotating

dimers, not between them. Although activation requires an

overall conformational change from dimer to tetramer, subunit

rotation requires that a continuum of rotational substates be

accessible within the tetramer, and that the energetic differences

among them be small enough to be readily overcome by thermal

energy. Thus, different activatingmutationsmight tip the balance

slightly more toward one substate than another.We propose that

the strongly activating Q115R mutation in Sin stabilizes a sub-

state closer to the cleavage-competent form, whereas the sets

of mutations used in the gd resolvase structures preferentially

stabilize a postcleavage form.

Two additional noteworthy differences exist between the Sin

and gd resolvase tetramers. The primary sequence of Sin

contains a small insertion at the N-terminal end of helix E that

extends it by one turn (Figure S2). As shown in Figure 3E, this

doesn’t alter the alignment of conserved residues on helix E
, 799–809, June 8, 2011 ª2011 Elsevier Ltd All rights reserved 803
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Figure 4. Docking of Duplex DNA into the

Catalytic Sites

(A) Uncut duplex DNA taken from the dimeric gd

resolvase-site I complex (1GDT) (Yang and Steitz,

1995) was docked onto the Sin tetramer by su-

perimposing the E-helices of subunit A from each

structure (Sin subunit A is shown in lavender).

Scissile phosphates from the site I DNA are shown

as red spheres; the sulfate ions marking the Sin

catalytic sites as yellow spheres, and the nucleo-

philic serines as red sticks.

(B) View of the model in part A rotated �90� about
a horizontal axis.

(C) Closeup stereo view of the active site sur-

rounding the scissile phosphate of themodel DNA.

View is from the upper left background of (A), and

the same side chains are shown as in Figure 5A.

(D) Cartoon of the gd resolvase-site I tetramer

(PDB ID 1ZR4) for comparison to (B). The phos-

phoserine linkages are highlighted with a red

sphere and the displaced 30 hydroxyl groups with

a black sphere.

(E) Model of Sin in the same rotational substate as

the gd structure in (D), made by changing the

relative orientation of the two rotating dimers. The

scissile phosphates of uncleaved DNA can still be

superimposed on the sulfate ions, but the DNA

clashes with the S9-containing loop and helix A

would interfere with the binding of the opposite

subunit’s helix E in the DNA’s minor groove.
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with the core region of the same molecule (e.g., Sin Glu124/ gd

Glu118 versus Sin Ser9/gd Ser10). However, the relative align-

ment of the two E-helices within the rotating dimer differs (Fig-

ure 3F). When the rotating dimers are aligned by their pseudo-

2-fold axes, the conserved residues in each Sin subunit’s E helix

are translated one helical turn toward the C-terminal end of that

helix, relative to their positions in gd. Because the Sin E helix is

one turn longer, the overall contact area between these helices

is similar: in both cases, the first five 1/2 turns of each E helix

pack against each other. Assuming this different translational

register of the rotating dimer’s E helices is a fixed attribute of

each system, this implies that for DNA cleavage and religation,

the two cutting dimers will be held slightly further apart in the
804 Structure 19, 799–809, June 8, 2011 ª2011 Elsevier Ltd All rights reserved
Sin system (i.e., approximately two

a-helical turns). A second difference lies

in the intramolecular packing of the E

helices: when superimposing individual

protomers from the Sin and gd tetramers,

the core regions align very well, while the

C-terminal region of Sin’s E helix lies

closer to the active site residues in the

core (Figure 3E), bringing Glu124 within

H-bonding distance of Arg69, as noted

above (Figure 2C). The gd resolvase helix

E nevertheless makes a D helix capping

interaction equivalent to that described

above for Sin (Figure 2C), and a small

additional shift in the position of helix E

could potentially bring the conserved
active site residues together in a configuration similar to that

seen with Sin.

Active Site Architecture
Previous biochemical and structural studies of serine recombi-

nases have highlighted a set of conserved residues surrounding

the serine nucleophile that are critical for catalytic function

(Hughes et al., 1990; Olorunniji and Stark, 2009). Rigorous exper-

iments with hyperactive Tn3 resolvase identified six of these

residues as crucial for catalysis: Tyr5, Arg7, Ser9, Asp(Glu)33,

Arg66, and Arg69 (the residue numbering for Sin is used here)

(Olorunniji and Stark, 2009). Mutation of another group of highly

conserved residues also inactivated the enzyme in vivo and had
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Figure 5. The Active Site

(A) Stereo view of the fully assembled active site. The critical residues within

the active site pocket form a hydrogen bonded network surrounding a sulfate

ion from the crystallization buffer. Residues are colored according to the effect

of their mutation on DNA cleavage by Tn3 resolvase (Olorunniji and Stark,

2009): darkest blue for the most deleterious (cleavage rate < = 0.0009x the WT

rate) shading to white for the least deleterious (but still < = 0.022x the WT rate).

(B) The ‘‘inactive site.’’ The catalytic site in the Sin site II structure is shown

in a similar orientation with side chains shaded from orange to yellow to white.

A bound sulfate ion roughly marks the active site but makes additional

contacts to the protein (not shown) that could not occur in a site I-bound

complex. Specific H-bonds are not drawn in (B) and (C) due to the lower

resolution of these structures (PDB ID 2R0Q).

(C) The active site from the postcleavage gd tetramer is shown, with side

chains shaded from dark green to white (PDB ID 1ZR4).
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strong, although not as drastic, effects on DNA cleavage in vitro:

Gln13, Gln18, Arg43, Asp65, and E124 (Sin residue numbering).

These were proposed to play auxiliary roles in organizing the

active site.

The Sin tetramer, unlike previous serine recombinase struc-

tures, depicts all of these residues in a hydrogen-bonded

network that includes the nucleophile Ser9 and a sulfate ion

from the crystallization mother liquor that binds at the position

of the scissile phosphate group in the gd resolvase-site I tetra-

mers (Figure 5). The three critical arginines (7, 66, and 69) make

bidentate salt bridges to the sulfate ion. Twoof these also interact

with conserved carboxylates: Arg66 with Asp65, and Arg69 with

Glu124. The third, Arg7, is close to Ser9. The Arg NH1- Ser OH

distance is 3.5–4 Å in two monomers, and would be that close

on the other two if the serine adopted a different rotamer.

Arg43, Tyr5, and Glu33 form a hydrogen bonding chain that

extends from the backbone carbonyls at the C terminus of helix

C (containing Arg66 and Arg69) to the backbone amides of helix

B. These residues may be primarily important for holding the

tertiary structure together, but they might also participate more

directly in catalysis, as discussed below. Finally, Gln13 and

Gln18 appear to buttress the position of Ser9 by hydrogen

bonding to the peptide backbone of residues 7–9. However,

some details of the interactions may vary in the ground and/or

transition states of the DNA-bound complex, because a sulfate

ion does not perfectly mimic the scissile phosphate: it contains

two negative charges whereas a phosphate group within the

DNA backbone would only have one. The transition state of the

phosphotransfer reaction would be somewhat more charged,

but its geometry would differ from that of the sulfate ion.

Although many of these residues undergo some movement

when coalescing to form the active site in the tetrameric form

(relative to the dimer), the most striking changes are in Arg69

and Glu124 (Figures 2C, 2D, and 5). The guanidium group of

Arg69 swings over 11 Å to join the other critical arginines in form-

ing the sulfate-binding pocket. The repacking of helix E positions

Glu124 so that it can form a salt bridge with this guanidinium

group as well. This interaction was not seen in previous serine

recombinase structures and provides a new explanation for

why this residue is so highly conserved. Additionally, the loop

beginning with Ser9 shifts position, and the serine moves toward

the rest of the active site.

Previous hypotheses on the roles of the active site arginines

are consistent with the structural information presented here

(Boocock et al., 1995; Droge et al., 1990; Grindley et al., 2006;

Rice and Steitz, 1994b; Olorunniji and Stark, 2009). The active

sites of serine recombinases are devoid of residues such as histi-

dine that are generally thought of as good general acid/base

catalysts. However, Arg7 was proposed to be the general base

that abstracts a proton from Ser9 in the cleavage reaction, and

Arg69 is a candidate for the general acid that protonates the

leaving 30 hydroxyl (K. Mouw and P.A.R., unpublished data),

and in our structure, they are nicely positioned for such roles.

Two other residues that (in Tn3 resolvase) are critical for catal-

ysis, Glu33 and Tyr5, do not directly contact the sulfate.

However, they do form a hydrogen bond network with Arg43

and the polypeptide backbone, which may help to stabilize the

local structure. This triad might also act as a proton shuttle to

aid in deprotonating another arginine residue in close proximity
Structure 19, 799–809, June 8, 2011 ª2011 Elsevier Ltd All rights reserved 805
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(e.g., Arg7). Normally, the high pKa of arginine residues (�12.5)

renders them unsuitable for general acid/base catalysis, but

there are precedents for arginine to function as a strong general

base (Charnock et al., 2002; Guillen Schlippe and Hedstrom,

2005a, 2005b; Guillen Schlippe et al., 2004). The pKas of the

arginines in Sin’s active site might be lowered in part by their

proximity, which would electrostatically destabilize the positively

charged form of each individual arginine. Additionally, strong

hydrogen-bonding interactions may lower the pKa of arginine

by straining the planar conformation of the guanidinium,

decreasing the resonance that stabilizes the charged form

(Guillen Schlippe and Hedstrom, 2005b). Asp65, Glu124, and

the carbonyl groups at the end of helix C may play this role,

although they also may simply localize the arginine side chains.

Unfortunately, even at 1.86 Å resolution, a subtle twist in the

side chain’s tip would not be apparent. Arginines 7, 66, and 69

may also be important in orienting the scissile phosphate and

in stabilizing the geometry and additional negative charge of

the transition state. Finally, Arg 125 is strongly conserved but

has not been implicated directly in catalysis. It could not be

modeled in this crystal structure, but small bits of electron

density suggest it points toward the sulfate in the active site.

While its role is unclear, it may help to stabilize the negative

charge of the DNA backbone upon binding.

The Activating Mutation Q115R
The critical mutation that forces the apo protein into its tetra-

meric form is Q115R, located on the E helix. This mutation, which

was originally selected for its activating effect on catalysis, may

simultaneously destabilize the dimeric and stabilize the tetra-

meric forms. In the inactive dimer, Gln115 is mainly solvent-

exposed, but on one side of this slightly asymmetric structure

it could form hydrogen bonds across the dimer interface with

the N terminus of helix C and with the b4-aD0 turn. However, in

the activated structure, the guanidinium groups of the two

Arg115s within each rotating dimer form Pi-Pi stacks with one

another (Figure 1C). Each Arg115 also interacts with Asp111,

which is located one helical turn away, and presumably helps

mitigate the charge-charge repulsion between the arginines. In

the crystal structure each pair of Arg115s also interacts with

a negatively charged sulfate ion that was present in the crystal-

lization buffer but is not necessary for activity in vitro (Figure 1C,

and data not shown). Although two positively charged moieties

would normally repel each other, this type of stacking between

arginine side chains has been observed before at protein inter-

face hotspots as well as implicated in high affinity protein-protein

interactions such as a receptor engaging its ligand (Hughes et al.,

1990; Persson et al., 2009). Arg-Arg pairs have been shown to

defy electrostatics and confer thermodynamic stability (Pedne-

kar et al., 2009). The relative orientation of the guanidinium

groups makes Pi-Pi stacking favorable while still allowing the

formation of hydrogen bonds, as with the aspartates and sulfate

group in this structure. A simple model made by substitution of

the arginine with the WT glutamine shows a very plausible

hydrogen bonding interaction that likely exists within the WT

synaptic complex (Figure 1D).

How stabilizing could the Arg-Arg interaction be? Previous

work in our labs showed that the Q115Rmutation strongly stabi-

lizes the tetrameric over the dimeric form of Sin. From analytical
806 Structure 19, 799–809, June 8, 2011 ª2011 Elsevier Ltd All rights
ultracentrifugation experiments, Kd for the dimer-tetramer equi-

librium of Sin Q115R/R54E was determined to be �400–450 nM

in DNA-bound dimers (Mouw et al., 2010). Given that the WT

protein was dimeric even at 50 mM, we estimate that the Q115R

mutation decreases the Kd for tetramerization by >100-fold.

Computational simulations predict that two guanidinium

moieties of an arginine side chain in water interact with a DDG =

approximately �2.1 kcal/mol (Vondrasek et al., 2009). Since

each Q115R tetramer contains two R115-R115 interactions,

one can estimate DDG = approximately �4.2 kcal/mol (approxi-

mately �17.4 kJ/mol) per tetramer: this would be sufficient to

account for a �1000-fold change in the Kd for tetramerization.

Although the Arg-Arg stacking may theoretically be strong

enough, it is probably not the complete explanation for the acti-

vating effect of Q115R. Certain other substitutions at position

115 also led tomarkedly increased activity overWTSin, although

their effect is not as strong as that of Q115R (Rowland et al.,

2009). These were, in, order of activity, C > Y > K (while the

Q115E change was inhibitory). Modeling indicates that tyrosines

at position 115 could also make favorable pi-pi stacking interac-

tions, as seen in many protein interfaces (Flocco and Mowbray,

1994; Ma et al., 2003; Rajamani et al., 2004; Rice and Steitz,

1994b). It is less obvious how a cysteine or lysine at position

115 could stabilize the tetramer (simulations predict a DDG =

approximately +7.4 kcal/mol for the association of two NH4
+

moieties on lysine residues). Perhaps destabilization of the dimer

is the main factor here.

Activating mutations in other serine recombinases have also

been suggested to alter the equilibrium between dimers and

tetramers, by destabilizing the former and/or stabilizing the

latter. In support of this, they generally lie in the region that

must repack during the transition (Li et al., 2005; Olorunniji

et al., 2008; Rowland et al., 2009), and similar activating muta-

tions in gd resolvase force the catalytic domain into a tetramer

in the absence of DNA (Kamtekar et al., 2006). Interestingly,

the catalytic domain of TP901-1 integrase, amember of the large

serine recombinase family, crystallized as a tetramer despite

being dimeric in solution (Yuan et al., 2008). This tetramer may

be stabilized in part by a nonnative residue from the C-terminal

tag, Glu137, that extends from helix E to cap helix D, similar to

the WT Glu122 of Sin (Figure 2).

Sin Site I Model
The uncleaved duplex DNA from the inactive, WT gd resolvase-

site I structure fits remarkably well into the catalytic sites of the

Sin tetramer (Figure 4). The DNA was docked by rigid-body

superposition of subunit A from the gd resolvase structure (which

has a slightly kinked E helix) onto subunit A of Sin, using the E

helices as guides.With nomanual adjustment, one scissile phos-

phate fits almost exactly onto the sulfate ion that marks the

opposite Sin subunit’s active site, and the other phosphate-

sulfate pair are nearly aligned. Thus, even though the DNA is

far from the catalytic sites in the inactive dimer, the bending

and widening of the minor groove induced by its interactions

with the C-terminal segments of the E-helices appear to be

preset for interactions in an active tetramer.

The precise fit of the DNA duplex onto the Sin tetramer implies

that this rotational substate is consistent with a cleavage-

competent state of the tetramer. Further rotation of the subunits
reserved
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relative to each other would require DNA cleavage, as shown by

rotating the Sin subunits about the flat interface so that their

E-helices cross at the angle seen for gd resolvase (Figure 4D).

The serines remain closer together than in the gd tetramer, due

to the different orientation of each catalytic core relative to its

own helix E (see Figure 3E). However, docking uncleaved DNA

to this tetramer model so that relevant phosphates and sulfates

align requires that the DNA cross the catalytic domains at

a different angle, which creates steric clashes and would be

incompatible with the extension of helix E binding in the minor

groove (Figure 4E).

Although DNA binding may lead to additional conformational

changes, the ease ofmodeling DNA onto theQ115R Sin tetramer

implies that such changesmay be quite small. We are hesitant to

predict detailed interactions from the model. However, the posi-

tion of the highly conserved Gln13 suggests that it stabilizes the

backbone of the 2 nt 30 overhang before religation. Modeling of

the extension of the E helix not included in our tetramer structure

implies that the highly conserved Arg131 does so as well, but

would be located near the active site of the opposite subunit in

the cutting dimer. More detailed hypotheses would require

a structure of the activated Sin tetramer with site I DNA.
Conclusions
This structure offers the first high-resolution snapshot of the cata-

lytic site of a serine recombinase in what appears to be a fully

assembled state, with a sulfate ion bound at the anticipated loca-

tion of the scissile phosphodiester bond (Figure 5). The ease with

which uncleaved DNA could be modeled onto this structure

implies that the quarternary structure is also poised for DNA

cleavage, and that the two cleavage events on a single duplex

could be simultaneous (Dhar et al., 2009a; Kamtekar et al., 2006;

Li et al., 2005; Smith et al., 2010), rather than sequential as has

occasionally been postulated (Figure 4) (Yang and Steitz, 1995).

This structure strongly reinforces the subunit rotation model

for strand exchange: a 35 degree rotation of one ‘‘rotating dimer’’

of the Sin tetramer reported here would create a configuration

resembling the postcleavage tetramers previously reported for

gd resolvase (Figure 3). The fact that both tertiary as well as quar-

ternary differences exist between these tetramers also supports

the idea that the full reaction pathway proceeds through a

number of different substates of the tetramer.

Many questions remain. Deeper analyses of the active site

are needed to elucidate the precise function of each residue in

catalysis. The functions of the regulatory apparatus (Sin site II

and HU) need to be more closely examined: it remains unknown

whether the regulatory apparatus functions through an allosteric

mechanism to activate tetramerization at site I, or whether it does

so simply by aligning two site I-bound dimers at a high local con-

centration and in the correct relative orientation. Future experi-

ments will focus on these two areas to gain a more complete

understanding of the structure and function of the Sin synapto-

some at the molecular level.
EXPERIMENTAL PROCEDURES

Native Protein Purification

The plasmid pSA1162 encoding the 14 kDaN-terminal domain (NTD) of pI9789

Sin was derived from pSA1122 by introducing a stop codon following residue
Structure 19
128 and by introducing the R54E and Q115R mutations. Rosetta (DE3)[pLysS]

cells (Novagen) were transformed with pSA1162 and grown at 225 rpm and

37�C in Luria-Bertani medium containing 50 mg/ml kanamycin and 33 mg/ml

chloramphenicol. The cells were grown to an OD600 of �0.6 and induced

with 1 mM isopropyl-b-D-thiogalactopyranoside (IPTG). Following induction,

the cells were grown for an additional four hours and harvested by centrifuga-

tion. The cell pellet from 2 l of culture (�10 g) was frozen at�80�C for later use.

The pellet was thawed on ice, resuspended in 50 ml lysis buffer (25 mM Tris

[pH 8.0], 10 mM NaCl, 1 mM EDTA, and protease inhibitor cocktail [Roche

Complete]) sonicated, and centrifuged at 18,000 rpm in an SS34 rotor for

30 min. Sin remained in the pellet and was resuspended in buffer A (25 mM

Tris [pH 8.0], 10 mM NaCl, 1 mM EDTA, and 3M urea) followed by centrifuga-

tion at 18,000 rpm for 30 min. Soluble denatured Sin was filtered with a .22 mm

filter, loaded onto a Q FF anion exchange column (Amersham), and eluted with

buffer B (buffer A except 1 M NaCl). Pooled fractions were stepwise dialyzed

into buffer C (25 mM Tris [pH 8.0], 2 M NaCl, 1 mM EDTA, and 2M urea), buffer

D (buffer C except 1M urea), buffer E (25 mM Tris [pH 8.0], 2 MNaCl, and 1mM

EDTA), buffer F (25 mM Tris [pH 8.0], 1 M (NH4)2SO4, and 1 mM EDTA) and

finally buffer G (25 mM Tris [pH 8.0], 500 mM (NH4)2SO4, 1 mM EDTA, and

5% glycerol). The protein was concentrated to �8 mg/ml in centrifugal filters

(MWCO 3000, Amicon) and stored in 50 ml aliquots at �80�C. The final yield

was �50 mg of protein.

Selenomethionyl Protein Purification

Rosetta (DE3)[pLysS] cells (Novagen) were transformed with pSA1162 and

grown overnight at 37�C inml Luria-Bertani medium containing 50 mg/ml kana-

mycin and 33 mg/ml chloramphenicol. The cells were spun down and resus-

pended in M9 media, while flasks containing M9 media plus additives (0.4%

Glucose, 10 mM NaCl, 0.1 mM CaCl2, 2 mM MgSO4) were inoculated with

the overnight culture. The cells were grown to an OD600 of �0.5 and an amino

acid cocktail containing equal amounts each of L-isoleucine, L-leucine,

L-lysine, L-phenylalanine, L-threonine, and L-valine was added to a final

concentration of 100 mg/liter. Selenomethionine was added to a final concen-

tration of 60 mg/liter and the culture was grown for another 15 min, at which

point the cells were induced with 1 mM IPTG, grown for 4 hr and harvested

via centifugation. The protein was purified, concentrated, and stored exactly

as the native protein except all buffers contained 10 mM dithiothreitol (DTT).

Crystallization

Crystals were grown by the hanging drop vapor diffusion method. The protein

wasmixed in a 1:1 ratio with well solutions containing 100mMHEPES (pH 7.0),

1.8 M (NH4)2SO4, 20% ethylene glycol, and 5% glycerol. Both native and

selenomethionyl (SeMet) crystals grew to full size in �3 days and were cryo-

protected in well solutions containing 10% glycerol and frozen in liquid N2.

Similar crystals were grown in 20% PEG 3350 and 0.2 M ammonium acetate

yielding nearly identical diffraction quality and space group parameters, but

were not used for structure determination due to twinning.

Structure Determination

Native diffraction data were collected at the SBC beamline 19-ID at the

Advanced Photon Source (Argonne, IL) while SeMet crystal diffraction data

were collected at the LS-CAT beamline 21-ID. Both data sets were processed

with the HKL3000 suite (Minor et al., 2006). They were isotropic, with resolution

extending to 2.07 Å (<I>/<sI> > 2 in the outermost shell) for the SeMet set and

1.86 Å for the native. All crystals belonged to space group P65 and contained

a strong pseudotranslational symmetry vector of <0.6667, 0.3333, 0.0088> (in

fractions of the unit cell axes) as determined by the native patterson map with

a peak �66% the height of the origin. Reflecting this, every third reflection

(along h and k) was particularly intense. The dimensions of the true unit cell

were a = b = 128.21 Å, c = 182.02 Å. However, ignoring the faint reflections

forces the data into a unit cell of the same space group but 1/3 the volume,

with dimensions (Å) a/O3 = b/O3 = 74.059, c = 182.275, and with the h and k

axes shifted by�30�. The true unit cell contains 12 protomers per asymmetric

unit, whereas the smaller cell contains 4 (Figure S1).

To simplify the search for Se positions (7/ monomer), the structure was

initially solved in the smaller unit cell via SAD phasing using the program

SOLVE (Terwilliger and Berendzen, 1999), which located all 28 Se sites. The

maps were improved by solvent modification with automated phase extension
, 799–809, June 8, 2011 ª2011 Elsevier Ltd All rights reserved 807
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Figure 6. Electron Density Maps

(A) Experimental electron density. The SAD-

phased map, calculated in the small unit cell, was

subject to one round of density modification with

automated phase extension. Themap is contoured

at 1.5 s. An anomalous difference map calculated

from theSeSADdata, shown in red, is contoured at

3.5 s. Both maps contain only experimental phase

information without any model bias. The maps are

centered on a portion of the E helix containing

the residues 104–112, and for clarity, ‘‘carved’’ to

remove density >2 Å from atoms.

(B) Weighted final 2Fo-Fc electron density for the

same region as shown in part A, calculated using

phases from the refinedmodel in the large unit cell.

The map is contoured at 1.5 s. An anomalous

differencemap calculated from anSe SADdata set

is superimposed on it, contoured at 3.5s (red). Due

to thehigh resolution,multiple conformers couldbe

fit for certain side chains, such as Met 109 and

Asp111
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using the program DM (Figure 6A) (Vellieux, 1998). An initial model of one

tetramer was built into this map, but residues 97–102 were disordered. To

take advantage of the information contained in the faint reflections that were

not included in this original solution, the larger unit cell was solved via molec-

ular replacement with MolRep (Vagin and Teplyakov, 2010) using the tetramer

as a search model, yielding a solution with three tetramers per asymmetric

unit. Residues 97–102 were better ordered in the resulting maps, but their

conformations differ somewhat among the 12 monomers (Figure S1). Presum-

ably, this region could not be modeled in the small unit cell because the exclu-

sion of the faint two-thirds of the reflections forces the three subtly different

tetramers to be identical. In one monomer, residues 95–97 remained to poorly

ordered to model, as did residues 125–128 in all the monomers. The structure

was refined against all data to 1.80 Å using REFMAC (Murshudov et al., 1997)

in the CCP4 program suite (CCP4, 1994) to an Rworking of 20.7% and an Rfree of

24.7% with very good stereochemistry (the reported nominal resolution of

1.86 Å was defined by the highest resolution shell in which <I>/<sI> is > 2).

All models were built with Coot (Emsley and Cowtan, 2004) and figures dis-

played with Pymol, made by Delano Scientific. Experimental and postrefine-

ment electron density maps are shown in Figure 6. Diffraction and refinement

statistics can be found in Table 1.
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