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Throughout the paper K denotes a fixed algebraically closed field. By an
Žalgebra we mean a finite dimensional K-algebra associative, with an

.identity and by a module a finite dimensional left A-module.
The class of algebras may be divided into two disjoint subclasses. One

class consists of tame algebras for which the indecomposable modules
occur, in each dimension, in a finite number of discrete and a finite
number of one-parameter families. The second class is formed by the wild
algebras whose representation theory is as complicated as the study of
finite dimensional vector spaces together with two noncommuting endo-
morphisms, for which the classification up to isomorphism is a well-known
unsolved problem. Hence, we can realistically hope to describe modules
only for tame algebras. Given an algebra A and a nonnegative vector d in

Ž .the Grothendieck group K A of A, it is an interesting task to study the0
Ž .affine variety mod d of A-modules of dimension-vector d and the actionA

Ž .of the corresponding product G d of general linear groups. For example,
Ž .we may ask when the variety mod d is irreducible, smooth, completeA

intersection, Gorenstein, Cohen]Macaulay, normal, . . . .
The main aim of this paper is to describe the geometry of module

Ž .varieties mod d for the dimension-vectors d of arbitrary directing mod-A
w xules over tame algebras. Recall that following 20 an indecomposable

A-module M is said to be directing if it does not belong to a cycle
M ª M ª ??? ª M ª M of nonzero nonisomorphisms between inde-1 r
composable A-modules. Directing modules have played an important role
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in the representation theory of algebras: the preprojective components and
the preinjective components in general and the connecting components of
tilted algebras consist entirely of directing modules. C. M. Ringel has

w xproved in 20 that if M is a directing A-module then its support algebra is
a tilted algebra and the dimension-vector of M is a root of the associated

Ž .Euler equivalently, Tits integral quadratic form. We also mention that a
detailed structure of the category of modules over tame tilted algebras has

w xbeen established in 13, 17, 20 . On the other hand, the knowledge of
geometric properties of modules over tame tilted algebras is relatively
poor.

w xIn our paper 1 we apply the main results proved here to describe the
Ž wgeometry of modules over tame quasi-tilted algebras investigated in 10,

x.22 whose dimension-vectors are the dimension-vectors of arbitrary inde-
composable modules.

The paper is organized as follows. In Section 1 we present our main
results and recall the related background. Section 2 is devoted to some
geometric preliminary results on affine varieties of modules. In Section 3
we recall some facts on the module categories of tame tilted algebras.
Section 4 is devoted to the proofs of our main results. The final Section 5
contains some examples illustrating different cases appearing in our
considerations.

1. THE MAIN RESULTS AND THE
RELATED BACKGROUND

Throughout the paper K will denote a fixed algebraically closed field.
By an algebra we mean an associative finite dimensional K-algebra with an

Ž .identity, which we shall assume without loss of generality to be basic and
connected. For such an algebra A, there exists an isomorphism A , KQrI,
where KQ is the path algebra of the Gabriel quiver Q s Q of A and IA

Ž .is an admissible ideal of KQ, generated by a finite system of forms
Ž .Ý l a ??? a called K-linear relations , where l , . . . , l are1F jF t j m , j 1, j 1 tj

elements of K and a ??? a , 1 F j F t, are paths of length G 2 in Qm , j 1, jj

having a common source and a common end. Denote by Q the set of0
vertices of Q, by Q the set of arrows of Q, and by s, e: Q ª Q the maps1 1 0

Ž . Ž .which assign to each arrow a g Q its source s a and its end e a ,1
Ž .respectively. The category mod of all finite dimensional over K leftA

Ž .A-modules is equivalent to the category rep Q, I of all finite dimen-K
sional K-vector spaces and w : V ª V , a g Q , are K-linear maps,a sŽa . eŽa . 1
satisfying the equations Ý l w ??? w s 0 for all K-linear rela-1F jF t j a am , j 1, jj

Ž w x .tions Ý l a ??? a g I see 9, Sect. 4 for details . We shall1F jF t j m j 1, jj,
Ž .identify mod with rep Q, I and call the finite dimensional left A-mod-A K
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Ž .ules shortly A-modules. The Grothendieck group K A of A is then0
identified with the group ZQ0 , and we may assign to each A-module

Ž . Ž .V s V , w its dimension-vector dim V s dim V . Finally, A is saidi a K i ig Q0

to be tame if, for any dimension d, there exists a finite number of
w xA-K X -bimodules M , 1 F i F n , which are finite rank free right mod-i d

w xules over the polynomial algebra K X in one variable and all but finitely
many isomorphism classes of indecomposable A-modules of dimension d

w x Ž .are of the form M m K X r X y l for some l g K and some i.i K w X x
Ž . Ž . Q0Fix now a vector d s d g K A s Z with nonnegative coordi-i 0

Ž . Ž .nates. Denote by mod d the set of all representations V s V , w inA i i
Ž . di Ž .rep Q, I with V s K for all i g Q . A representation V in mod d isK i 0 A

Ž . sŽa .given by d = d -matrices V a determining the maps w : K ªeŽa . sŽa . a

K eŽa ., a g Q , in the canonical bases of K di, i g Q . Moreover, the1 0
Ž .matrices V a , a g Q , satisfy the equations1

l V a ??? V a s 0Ž .Ž .Ý j m , j 1, jj
1FjFt

Ž .for all K-linear relations Ý l a ??? a g I. Therefore, mod d1F jF t j m , j 1, j Aj

is a closed subset of Ł K deŽa .=d sŽa . in the Zariski topology, and soa g Q1
Ž . Ž .mod d is an affine variety. We note that mod d is not necessarilyA A

Ž .irreducible. Clearly, it is the case when I s 0. The affine reductive
Ž . Ž . Ž .algebraic group G d s Ł Gl K acts on the variety mod d byig Q d A0 i

conjugation,

gV a s g V a gy1Ž . Ž . Ž .eŽa . sŽa .

Ž . Ž . Ž .for g s g g G d , V g mod d , a g Q . We shall identify an A-mod-i A 1
ule V of dimension-vector d with the corresponding point of the variety

Ž . Ž . Ž . Ž .mod d . The G d -orbit G d M of a module M in mod d will beA A
Ž .denoted by OO M . Observe that two A-modules M and N are isomorphic
Ž . Ž . Ž .if an only if OO M s OO N . For M, N g mod d , we say that N is aA

Ž .degeneration of M if N belongs to the Zariski closure OO M of OO M inŽ .
Ž . Ž . Ž . Ž .mod d . If N g OO M implies OO N s OO M , the orbit OO N is said toŽ .A

Ž .be maximal. Clearly, an orbit in mod d of maximal dimension is maxi-A
mal, but the converse is not true in general. It is known that the union of

Ž . Ž .all G d -orbits in mod d of maximal dimension is an open subset ofA
Ž . Ž w x.mod d , called its open sheet see 14, 15 .A

Assume now that A s KQrI is of finite global dimension. Then there is
Ž . ² : Ž .a nonsymmetric bilinear form -, - on K A such thatA 0

`
i i² :dim M , dim N s y1 dim Ext M , NŽ . Ž .ÝA K A

is0
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Ž w Ž .x.for all A-modules M, N see 20, 2.4 . Then the corresponding quadratic
Ž . ² : Ž .form x x s x, x , x g K A , is called the Euler form of A. If A isAA 0
Ž .triangular Q has no oriented cycles , we may also consider the Tits form

Ž . Q0 Ž .q of A, defined for x s x g Z s K A asA i 0

q x s x 2 y x x q r x x ,Ž . Ý Ý ÝA i sŽa . eŽa . i j i j
igQ agQ i , jgQ0 1 0

where r is the number of K-linear relations with source i and end ji j
in a minimal set RR of K-linear relations generating the ideal I. If

w xgl.dim A F 2 then q coincides with x 3 . Moreover, we setA A

a x s x x y r x xŽ . Ý ÝsŽa . eŽa . i j i j
agQ i , jgQ1 0

Ž . Q0for x s x g Z . We note that all tilted algebras A are triangular ofi
global dimension at most 2, and so the forms x , q are defined, and inA A
fact they coincide. A vector d g ZQ0 is called connected if the full

Ž . � 4subquiver of Q given by its support supp d s i g Q ; d / 0 is con-0 i
nected. Moreover, we say that d is positive if d is nonzero and d G 0 fori
all i g Q .0

Sometimes it is convenient to consider an algebra A s KQrI as a finite
K-category whose objects are the vertices of Q, and, for any two vertices
x, y g Q , the space of morphisms from x to y is the quotient space of the0

Ž .K-vector space KQ x, y of all K-linear combinations of paths in Q from x
Ž . Ž .to y by the subspace I x, y s I l KQ x, y . A full subcategory C of A is

Ž .said to be convex in A if, for any path a ª a ª ??? ª a with a and0 1 t 0
a in C, all vertices a , 0 F i F t, belong to C. Clearly, if C is a convext i
subcategory of A, we may identify mod with the full subcategory of modC A
given by all representations with the support contained in C. Moreover, if
A is triangular and C is a convex subcategory of A, then x and q areC C

Ž . Ž .the restrictions of x and q to K C . By the support supp M of anA A 0
A-module M we mean the full subcategory of A given by the support of its

Ž .dimension-vector. If supp M s A then the module M is said to be
sincere.

w xIt has been proved by K. Bongartz 6, Proposition 3.4; 5, Proposition 2
that if V is a preprojective indecomposable A-module and d s dim V

Ž . Žthen mod d s OO V and is Cohen]Macaulay in fact even a completeŽ .A
. Ž .intersection , and moreover mod d is normal if A is representation-finite.A

Our main results presented below concern arbitrary directing modules
over tame algebras. For completeness we also present alternative proofs of
the mentioned above results due to K. Bongartz.
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THEOREM 1. Let A be a tame algebra, V a directing module, and
d s dim V. Then

Ž . Ž . Ž .i mod d is a complete intersection of dimension a d and has atA
most two irreducible components.

Ž . Ž . Ž .ii The maximal G d -orbits in mod d consist of nonsingularA
modules.

Ž . Ž . Ž .iii OO V is the open sheet of mod d .A

Ž . Ž . Ž .iv All but finite number of G d -orbits in mod d ha¨e codimensionA
at least two.

Ž . Ž . Ž .v All G d -orbits in mod d of codimension one are contained inA
OO V .Ž .

THEOREM 2. Let A be a tame algebra, V a directing A-module, B s
Ž .supp V , and d s dim V. The following conditions are equï alent:

Ž . Ž .i mod d / OO V .Ž .A

Ž . Ž .ii mod d is not irreducible.A

Ž . Ž .iii mod d is not normal.A

Ž .iv d s h q h , where h and h are connected positï e ¨ectors in1 2 1 2
Ž . Ž . Ž . ² : ² :K A with x h s 0, x h s 0, h , h s 1, h , h s 0.A A0 A 1 A 2 1 2 2 1

Ž .v V is a projectï e-injectï e B-module and B is one of the 2-paramet-
Ž . Ž .ric tilted algebras A p, q, r, s , p, q, r, s G 1, F p, q, r, s , p, r G 1, q, s G 2,

Ž . Ž .p q r G 3, 1r p q r y 1 q 1rq q 1rs ) 1, D p, r , p G 2, r G 1,
Ž . Ž . Ž .E9 p, r or E0 p, r , p G 2, r G 1, 4 F p q r F 6 described below or their

opposite algebras.

Ž .For positive integers p, q, r, s G 1, A p, q, r, s denotes the bound quiver
Ž . Ž . Ž .algebra KD p, q, r, s rI p, q, r, s , where D p, q, r, s is the quiver

Ž .and the ideal I p, q, r, s is generated by the relations a r , b s , a ???p 1 q 1 1
a s ??? s y b ??? b r ??? r .p 1 s 1 q 1 r
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Ž .For integers p, r G 1, q, s G 2, p q r G 3, such that 1r p q r y 1 q
Ž .1rq q 1rs ) 1, F p, q, r, s denotes the bound quiver algebra

Ž . Ž . Ž .KD p, q, r, s rJ p, q, r, s , where D p, q, r, s is the quiver as above and
Ž .the ideal J p, q, r, s is generated by the relations a r , b r ??? r yp 1 q 1 r

b s ??? s , a ??? a s y b ??? b s .q 1 s 1 p 1 1 q 1
Ž .For integers p G 2, r G 1, D p, r denotes the bound quiver algebra

Ž . Ž . Ž .KD p, r rI p, r , where D p, r is the quiver

Ž .and the ideal I p, r is generated by the relations a r , g s , b r ??? rp 1 2 1 2 1 r
y b s , a ??? a q b b q g g .2 1 1 p 1 2 1 2

Ž .For integers p G 2, r G 1, with 4 F p q r F 6, E9 p, r denotes the
Ž . Ž . Ž .bound quiver algebra KD9 p, r rI9 p, r , where D9 p, r is the quiver

Ž .and the ideal I9 p, r is generated by the relations a r , g s , b r ??? rp 1 2 1 2 1 r
Ž .y b s s , a ??? a q b b q g g . Finally E0 p, r denotes the bound2 1 2 1 p 1 2 1 2

Ž . Ž . Ž .quiver algebra KD0 p, r rI0 p, r , where D0 p, r is the quiver
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Ž .and the ideal I0 p, r is generated by the relations a r , g s , b r ??? rp 1 2 1 3 1 r
y b s , a ??? a q b b b q g g .3 1 1 p 1 2 3 1 2

w x Ž .According to 18 the algebras A p, q, r, s are all 2-parametric tilted
˜̃algebras of type A with sincere projective-injective indecomposable mod-m

w x Ž .ules. In addition we will show in 2 that the algebras F p, q, r, s ,
Ž . Ž . Ž .D p, r , E9 p, r , E0 p, r form the family of all 2-parametric tilted alge-

˜ ˜ ˜ ˜˜ ˜ ˜ ˜bras of types D , E , E , E having sincere projective-injective indecompos-n 6 7 8
able modules V such that rad Vrsoc V is indecomposable.

The following facts are immediate consequences of Theorem 2.

COROLLARY 3. Let A be a tame algebra without a con¨ex hereditary
˜ Ž .subcategory of type A . Then for any directing A-module V, mod dim Vm A

s OO V , is normal and a complete intersection.Ž .
COROLLARY 4. Let A be tame algebra and V be a directing A-module

Ž . Ž .which is not projectï e-injectï e o¨er supp V . Then mod dim V s OO V ,Ž .A
is normal and a complete intersection.

Finally, we note that if the support of an A-module V is not hereditary
Ž . Ž w x.then mod dim V is not smooth see 5, Proposition 1 .A

2. GEOMETRIC PRELIMINARIES

In this section we shall recall and prove some facts applied in our
investigations of module varieties over tame tilted algebras. For basic

w xbackground we refer to 7, 12, 14, 15, 21 .

2.1

Ž .Let A s KQrI be a triangular algebra hence gl.dim A - ` and d g
Ž . Q0 Ž . Ž Ž ..K A s Z . Given a module M g mod d we denote by T mod d0 A M A

Ž . Ž Ž ..the tangent space to mod d at M and by T OO M the tangent space toA M
Ž .OO M at M. Then there is a canonical monomorphism of K-vector spaces

T mod d rT OO M ¨ Ext1 M , MŽ . Ž . Ž .Ž .Ž .M A M A
1Ž w Ž .x. Ž .see 14, 2.7 . In particular, if Ext M, M s 0 then OO M is an irre-Ž .A

Ž . Ž . Ž .ducible component of mod d and OO M is an open subset of mod d .A A
Ž .The local dimension dim mod d is the maximal dimension of theM A
Ž .irreducible components of mod d containing M. Then the followingA

Ž Ž .. Ž .inequality dim T mod d G dim mod d holds. Further, M gK M A M A
Ž . Ž .mod d is said to be a nonsingular point if dim mod d sA M A

Ž Ž .. Ž .dim T mod d . If M is a nonsingular point of mod d then MK M A A
Ž . w Ž .xbelongs to exactly one irreducible component of mod d 21, II.2.6 .A

Ž .Further, the nonsingular points in mod d form an open nonemptyA
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Ž . Ž .subset. Clearly, OO M is irreducible, M is a nonsingular point of OO M ,
Ž . Ž Ž .. Ž .and hence dim OO M s dim T OO M . Moreover, we have dim OO MK M

Ž . Ž . Ž w x.s dim G d y dim End M see 15 . It is also known that M gK A
Ž . 2 Ž .mod d is nonsingular provided Ext M, M s 0. The standard proof ofA A

Ž w x.this fact involves schemes and a result by Voigt see 8, 19, 25 . For
triangular algebras of global dimension at most 2 we shall present an

Ž .elementary proof of this fact below. Finally, mod d is said to be aA
Ž .complete intersection provided the vanishing ideal of mod d in theA

w Ž .x Ž . d eŽa .=d sŽa .coordinate ring K A d of the affine space A d s Ł K isa g Q1
Ž . Ž .generated by dim A d y dim mod d polynomials. Observe that it is theA
Ž . Ž .case when dim mod d s a d . We note also that the irreducible compo-A

nents of a complete intersection have the same dimension.

2.2

We shall need the following fact.

PROPOSITION. Let A be a triangular algebra of global dimension at most
2 Ž .2, M an A-module with Ext M, M s 0, and d s dim M. Then M is aA
Ž . Ž . Ž . Ž .nonsingular point of mod d , dim mod d s a d , and dim OO M sA M A

Ž . 1 Ž .a d y dim Ext M, M .K A

Ž .Proof. For any M g mod d we haveA

a d s dim G d y q d s dim G d y x dŽ . Ž . Ž . Ž . Ž .A A

s dim G d y dim End MŽ . Ž .Ž .K A

q dim Ext1 M , M y dim Ext2 M , MŽ . Ž .K A K A

s dim OO M q dim Ext1 M , M y dim Ext2 M , MŽ . Ž . Ž .K A K A

s dim T OO M q dim Ext1 M , M y dim Ext2 M , MŽ . Ž . Ž .Ž .Ž .K M K A K A

G dim T mod d y dim Ext2 M , M .Ž . Ž .Ž .K M A K A

Hence, applying Krull’s generalized principal ideal theorem, we get the
inequalities

dim mod d G a d G dim T mod d y dim Ext2 M , MŽ . Ž . Ž . Ž .Ž .M A K M A K A

G dim mod d y dim Ext2 M , M .Ž . Ž .M A K A

2 Ž . Ž .Therefore, if Ext M, M s 0, this leads to the equalities dim mod dA M A
Ž . Ž Ž .. Ž . Ž .s a d s dim T mod d . Moreover, we have also dim OO M s a d yK M A

1 Ž .dim Ext M, M . This shows our claims.A
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2.3

We get the following consequences of the above proposition.

COROLLARY. Let A be a triangular algebra with gl.dim A F 2, and
Ž . Ž .d g K A be a positï e ¨ector. Assume that for any maximal G d -orbit0

Ž . Ž . 2 Ž . Ž .OO M in mod d we ha¨e Ext M, M s 0. Then mod d is a completeA A A
Ž . Ž .intersection and dim mod d s a d .A

Ž . Ž .Proof. Clearly it is enough to show only that a d s dim mod d .A
Ž . Ž .Observe that the closure of any G d -orbit in mod d is an irreducibleA

Ž .variety. Moreover, any module N from mod d belongs to the closureA
Ž . Ž .OO M of a maximal orbit OO M of mod d . Hence, it follows from ourŽ . A

Ž .assumption that any irreducible component ZZ of mod d contains aA
2 Ž . Ž .module M with Ext M, M s 0. Applying now 2.2 we conclude that MA

Ž .is a nonsingular point of mod d , and so ZZ is a unique irreducibleA
Ž . Ž .component of mod d containing M. In particular, applying 2.2 again,A

Ž . Ž . Ž . Ž .we have dim ZZ s dim mod d s a d . Therefore, dim mod d s a d ,M A A
and this finishes the proof.

2.4

Ž .A module variety mod d is said to be normal if the local ring OO ofA M
Ž .any module M g mod d is integrally closed in its total quotient ring. It isA
Ž .well known that if mod d is normal then it is nonsingular in codimensionA

Ž .one, that is, the set of singular points in mod d is of codimension at leastA
Ž w x.two see 7, Chap. 11 . We shall need the following consequence of Serre’s

normality criterion.

Ž .THEOREM. Let A be a triangular algebra, d g K A a positï e ¨ector,0
Ž . Ž .and assume that mod d is a complete intersection. Then mod d is normalA A

Ž .if and only if mod d is nonsingular in codimension one.A

w Ž .xProof. See 12, II.8.2.3 .

2.5

The following theorem shows that the degenerations of finite dimen-
sional modules over tame tilted algebras are given by short exact se-
quences.

Ž .THEOREM. Let A be a tame tilted algebra, d g K A a positï e ¨ector,0
Ž .and M, N two modules in mod d . Then M g OO N if and only if thereŽ .A

exist A-modules N , U , V and short exact sequences 0 ª U ª N ª V ª 0i i i i i i
in mod such that N s N, N s U [ V , 1 F i F s, M s N for someA 1 iq1 i i sq1
natural number s.
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w xProof. It is a direct consequence of 24, Theorem 3; 26, Corollary 3
Ž w Ž .x.and the well-known fact see, for example, 6, 1.1 that any short exact

sequence 0 ª U ª W ª V ª 0 of modules gives a degeneration U [ V g
OO W .Ž .

2.6

The following characterization of maximal orbits in the module varieties
of tame tilted algebras will be crucial in our investigations.

Ž .PROPOSITION. Let A be a tame tilted algebra, d g K A a positï e0
Ž . Ž . Ž .¨ector, and M a module in mod d . Then OO M is a maximal G d -orbitA

Ž . 1 Ž .in mod d if and only if Ext M9, M0 s 0 for any decomposition M sA A
M9 [ M0 of M.

Proof. Suppose M s M9 [ M0 and there exists a nonsplittable short
exact sequence

0 ª M9 ª E ª M0 ª 0.
Then M s M9 [ M0 is a proper degeneration of E, and hence the

Ž . Ž . Ž .inclusion OO M ; OO E _ OO E holds. Therefore, OO M is not maximal.Ž .
1 Ž .Assume now that Ext M9, M0 s 0 for any decomposition M s M9 [ M0A

Ž . Ž .of M. Let OO M ; OO N for some module N in mod d . ApplyingŽ . A
Theorem 3.5 we conclude that there are A-modules N , U , V and shorti i i
exact sequences

0 ª U ª N ª V ª 0i i i

in mod such that N s N, N s U [ V , 1 F i F s, M s N for someA 1 iq1 i i sq1
natural number s. Invoking now our assumption we infer that the above
exact sequences are splittable, and consequently M s N , N , ??? ,sq1 s

Ž . Ž .N s N. This shows that OO M is a maximal orbit in mod d .1 A

3. MODULE CATEGORIES OF TILTED ALGEBRAS

In this section we shall introduce some notation and recall some facts on
tame tilted algebras and their module categories, needed in the proofs of

w xour main results. For details we refer to 13, 17, 20 .

3.1

For an algebra A, we denote by G the Auslander]Reiten quiver of A,A
and by t and ty the Auslander]Reiten translations D Tr and Tr D,A A
respectively. We shall not distinguish between an indecomposable A-mod-
ule and the vertex of G corresponding to it. A component in G of theA A

Ž r .form ZA r t , r G 1, is said to be a stable tube of rank r. A stable tube`
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of rank one is said to be homogeneous. Further, a component G of G isA
Ž .called preprojective respectively, preinjective if G contains no oriented

cycle and each module in G belongs to the t -orbit of a projectiveA
Ž .respectively, injective module. An indecomposable A-module lying in a

Žhomogeneous tube respectively, preprojective component, preinjective
. Žcomponent of G is said to be homogeneous respectively, preprojective,A
.preinjective .

3.2

Let D be a finite connected quiver without oriented cycles, D the
underlying graph of D, and H s KD the path algebra of D. By a tilting

< <H-module we mean a direct sum T of n s D pairwise nonisomorphic0
1 Ž . Ž .indecomposable H-modules such that Ext T , T s 0. Then B s End TH H

is called a tilted algebra of type D. The module T determines a torsion
Ž Ž . Ž .. Ž . � Ž .theory FF T , GG T in mod , where FF T s X g mod ; Hom T , XH H H

4 Ž . � 1 Ž . 4s 0 , GG T s X g mod ; Ext T , X s 0 , and a splitting torsion the-H H
Ž Ž . Ž .. Ž . � BŽ . 4ory YY T , XX T in mod , where YY T s Y g mod ; Tor T , Y s 0 ,B B 1

Ž . � 4XX T s Y g mod ; T m Y s 0 . By the Brenner]Bulter theorem theB B
Ž . Ž . Ž .functor F s Hom T , ] induces an equivalence of GG T and YY T , andH

1 Ž . Ž . Ž .the functor F9 s Ext T , ] induces an equivalence of FF T and XX T .H
Ž .The images F I of all indecomposable injective H-modules I via F form

a faithful section S s Dop in one component CC of G , called theT B
connecting component of G determined by T. This component connectsB

Ž . Ž .the torsion-free part YY T with the torsion part XX T . Recall that a
Ž .connected full subquiver S of a component CC is called a section if: S1 S

Ž .has no oriented cycles; S2 Each t -orbit in CC intersects S exactly once;A
Ž .S3 Each path in CC with source and target in S lies entirely in S. Finally,
the section S is called faithful if the direct sum of modules lying on S is a
faithful B-module. The following practical criterion for an algebra to be

w xtilted has been established independently by S. Liu 16 and the second-
w x Ž w x.named author 23 see also 20 .

THEOREM. An algebra B is tilted if and only if G admits a component CCB
Ž .with a faithful section S such that Hom X, t Y s 0 for all modules XB B

and Y from D. Moreo¨er, in this case, CC is the connecting component of GB
determined by a tilting module T o¨er the path algebra H s KD of D s Sop

Ž .and B s End T .H

3.3

It is known that a tilted algebra B is representation-finite if and only if
G is a finite preprojective and preinjective component. In particular, it isB
the case for all tilted algebras of Dynkin types. The tilted algebras of
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Ž . w Ž .xEuclidean type extended Dynkin type are tame and we refer to 20, 4.9
for the structure of their module categories. An important class of tame
tilted algebras is formed by the tame concealed algebras, that is, the tilted

Ž .algebras End T of Euclidean type with the tilting H-module being aH
Ž .direct sum of preprojective equivalently, preinjective modules. Namely, it

w xwas shown in 11 that a tame algebra C whose Auslander]Reiten quiver
has a preprojective component is minimal representation-infinite if and

w xonly if C is a tame concealed algebra. We refer to 4, 11 for a complete
classification of tame concealed algebras by quivers and relations. A
general structure of the module category of an arbitrary tame tilted

Ž .algebra including those of wild type has been described by O. Kerner
w x13 . Generally speaking, the Auslander]Reiten quiver of a tame tilted
algebra B consists of a connecting component, a finite number of prepro-
jective components and preinjective components, and a finite number of

Ž . Ž .P K -families of ray tubes obtained from stable tubes by ray insertions1
Ž .and coray tubes obtained from stable tubes by coray insertions . More-

over, we have the following characterization of tame tilted algebras estab-
w xlished in 13, Theorem 6.2 .

THEOREM. Let A be a tilted algebra. The following conditions are equi-
¨alent:

Ž .i A is tame.
Ž .ii x is weakly nonnegatï e.A

Ž . 1 Ž . Ž .iii dim Ext X, X F dim End X for any indecomposableK A K A
A-module X.

Ž .Recall that x is called weakly nonnegative if x x G 0 for anyA A
Ž .nonnegative vector x g K A . We also note that any tilted algebra A is0

w Ž .xof global dimension at most 2 20, 4.2 , and hence x s q .A A

3.4

Ž w Ž . Ž .Moreover, we have the following fact see 13, Sect. 4, 6.2 ; 17, 2.1 ; 20,
Ž .Ž . Ž .x.2.4 8 , 49 .

PROPOSITION. Let A be a tilted algebra. Then A is tame if and only if xA
controls the category mod , that is, satisfies the following properties:A

Ž . Ž . � 4i For any indecomposable A-module X, x dim X g 0, 1 .A

Ž . Ž . Ž .ii For any connected positï e ¨ector d g K A with x d s 1 there0 A
Ž .is a unique up to isomorphism indecomposable A-module X with dim X s d.

Ž . Ž . Ž .iii For any connected positï e ¨ector d g K A with x d s 0,0 A
Ž .there is an infinite family X of pairwise nonisomorphisc indecompos-l lg L

able A-modules with dim X s d for any l g L.l
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3.5

wWe have also the following consequence of Theorem 3.3 13, Sect. 4; 17;
Ž . x20, 4.9 , p. 375 and the fact that the support of any directing module is

w Ž .xconvex 3, 3.2 .

COROLLARY. Let A be a tame tilted algebra and M an indecomposable
A-module. Then there is a con¨ex subcategory B of A such that M is a
B-module and one of the following holds:

Ž .i B is representation-infinite tilted of Euclidean type, and M is a
nondirecting module from a tube of G consisting entirely of B-modules.A

Ž .ii B is a tame tilted algebra containing at most two different concealed
con¨ex subcategories, and M is a directing module lying in a connecting
component of G .B

3.6

In particular, we get also the following

COROLLARY. Let A be a tame tilted algebra. Then

Ž .i The support of any stable tube of G is a con¨ex tame concealedA
subcategory of A.

Ž . Ž .ii If M is an indecomposable A-module with x dim M s 0 thenA
the support of M is a tame concealed subcategory C of A and M lies in a stable
tube of G .C

3.7

An indecomposable module M over a tame tilted algebra such that
Ž .x dim M s 0 is said to be isotropic. We shall use the following well-A

Žknown properties of isotropic modules over tame concealed algebras see
w Ž . Ž .x.20, 3.1 , 4.3 .

LEMMA. Let C be a tame concealed algebra and M an isotropic C-mod-
ule. Then

Ž . Ž .i Hom X, M / 0 for any preprojectï e C-module X.A

Ž . Ž .ii Hom M, Y / 0 for any preinjectï e C-module Y.A

3.8

Ž .Let A be a tame tilted algebra and d g K A be a connected positive0
w xvector. An important consequence of Kerner’s work 13 is the fact that all

but a finite number of components in G are homogeneous tubes. Hence,A
Ž .there exists only a finite number up to isomorphism of indecomposable
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A-modules X which are nonhomogeneous and dim X F d. We define
Ž . Ž .MM d to be a set of isomorphism classes and A-modules M without

Ž .homogeneous direct summands such that M [ N g mod d for someA
A-module N being a direct sum of homogeneous modules. For each

Ž . Ž .M g MM d consider the set WW d consisting of all modules L [ N gM
Ž .mod d such that L , M and N is a direct sum of homogeneousA

w Ž . Ž .x Ž .modules. It was shown in 1, 4.6 , 4.12 that WW d is irreducible. Clearly,M
Ž . Ž . Ž .WW d is G d -invariant. Therefore, we get a decomposition of mod dM A

Ž .into the disjoint union of finitely many irreducible G d -invariant subsets
Ž . Ž . Ž .WW d , M g MM d . Finally, for an A-module Z, denote by m Z theM

Ž .number of homogeneous direct summands including the multiplicities of
Ž . Ž . Ž .Z. Then dim WW d is the maximum of dim OO Z q m Z for all modulesM

Ž .Z g W d .M

4. GEOMETRY OF DIRECTING MODULES

Let A be a tame algebra and d the dimension-vector of a directing
Ž . Ž .indecomposable A-module. We shall describe the maximal G d -orbits in

Ž . Ž .mod d , the irreducible components of mod d , discuss the normality ofA A
Ž . Ž .mod d , and prove that mod d is a complete intersection. In particular,A A

we prove Theorems 1 and 2.

4.1

It is known that the support of any directing A-module is a convex
w Ž .x w xsubcategory of A 3, 2.3 , and moreover is tilted 20, p. 376 . Therefore,

we may assume that A is a tame tilted algebra and d s dim V for a
Ž .uniquely determined sincere directing A-module V. Then pd V F 1,A

1 Ž . Ž w Ž .x. Ž .id V F 1, and Ext V, V s 0 see 20, 2.4 . In particular, OO V is aA A
Ž . Ž .maximal G d -orbit in mod d and OO V is an irreducible component ofŽ .A

Ž . Ž . 2 Ž .mod d of dimension a d , since Ext V, V s 0. We shall abbreviateA A
² : ² :], ] s ], ] and x s x .A A

4.2

We start with the following lemma.

LEMMA. Let V , V be two indecomposable A-modules such that there1 2
exists an exact sequence.

0 ª V ª V ª V ª 01 2

Ž . Ž . Ž .and dim End V [ V s 2. Then x dim V s 1, x dim V s 1, andK A 1 2 1 2
2 Ž .Ext V [ V , V [ V s 0.A 1 2 1 2
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Proof. Let d s dim V and d s dim V . The existence of the above1 1 2 2
1 Ž .short exact sequence and the fact that V is directing imply Ext V , VA 1 2

2 Ž . Ž .s 0 and Ext V , V s 0. Moreover, Hom V , V s 0 becauseA 1 2 A 1 2
Ž .dim End V [ V s 2. Hence we getK A 1 2

² : 1 2d , d s dim Hom V , V y dim Ext V , V q dim Ext V , VŽ . Ž . Ž .1 2 A 1 2 K A 1 2 K A 1 2

s 0.
1 Ž . 2 Ž .Similarly, we have Ext V , V s 0, Ext V , V s 0, and soA 1 A 1

² : ² :d , d s dim V , dim V s dim Hom V , V ) 0.Ž .1 1 K A 1

² : ² : ² : ² :On the other hand, d , d s d , d q d , d s d , d and V is1 1 1 1 2 1 1 1
Ž . Ž .indecomposable. Thus x d s 1. Similarly, we prove that x d s 1.1 2

Then

² : ² : ² :1 s x d s x d q x d q d , d q d , d s 2 q d , dŽ . Ž . Ž .1 2 1 2 2 1 2 1

² : Ž .implies d , d s y1. Since dim End V [ V s 2, for any nonsplit-2 1 K A 1 2
table exact sequence

0 ª V ª W ª V ª 0,1 2

Ž .End W sK holds, and hence W is indecomposable. Consequently, W ,A
V, because dim WsdimqV qdim V sds dimqV, and V is uniquely1 2

Ž . Ž .determined up to isomorphism by d. Moreover, dim Hom V , V sK A 1
² : ² : 1 Ž .d , d s d , d s 1. This implies that dim Ext V , V s 1.1 1 1 K A 2 1
Hence

2 ² :dim Ext V , V s d , d y dim Hom V , VŽ . Ž .K A 2 1 2 1 K A 2 1

qdim Ext1 V , V s0.Ž .K A 2 1

Further, since V , V are indecomposable modules over a tilted algebra, we1 2
2 Ž . 2 Ž .have also Ext V , V s 0, Ext V , V s 0. Combining the above factsA 1 1 A 2 2

2 Ž .we get Ext V [ V , V [ V s 0.A 1 2 1 2

4.3

Our next aim is to prove the following fact.

Ž . Ž .PROPOSITION. Let M be a module in mod d such that OO M is aA
Ž . Ž .maximal orbit of mod d but different from OO V . Then there exist indecom-A

Ž .posable direct summands U and U of M such that Hom U , V / 0,1 2 A 1
Ž . 1 Ž . 1 Ž .Hom V, U / 0, Ext U , U / 0, and Ext U , U / 0. Moreo¨er,A 2 A 1 1 A 2 2

U ` U .1 2
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Proof. We have the equalities

² : ² :1 s d, d s dim M , dim V

s dim Hom M , V y dim Ext1 M , V q dim Ext2 M , VŽ . Ž . Ž .K A K A K A

s dim Hom M , V y dim Ext1 M , V ,Ž . Ž .K A K A

Ž .since id V F 1. Hence Hom M, V / 0, and so there exists an indecom-A A
Ž .posable direct summand U of M such that Hom U , V / 0. We claim1 A 1

1 Ž .that also Ext U , U / 0. Put d s dim U . Observe that U ` V becauseA 1 1 1 1 1
M ` V and U is a submodule of M. Since V is directing and1

Ž . Ž . 2 Ž .Hom U , V / 0, we get Hom V, U s 0. Also Ext V, U s 0 becauseA 1 A 1 A 1
pd V F 1. Therefore, we haveA

² : ² : 1d, d s dim V , dim U s ydim Ext V , U F 0.Ž .1 1 K A 1

On the other hand, we have

² : ² :d, d s dim M , dim U1 1

s dim Hom M , U y dim Ext1 M , U q dim Ext2 M , U .Ž . Ž . Ž .K A 1 K A 1 K A 1

Ž .Clearly, Hom M, U / 0 because U is a direct summand of M. Hence,A 1 1
² : 1 Ž .d, d F 0 implies Ext M, U / 0. Now, if M s U [ N, then we get1 A 1 1

1 Ž . Ž . Ž . Ž . ŽExt N, U s 0 because OO M is a maximal G d -orbit in mod d seeA 1 A
Ž .. 1 Ž .2.6 . Consequently Ext U , U / 0. Similarly, we prove that there existsA 1 1

Ž .an indecomposable direct summand U of M such that Hom V, U / 02 A 2
1 Ž .and Ext U , U / 0. Since V ` U , V ` U , and V is directing, weA 2 2 1 2

conclude also that U ` U .1 2

4.4

Ž .It is known that if V is preprojective respectively, preinjective and U is
Ž . Žan indecomposable A-module such that Hom U, V / 0 respectively,A

Ž . . Ž .Hom V, U / 0 then U is also preprojective respectively, preinjective ,A
1 Ž .and hence Ext U, U s 0. We then get the following consequence of theA

Ž . Ž .above proposition and 2.1 ] 2.3 .

Ž .PROPOSITION. Assume that V is preprojectï e respectï ely, preinjectï e .
Ž . Ž .Then mod d s OO V . In particular, mod d is irreducible, a completeŽ .A A

Ž .intersection, and has dimension a d .
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4.5

We shall prove now the following

Ž .PROPOSITION. Assume that V is preprojectï e respectï ely, preinjectï e .
Ž .Then the ¨ariety mod d is normal.A

Ž .Proof. Assume first that A is representation-finite. Then mod d sA
Ž . Ž . Ž .OO V has only a finite number of G d -orbits. Moreover, by 2.5 , for any
Ž . Ž . Ž .G d -orbit OO M in mod d of codimension one there exists a short exactA

Ž .sequence 0 ª V ª V ª V ª 0 with M , V [ V , dim End M s 2,1 2 1 2 K A
Ž . 2 Ž .and V , V indecomposable. Applying 4.2 we get Ext M, M s 0, and1 2 A

Ž . Ž .hence OO M consists of nonsingular points. This shows that mod d isA
Ž .nonsingular in codimension one, and so is normal, by 2.4 . Therefore, we

may assume that A is representation-infinite and, by symmetry, that V is a
Ž .sincere preprojective module. Then G is of the formA

G s PP k TT k QQ ,A

where PP is a preprojective component containing V, QQ is a preinjective
Ž .component, and TT is a P K -family of pairwise orthogonal coray tubes1

separating PP from QQ. Moreover, all indecomposable projective A-mod-
ules are predecessors of V in PP, and so all indecomposable A-modules of
injective dimension 2 are predecessors of V in PP. On the other hand, any
indecomposable A-module of projective dimension 2 lies either in a tube

Ž .of TT, containing an injective module, or in QQ. Since mod d s OO V is aŽ .A
Ž .complete intersection, we have to show that mod d is nonsingular inA

Ž .codimension one. We use notation introduced in 3.8 . Observe first that
Ž . Ž . Ž . Ž . Ž .dim mod d s a d s dim G d y x d s dim G d y 1. We shall proveA

Ž . Ž . Ž .that if M g MM d and WW d contains a singular module, then dim WW dM M
Ž . Ž .F dim G d y 3. Clearly, this will imply that mod d is normal. AssumeA

Ž . Ž . Ž .M g MM d and L [ N g WW d with L , M is a singular point of mod d .M A
2 Ž . 2 Ž .Then Ext L, L s Ext L [ N, L [ N / 0, because pd N s id N sA A A A

1. Suppose now that L [ N s Z [ Z [ W for some indecomposable1 2
Ž . Ž .direct summands Z and Z with Hom Z , Z / 0 or dim End L G 3.1 2 A 1 2 K A

Then we have

dim OO L [ N s dim G d y dim End L [ NŽ . Ž . Ž .K A

F dim G d y 3 y m N F dim mod d y 2 y m N ,Ž . Ž . Ž . Ž .A

Ž . Ž .and hence dim WW d F dim mod d y 2. Therefore, we may assume thatM A
L [ N is a direct sum of pairwise orthogonal indecomposable modules,

Ž . Ž .and L s L [ L with dim End L s 2. Suppose N s 0. Then WW d1 2 K A M
Ž . Ž .s OO M and dim End M s 2. Hence M is a minimal degeneration ofK A

V and there is an exact sequence 0 ª V ª V ª V ª 0 with V [ V ,1 2 1 2
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Ž Ž .. 2 Ž . Ž .L [ L , M see 2.5 , and so Ext L , L s 0 by 4.2 , a contradiction.1 2 A 2 1
Ž .Thus N / 0. Since TT separates PP from QQ, invoking 3.7 , we conclude

Ž .that Hom N, X / 0 for any indecomposable A-module X lying in QQ.A
But then pd L s 2 implies that L lies in a coray tube of TT. Further,A 2 2
id L s 2, and so L lies in PP. Take now an indecomposable A-moduleA 1 1
H lying on the mouth of a homogeneous tube of TT which does not contain
direct summands of N, and put h s dim H. Since L and N are orthogo-1

² : Ž . ² :nal, dim L , dim N s dim Hom L , N s 0, and so dim L , h s 0.1 K A 1 1
² : Ž .On the other hand, dim L , h s dim Hom L , H and consequently1 K A 1

1 Ž . Ž . Ž .Ext H, L , DHom L , t H s DHom L , H s 0. ThenA 1 1 A 1A A

² : ² :h, d s dim H , dim L [ L [ NŽ .1 2

s dim Hom H , L [ L [ N y dim Ext1 H , L [ L [ NŽ . Ž .K A 1 2 K A 1 2

qdim Ext2 H , L [ L [ N s0.Ž .K A 1 2

On the other hand, we have

² : ² :h, d s dim H , dim V

s dim Hom H , V y dim Ext1 H , V q dim Ext1 H , VŽ . Ž . Ž .K A K A K A

s ydim DHom V , t H s ydim D Hom V , H - 0Ž . Ž .AK A K A

because t H s H, pd H s 1, V is a sincere module lying in PP, QQA A
contains injective modules, and TT separates PP from QQ. The obtained
contradiction completes the proof.

4.6

In our further considerations we assume that V is an internal directing
A-module, that is, is neither preprojective nor preinjective. Then, since A
is a tame tilted algebra and V is a sincere internal directing A-module, we

Ž w Ž .x.know see 17, 2.4 that there exist convex subcategories C , B , C , B1 1 2 2
of A such that

Ž .1 C is tame concealed and B is tilted of Euclidean type obtained1 1
from C by a tubular extension.1

Ž .2 C is tame concealed and B is tilted of Euclidean type obtained2 2
from C by a tubular coextension.2

Ž .3 The Auslander]Reiten quiver G of A has the formA

G s PP k TT k CC k TT k QQ ,A 1 1 2 2
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where PP is a preprojective component consisting of C -modules, TT is a1 1 1
Ž .P K -family of pairwise orthogonal ray tubes, obtained from the unique1
Ž . X

P K -family TT of stable tubes in G by ray insertions, QQ is a preinjec-1 1 C 21
Ž .tive component consisting of C -modules, TT is a P K -family of pairwise2 2 1

Ž . Xorthogonal coray tubes, obtained from the unique P K -family TT of1 2
stable tubes in G by coray insertions, and CC is a directing connectingC2

component.
Ž .4 The connecting component CC has a decomposition

CC s DD k EE k DD ,1 2

where DD is a left stable full translation subquiver of CC consisting of1
preinjective B -modules and closed under predecessors, DD is a right1 2
stable full translation subquiver of CC consisting of preprojective B -mod-2
ules and closed under successors, and EE is a finite full translation

Žsubquiver containing all indecomposable sincere A-modules hence the
.module V .

Ž .5 For any indecomposable A-module X in CC, its restriction to C1
Ž .respectively, to C is either zero or a direct sum of indecomposable2

Žpreinjective C -modules respectively, is either zero or direct sum of1
.indecomposable preprojective C -modules .2

Ž .The ordering of the families PP , TT , CC, TT , QQ in the decomposition 3 ,1 1 2 2
from left to right, indicates that there are nonzero maps only from these
families to itself or to the families to its right. We set PP s PP k TT and1 1
QQ s TT k QQ . Further, we denote by h the dimension-vector of a module2 2 1
H lying on the mouth of a homogeneous tube of TT and by h the1 2 2
dimension-vector of a module H lying on the mouth of a homogeneous2

Ž .tube of TT . Then h generates the radical of x and x and h2 1 C B 21 1
Ž . Ž w Ž .x.generates the radical of x and x see 20, 4.9 .C B2 2

4.7

The internal directing module V is said to be exceptional if its dimen-
² :sion-vector d has a decomposition d s h q h wit h h , h s 1. If V is1 2 1 2

not exceptional, V will be called an ordinary internal directing module.
Our next aim is to prove that if V is an ordinary directing internal module

Ž .then mod d is irreducible, normal, and a complete intersection.A

4.8

We start with the following

PROPOSITION. Assume V is an ordinary internal directing module. Then
Ž .mod d s OO V .Ž .A
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Ž . Ž .Proof. Let M be a module in mod d and assume that OO M isA
Ž .maximal but different from OO V . Consider a decomposition M s P [

W [ Q with P g add PP, W g add CC, Q g add QQ, and put p s dim P,
Ž . Ž .w s dim W, q s dim Q. Applying 4.3 we get Hom P, V / 0 andA

Ž . Ž .Hom V, Q / 0. Since V g CC, we have also Hom V, P s 0 andA A
Ž .Hom Q, V s 0. Hence, invoking pd V F 1 and id V F 1, we obtainA A A

² : ² : 1d, p s dim V , dim P s ydim Ext V , P F 0.Ž .K A

On the other hand, we have also

² : ² :d, p s dim M , dim P

s dim Hom M , P y dim Ext1 M , P q dim Ext2 M , P .Ž . Ž . Ž .K A K A K A

Ž . Ž . Ž .Note that Hom M, P s End P . Further, since OO M is maximal andA A
1 Ž . r 1 Ž .M s P [ W [ Q, we get Ext M, P s [ Ext P , P for a decompo-A A i iis1

sition P s P [ ??? [ P into a direct sum of indecomposable A-modules.1 r
Therefore,

r
2² :d, p s x dim P q dim Hom P , P q dim Ext M , PŽ . Ž .Ž .Ý Ýi K A i j K A

is1 i/j

G 0.

² :Combining the above inequalities we infer that d, p s 0, and hence also
² :dim P , dim P s 0 for all 1 F i, j F r. Similarly, if Q s Q [ ??? [ Q isi j 1 s
a decomposition of Q into a direct sum of indecomposable A-modules, we

² : ² :conclude that q, d s 0 and dim Q , dim Q s 0 for all 1 F i, j F s.i j
1 Ž . Ž .Since P g add PP and V g CC we have Ext P, V s D Hom V, t P s 0,A AA

and consequently

² : ² :p, d s dim P , dim V s dim Hom P , V ) 0.Ž .K A

This implies the inequality

² : ² : ² : ² :w, d s d, d y p, d y q, d F 0,

² : ² :because d, d s 1 and q, d s 0. Next observe that the maximality of
Ž . 1 Ž . 1 Ž . ² :OO M implies Ext W, P s 0, Ext W, Q s 0, and hence w, p sA A

² : 2 Ž . ² : ² :dim W, dim P s dim Ext W, P G 0 and w, q s dim W, dim Q sK A
Ž .dim Hom W, Q G 0. Hence we getK A

² : ² : ² : ² :w, d s w, p q w, w q w, q G 0,

² : ² :and consequently w, d s 0. In particular, w, w s 0. We claim that
w s 0. Indeed, if W / 0 and W s W [ ??? [ W is a decomposition of W1 t
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into a direct sum of indecomposable A-modules, then W , . . . , W are1 t
Ž .directing modules from CC, and hence x dim W s 1 for any 1 F i F t.i

Ž .Moreover, since W is a direct summand of M and OO M is maximal, we
1 Ž . � 4have Ext W , W s 0 for all i / j from 1, . . . , t . Then we getA i j

t
2² :w, w s x dim W q dim Hom W , W q dim Ext W , WŽ . Ž .Ž .Ý Ýi K A i j K A

is1 i/j

) 0,

² :a contradiction with w, w s 0. Therefore, W s 0 and M s P [ Q. From
the above considerations we have also

² : ² : ² : ² : ² :p, d s d, d y w, d y q, d s d, d s 1,

Ž . ² :and hence dim Hom P, V s p, d s 1. On the other hand, for eachK A
Ž .1 F i F r, P is an indecomposable A-module from PP with x dim P s 0,i i

Ž . <and so is an isotropic C -module. But then Hom P , V / 0 because V C1 A i 1

is a direct sum of indecomposable preinjective C -modules. Therefore,1
Ž .dim Hom P, V s 1 implies P s P . Similarly, we prove that Q s Q .K A 1 1

In particular, p s a h and q s b h for some positive integers a , b.1 2
Finally, observe that

² : ² : ² : ² :ab h , h s p, q s p, d y p, p s 1 y 0 s 1,1 2

² : ² :and so a s 1 s b and h , h s 1. Thus d s h q h with h , h s 1,1 2 1 2 1 2
and this contradicts our assumption that V is an ordinary internal direct-

Ž . Ž .ing module. Therefore, we proved that OO V is a unique maximal G d -
Ž . Ž .orbit in mod d , and hence mod d s OO V .Ž .A A

4.9

Ž .As a direct consequence of the above proposition and 2.3 we get the
following

COROLLARY. Assume V is an ordinary internal directing A-module. Then
Ž . Ž . Ž .mod d is a complete intersection, irreducible, and dim mod d s a d .A A

4.10

We complete the above considerations by the following

PROPOSITION. Assume V is an ordinary internal directing module. Then
Ž .mod d is normal.A

Ž .Proof. Since mod d is a complete intersection we have to prove thatA
Ž . Ž . Ž .mod d is nonsingular in codimension one. Since dim mod d s a d sA A
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Ž . Ž . Ž . Ž .dim G d y x d s dim G d y 1, it is enough to show that if M g MM d
Ž Ž .. Ž .in the notation of 3.8 and WW d contains a singular module, thenM

Ž . Ž . Ž .dim WW d F dim G d y 3. Assume that M g MM d and R s L [ N, forM
L , M and a direct sum N of modules from homogeneous tubes is a

Ž .singular point of mod d . In contrast to our previous considerations, weA
2 Ž .cannot assume here that Ext L, L / 0, because pd N F 1 and id N F 1A A A

usually does not hold. Hence, we must consider also the case M s 0. On
Ž . Ž . Ž .the other hand, if dim End M G 3 then dim WW d F dim G d y 3 sA M

Ž . Ž .dim mod d y 2. Hence we may assume that dim End M F 2. AssumeA K A
Ž .that N s 0. If dim End M s 1 then M is an indecomposable A-mod-K A

ule such that dim M s d s dim V, and so M , V is nonsingular. If
Ž .dim End M s 2 then M is a minimal degeneration of V, becauseK A

Ž . Ž .mod d s OO V and dim End V s 1. Then there exists an exactŽ .A K A
sequence 0 ª V ª V ª V ª 0 with V [ V s M, V , V indecompos-1 2 1 2 1 2

Ž .able, and again M is nonsingular, by 4.2 . Therefore, we may assume
N / 0. Let N s X [ ??? .[ X [ Y [ ??? [ Y , for r, s G 0, be a decom-1 r 1 s
position of N such that X , . . . , X are modules from homogeneous tubes1 r
of TT and Y , . . . , Y are modules from homogeneous tubes of TT . By our1 1 s 2
assumption we have r q s G 1. We shall use also the following observa-
tion. Let U be an indecomposable isotropic direct summand of R lying in

Ž .TT so dim U s mh for some m G 1 . Then1 1

² : ² :dim Hom U, V s dim U, dim V s mh , d ) 0Ž .K A 1

because V is sincere and TT separates PP from CC k TT k QQ . On the other1 2 2
hand, we have

² : ² :dim U, d s dim U, dim R

s dim Hom U, R y dim Ext1 U, R q dim Ext2 U, RŽ . Ž . Ž .K A K A K A

s dim Hom U, R y dim Ext1 U, RŽ . Ž .K A K A

because pd U F 1. Hence, there exists an indecomposable direct sum-A
² :mand U9 of R such that dim U, dim U9 is positive, and so U9 is not an

isotropic module from TT . Dually, for any indecomposable isotropic direct1
summand Z of R lying in TT there exists an indecomposable direct2
summand Z9 of R which is not an isotropic module lying in TT .2

Assume now M s 0. It follows from the above remarks that we have
Ž . ² :Hom X , Y / 0 for some i, j. In particular, r G 1, s G 1, and h , h )A i j 1 2

0. Let dim X s p h , for 1 F i F r, and dim Y s q h , for 1 F j F S.i i 1 j j 2
Then we get

² : ² :dim Hom X , Y s dim X , dim Y s p q h , h G p q .Ž .K A i j i j i j 1 2 i j
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Therefore, we obtain the inequality
r r s s

dim End N G p q p q q q .Ž . Ý Ý Ý ÝK A i i j j
is1 is1 js1 js1

Ž . Ž .Observe now that if dim End N G r q s q 3, then dim OO N FK A
Ž . Ž . Ž . Ž . Ž .dim G d y 2 y r q s , and so dim WW d s dim WW d F dim mod dM 0 A

Ž .y 2, as required. Thus it remains to consider up to symmetry only the
following two cases:

Ž .a r s s s 1, p s q s 11 1

Ž .b r s 1, s s 2, p s q s 1.1 1

Ž . Ž . Ž . Ž .Assume a . Then WW s WW d s WW d is the irreducible subset of0 M
Ž .all modules R s X [ Y in mod d such that X and Y are indecompos-A

able A-modules with dim X s h and dim Y s h . It follows from our as-1 2
² : ² : Ž .sumption that h , h G 2. If h , h G 3 then dim End R G 51 2 1 2 K A

Ž Ž . . Ž . Ž .and hence dim WW F dim G d y 5 q 2 s dim G d y 3 s mod d y 2.A
Ž . ² :Hence we may assume dim End R s 4, and equivalently h , h sK A 1 2

Ž . Ž . Ž .dim Hom X, Y s 2. Observe now that if OO Z kis an orbit in mod dA A
Ž .of codimension at most 2, that is, dim End Z F 3, then Z does notK A

contain an indecomposable direct summand of dimension-vector h or h .1 2
Ž .Thus mod d contains only a finite number of orbits of codimension 1A

Ž .and 2, and let V be the union of their closures. Then it follows from 4.2
that the set of all singular points in the intersection V l WW is of codimen-
sion at least 2. The modules R s X [ Y from WW _ V are minimal degen-
erations of V, and so we have short exact sequences 0 ª X ª V ª Y ª 0.

Ž .Furthermore, if R s Y [ Y g WW and dim End R s 4, thenK A

² : 1 21s d, d sdim Hom X , Y ydim Ext Y , X qdim Ext Y , XŽ . Ž . Ž .K A K A K A

s 2 y dim Ext1 Y , X q dim Ext2 Y , X .Ž . Ž .K A K A

2 Ž . 1 Ž .Hence, dim Ext Y, X / 0 implies dim Ext Y, X G 2. Observe alsoK A K A
Ž . ² : ² :that dim Hom X, V s h , d s h , h s 2. Therefore, if R s X [K A 1 1 2

2 Ž . Ž .Y g WW _ V and Ext R, R / 0 then X [ Y is up to isomorphism aA
unique module in WW _ V of the form X [ Y 9, with Y 9 indecomposable

2 Ž .of dimension-vector h such that Ext X [ Y 9, X [ Y 9 / 0. This shows2 A
that the set of all singular points in WW _ V is of codimension at least 2,
and consequently the set of all singular points of WW is of codimension at
least 2.

Ž .Assume now b . Then we get the equalities

² : ² : ² : ² :d, d s h q 2h , h q 2h s 2 h , h q h , hŽ .1 2 1 2 1 2 2 1

² : ² : ² :because h , h s 0 s h , h , which contradicts 1 s d, d .1 1 2 2
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Assume M / 0. If M is a direct sum of two indecomposable modules
Ž . Ž .then dim End R s dim End M [ N G r q s q 3, becauseK A K A

Ž . Ždim End M G 2, and r q s G 1 implies Hom M [ X [ ??? [ X ,K A A 1 r
. Ž . Ž .Y [ ??? [ Y / 0 if s G 1 or Hom X [ ??? [ X , M [ Y [ ??? [ Y1 s A 1 r 1 s

Ž . Ž . Ž ./ 0 if r G 1 . In such a case, dim WW d F dim mod d y 2. Finally,M A
assume that M is an indecomposable module and put e s dim M. Observe

r s Ž .that if Ý p G 2 or Ý q G 2 then again dim End R G r q s q 3,is1 i js1 j K A
Ž . Ž .and our claim dim WW d F dim mod d y 2 follows. Let r s s s 1 andM A

p s q s 1. By symmetry, we may assume that M does not lie in TT . In1 1 2
Ž . Ž .addition we have Hom X [ M, Y / 0 and Hom X , M [ Y / 0,A 1 1 A 1 1

Ž . Ž .and so dim End R G 4. If dim End R G 5 s r q s q 3 then theK A K A
Ž .required claim also follows. Thus assume dim End R s 4. Then weK A

Ž . Ž . Ž . Ž .have End M s K, End X s K, End Y s K, Hom Y , M [ XA A 1 A 1 A 1 1
Ž . Ž . Ž .s 0, Hom M, Y s 0, Hom M, X s 0, Hom X , M s 0, andA 1 A 1 A 1

Ž . Ž . Ž .Hom X , Y s K. Since Hom M, Y s 0 we conclude that x e sA 1 1 A 1
Ž . <x dim M s 1, and also M s 0. Moreover, we haveC2

² : 1h , e s dim Hom X , M y dim Ext X , MŽ . Ž .1 K A 1 K A 1

qdim Ext2 X , M s0,Ž .K A 1

1 Ž . Ž .because Ext X , M , D Hom M, X s 0 and pd X F 1,A 1 1 A 1A

² : 1e, h s dim Hom M , X y dim Ext M , XŽ . Ž .1 K A 1 K A 1

qdim Ext2 M , X G0,Ž .K A 1

1 Ž . Ž .because Ext M, X , D Hom X , M s 0,A 1 1A

² : 1e, h s dim Hom M , Y y dim Ext M , YŽ . Ž .2 K A 1 K A 1

qdim Ext2 M , Y s0,Ž .K A 2

1 Ž . Ž .because Ext M, Y s D Hom Y , M s 0 and id Y F 1,A 1 1 A 1

² : 1h , e s dim Hom Y , M y dim Ext Y , MŽ . Ž .2 K A 1 K A 1

qdim Ext2 Y , M G0,Ž .K A 1

1 Ž . Ž .because Ext Y , M , D Hom M, Y s 0,A 1 1A

² : 1h , h s dim Hom X , Y y dim Ext X , YŽ . Ž .1 2 K A 1 1 K A 1 1

qdim Ext2 X , Y s1,Ž .K A 1 1
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because X g TT and Y g TT . Hence we get1 1 1 2

² : ² :1 s d, d s h q h q e, h q h q e1 2 1 2

² : ² : ² : ² :s 2 q h , h q e, h q h , e G 2 q h , h ,2 1 1 2 2 1

² :and so h , h F y1. On the other hand, we have2 1

² : 1h , h s dim Hom Y , X y dim Ext Y , XŽ . Ž .2 1 K A 1 1 K A 1 1

q dim Ext2 Y , XŽ .K A 1 1

2s ydim D Hom X , Y q dim Ext Y , X G y1.Ž . Ž .AK 1 1 K A 1 1

² : Ž .Consequently, h , h s y1. But this implies dim Ext Y , X s 0,2 1 K A 1 1
2 Ž . ² : 2 Ž . ² :dim Ext M, X s e, h s 0 and dim Ext Y , M s h , e s 0.K A 1 1 K A 1 2

2 Ž . 2 Ž .Hence, Ext R, R s Ext X [ Y [ M, X [ Y [ M s 0, sinceA A 1 1 1 1
pd X F 1, id Y F 1, and pd M F 1 or id M F 1, and so R is nonsingu-A 1 A 1 A A

Ž .lar. Finally, assume by symmetry that r s 1, s s 0, and p s 1. Thus1
d s e q h . Since X is an isotropic module from TT , hence we know that1 1 1

Ž .M is not an isotropic module from TT , and Hom X , M / 0. Clearly,1 A 1
Ž . Ž . Ž .then Hom M, X s 0. If dim End R s dim End M [ X G 4 s rA 1 K A K A 1

Ž .q 3 s r q s q 3 then our claim follows. Hence, assume dim End R sK A
Ž . Ž .3. Then End M s K and Hom X , M s K. Observe that if M is anA A 1

² :isotropic module then e s h and h , h s 1, and we get contradiction2 1 2
² : ² :with our assumption on V. Thus e, e s 1. Moreover, h , e s1

Ž .dim Hom X , M s 1. Hence we getK A 1

² : ² : ² :1 s d, d s e q h , e q h s 2 q e, h ,1 1 1

² :so e, h s y1. On the other hand,1

² : 1e, h s dim Hom M , X y dim Ext M , XŽ . Ž .1 K A 1 K A 1

q dim Ext2 M , XŽ .K A 1

s ydim D Hom X , M q dim Ext2 M , XŽ . Ž .K A 1 K A 1

G y1 q dim Ext2 M , X .Ž .K A 1

² : 2 Ž . 2 Ž .But then e, h s y1 implies Ext M, X s 0. Therefore, Ext R, R1 A 1 A
2 Ž .s Ext M [ X , M [ X s 0, because pd X F 1 and either pd M F 1A 1 1 A 1 A

Ž .or id M F 1. This finishes our proof that mod d is nonsingular inA A
codimension one, and so is normal.
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4.11

Our next aim is to prove the following fact.

PROPOSITION. Assume V is an exceptional internal directing A-module.
Then the following statements hold.

Ž . Ž . Ž . Ž .i mod d is a complete intersection and dim mod d s a d .A A

Ž . Ž .ii mod d has two irreducible components.A

Ž . Ž .iii mod d is not normal.A

Ž . Ž . Ž .iv OO V is the open sheet of mod d .A

Ž . Ž . Ž .v All G d -orbits in mod d of codimension one are containedA
in OO V .Ž .

Ž . Ž . Ž .vi The maximal G d -orbits in mod d consist of nonsingularA
modules.

Ž .Proof. Clearly, OO V is an irreducible component and dim mod dŽ . V A
Ž . Ž .s a d . Denote by WW the set of all modules in mod d of the formA

X [ Y, where X and Y are indecomposable A-modules with dim X s h1
and dim Y s h . We know that WW is irreducible. Moreover, if X [ Y g WW2

Ž . Ž . Ž .then dim End X s 1, dim End Y s 1, dim Hom X , Y sK A K A K A
² : Ž . Ž . Ž .h , h s 1, Hom Y, X s 0, and hence dim OO X [ Y s dim G d y1 2 A

Ž . Ž . Ž .dim End X [ Y s dim G d y 3 s dim mod d y 2. Therefore WW is anA A
Ž . Ž .irreducible closed subset of mod d of dimension a d , and so is anA

Ž .irreducible component of mod d . Further, it follows from the proof ofA
Ž . Ž .Proposition 4.8 that if OO M is a maximal orbit in mod d different fromA

Ž . Ž . Ž .OO V then OO M is contained in WW . This shows that mod d is a union ofA
OO V and WW . Observe that OO V / WW . Indeed, if WW ; OO V then WWŽ . Ž . Ž .

Ž . Ž Ž ..; OO V _ OO V , and hence dim WW F dim OO V _ OO V - dim OO V ,Ž . Ž . Ž .
Ž .a contradiction. Therefore, mod d has exactly two irreducible compo-A

Ž .nents: OO V and WW . Clearly, mod d is a complete intersection andŽ . A
Ž . Ž . Ž . Ž . Ž .dim mod d s a d . Moreover, OO V is a unique G d -orbit in mod dA A

Ž . Ž . Ž .of maximal dimension a d , and hence is the open sheet of mod d .A
Ž . Ž .Further, all G d -orbits in mod d of codimension one are contained inA

Ž .OO V . Our next aim is to show that mod d is not normal. Observe thatŽ . A
the intersection OO V l WW contains the set ZZ of all modules X [ Z withŽ .
X and Z indecomposable A-modules such that dim X s h , dim Z s h ,1 2
and there exists an exact sequence of the form 0 ª X ª V ª Z ª 0.

Ž .Clearly ZZ consists of singular points of mod d , as a subset of theA
Ž .intersection of two irreducible compondents of mod d . Hence in orderA

Ž .to prove that mod d is not normal, it is enough to show that dim ZZ sA
Ž . Ž .a d y 1 s dim mod d y 1.A
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² : ² : ² : ² :First observe that 1 s d, d s h , h q h , h s 1 q h , h im-1 2 2 1 2 1
² :plies h , h s 0. Let X and Y be two indecomposable modules with2 1

dim X s h and dim Y s h . Then we have1 2

² :0 s h , h2 1

s dim Hom Y , X y dim Ext1 Y , X q dim Ext2 Y , XŽ . Ž . Ž .K A K A K A

s ydim Ext1 Y , X q dim Ext2 Y , X ,Ž . Ž .K A K A

1 Ž . 2 Ž .and so dim Ext Y, X s dim Ext Y, X . Further,K A K A

< ² : ² :dim Hom X , V s dim Hom X , V s h , d s h , h s 1,Ž .Ž .CK C K A 1 1 211

Ž < . Ž . ² : <and dim Hom X, Y s dim Hom X, Y s h , h s 1. Since VC CK C K A 1 21 11
<and Y are direct sums of indecomposable preinjective C -modules, weC 11

< <conclude that V and Y are indecomposable C -modules. Let d9 sC C 11 1

< < Ž < .d . Since V is an indecomposable preinjective C -module, OO V is aC C C11 1 1

Ž . Ž .unique maximal G d9 -orbit in the variety mod d9 , and consequentlyC11 Ž < . Ž < . Ž .Ext Y , X / 0. Moreover, dim End X [ Y s 3 and x d9 sC CC K C C1 11 1 1
Ž < . Ž < . Ž . Ž .x dim V s 1, and hence OO X [ Y is a G d9 -orbit of mod d9 ofC CC C1 11 1

Ž .codimension two. Let WW 9 be the set of all modules in mod d9 which areC1
Ž .the restrictions of modules from WW to C . Clearly, dim WW 9 s a d9 y 1.1

Ž . Ž . Ž .Further, it follows from 4.2 that mod d9 has only finitely many G d9 -C1

orbits of codimension one. This implies that the subset WW 0 of
<WW 9 consisting of all modules which are not minimal degenerations of V C1

has codimension 2. Therefore, for all but finitely many indecomposable
A-modules X with dim X s h there exists an exact sequence1

< <0 ª X ª V ª Y ª 0C C1 1

for some indecomposable A-module Y with dim Y s h . Since we have2
Ž < . Ž . Ž .Hom X, V s Hom X, V and Hom X, V is of dimension one,CC A A11

any nonzero map from X to V is a monomorphism, and consequently
there exists an exact sequence

0 ª X ª V ª Z ª 0,

where Z is an A-module with dim Z s h , uniquely determined by X.2
Observe that such a module Z is indecomposable, because V is directing

Ž . ² : ² :and then dim Hom V, Z s d, h s h , h s 1. Therefore, we haveK A 2 1 2
Ž . Ž .proved that dim ZZ s a d y 1, and so mod d is not normal. Finally,A

Ž . Ž . Ž .observe that any maximal G d -orbit in mod d different from OO V is ofA
Ž .the form OO X [ Y for indecomposable A-modules X and Y with dim X

1 Ž .s h , dim Y s h , and Ext Y, X s 0. But then we have the following1 2 A
2 Ž . 1 Ž .equalities dim Ext Y, X s dim Ext Y, X s 0 and consequentlyK A K A
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2 Ž . Ž . Ž .Ext X [ Y, X [ Y s 0. Hence all maximal G d -orbits in mod d con-A A
sist of nonsingular modules.

4.12

We may now complete the proof of Theorem 1.

PROPOSITION. Let A be a tame algebra and V a directing A-module and
Ž . Ž .d s dim V. Then all but a finite number of G d -orbits in mod d ha¨eA

codimension at least two.

Proof. We may assume that A is the support algebra of V, and so A is
Ž . Ž . Ž . Ž .a tilted algebra. It follows from 4.4 , 4.8 , and 4.11 that OO V is a

Ž . Ž . Ž . Ž .unique G d -orbit in mod d of codimension 0, and if OO M is a G d -orbitA
Ž .in mod d of codimension 1 then M is a minimal degeneration of V, andA

so there exists a short exact sequence 0 ª V ª V ª V ª 0, where1 2
V and V are indecomposable A-modules such that M s V [ V ,1 2 1 2

Ž . Ž .and clearly dim End M s 2. Moreover, then x dim V s 1 andK A A 1
Ž . Ž . Ž .x dim V s 1, by 4.2 . We know from 3.4 that there are only finitelyA 2

Ž .many choices up to isomorphism for M s V [ V satisfying the above1 2
Ž . Ž .conditions. Therefore, the number of G d -orbits in mod d of codimen-A

sion 1 is finite. This finishes the proof.

4.13

Our final aim in this section is to complete the proof of Theorem 2, by
Ž . Ž .showing the equivalence of its statements iv and v . We start with the

following fact.

PROPOSITION. Assume V is a sincere exceptional internal directing A-mod-
ule. Then V is projectï e-injectï e.

Ž .Proof. We use notation introduced in 4.6 . Hence dim V s d s h q1
h , where h , h are generators of the radicals of x and x , and2 1 2 C C1 2

² : ² : ² : ² : ² :h , h s 1, h , h s 0. Then d, h s h , h q h , h s 0 and1 2 2 1 1 1 1 2 1
² : ² : ² : y1h , d s h , h q h , h s 0. Put d s dim t V and d s dim t V.2 2 1 2 2 1 A 2 A

Ž y .We observe first that supp t V and C respectively, supp t V and CA 1 A 2
have no common objects. Let H and H be indecomposable modules1 2
lying on the mouth of homogeneous tubes in TT and TT , respectively. We1 2
then get

1dim Hom H , t V s dim D Hom H , t V s dim Ext V , HŽ . Ž . Ž .AK A 1 A K 1 A K A 1

² : ² :s y dim V , dim H s y d, h s 01 1
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and

dim Hom tyV , H s dim D Hom tyV , H s dim Ext1 H , VŽ .Ž . Ž .K A A 2 K A 2 K A 2A

² : ² :s y dim H , dim V s y h , d s 0.2 2

Since supp H s C , PP contains all indecomposable projective C -mod-1 1 1 1
ules and TT separates PP from CC k TT k QQ , we conclude that supp t V1 1 2 2 A
and C have no common objects. Similarly, supp H s C , QQ contains all1 2 2 2
indecomposable injective C -modules and TT separates PP k TT k CC from2 2 1 1
QQ , and so supp tyV and C have no common objects. We claim now that2 A 2

1 Ž y .Ext t V, t V s 0. Suppose we have an exact sequenceA A A

e : 0 ª t V ª W ª tyV ª 0.A A

a 6

Let x y be an arrow in Q with x in Q and y in Q . ThenA C C2 1
Ž . Ž y .t V s 0, t V s 0, and hence we get a commutative diagram withA y A x
exact rows

6 6 6 6Ž .0 t V W 0 0A x x

6 6 6Wa

y6 6 6 6Ž .0 0 W t V 0.y A y

Thus W s 0. Moreover, Q has no arrows with source in Q and targeta A C1

in Q , and clearly W s 0 for any common object of C and C . AllC z 1 22

together this implies W s M [ N, where M is the restriction of W to C1
and N is the restriction of W to C . Considering now the restrictions of2
the above exact sequence e to C and C , we conclude that M , t V,1 2 A

y1 1 Ž y .N , t V, and so the sequence e is splittable. Therefore, Ext t V, t VA A A A
Ž .s 0. We claim now that Hom t V, V s 0. If V is not injective, then itA A

has no injective predecessors in mod , and we haveA

dim Hom t V , V s dim D Hom t V , VŽ . Ž .AK A A K A

s dim Ext1 tyV , t V s 0.Ž .K A A A

Ž .On the other hand, if V is injective then V s I a for some vertex a of
Ž .Q , and Hom t V, V s 0 because supp t V and C have no commonC A A A 11

objects. Suppose now that the module V ius not projective. Then t V is aA
directing module, and hence d s dim t V is a positive connected vector1 A

² :with d , d s 1. Moreover, we have1 1

² : ² : 1d, d s dim V , dim t V s ydim Ext V , t VŽ .1 A K A A

s ydim D Hom t V , t V s ydim End t V s y1Ž . Ž .AK A A K A A
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and

² : ² :d , d s dim t V , dim V s dim Hom t V , V s 0.Ž .1 A K A A

Since supp t V is contained in C , we have alsoA 2

² : ² :d , h s dim t V , dim H s dim Hom t V , HŽ .1 2 A 2 K C A 22

s dim Hom t V , t H s dim D Hom t V , t HŽ . Ž .CK C A A 2 K A C 222

s dim Ext1 H , t V s dim Ext1 H , t VŽ . Ž .K C 2 A K A 2 A2

² : ² :s y dim H , dim t V s y h , d .2 A 2 1

Therefore, we get

² :0 F h q d , h q d1 1 1 1

² : ² : ² : ² :s d q d , d q d y h q d , h y h , h q d y h , h1 1 1 1 2 2 1 1 2 2

² : ² : ² : ² :s 1 y d , h q h , d y h , h y h , h s 0,Ž .1 2 2 1 1 2 2 1

² : ² : ² : ² :and so h q d , h q d s 0. Further, 0 s d , d s d , h q d , h1 1 1 1 1 1 1 1 2
² :implies d , h / 0, because t V is a nonzero C -module and then1 1 A 2

² : Ž .d , h s dim Hom t V, H / 0. Thus d q h is a positive con-1 2 K A A 2 1 1
Ž . Ž . Ž .nected vector of K A with x d q h s 0. Applying now 3.4 we0 A 1 1

conclude that d q h s dim X for an indecomposable A-module lying in1 1
a homogeneous tube of G . On the other hand, TT and TT are uniqueA 1 2
families of tubes of G , and clearly d q h is neither a multiple of h norA 1 1 1
a multiple of h . This contradiction shows that in fact V is projective.2

Ž .Clearly, then V s P x for some vertex x of Q . Suppose now that V isC2

not injective. Then

dim Hom V , tyV s dim Hom P x , tyV s 0Ž .Ž . Ž .K A A K A A

because supp tyV and C have no common objects. Moreover, d sA 2 2
y ² : ydim t V is a positive connected vector with d , d s 1, because t V isA 2 2 A

directing. Further, we have

² : ² y : 1 yd , d s dim t V , dim V s ydim Ext t V , VŽ .2 A K A A

y y ys ydim D Hom t V , t V s ydim End t V s y1Ž . Ž .AK A A K A A

and

² : ² y : yd, d s dim V , dim t V s dim Hom V , t V s 0,Ž .2 A K A A
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by the above remark, and consequently

² : ² : ² : ² : ² :d q d , d q d s d, d q d, d q d , d q d , d s 1.2 2 2 2 2 2

since supp tyV is contained in C , we have alsoA 1

² : ² y yh , d s dim H , dim t V s dim Hom H , t V. Ž .1 2 1 A K A 1 A

s dim Hom ty H , tyV s dim D Hom ty H , tyVŽ . Ž .CK C C 1 A K C 1 A11 1 1

s dim Ext1 tyV , H s dim Ext1 tyV , HŽ . Ž .K C A 1 K A A 11

² y ² :s y dim t V , dim H s y d , h .A 1 2 1

Then we get

² :0 F h q d , h q d2 2 2 2

² : ² : ² : ² :s d q d , d q d y h q d , h y h , h q d y h , h2 2 2 2 1 1 2 2 1 1

² : ² : ² : ² :s 1 y d , h q h , d y h , h y h , h s 0Ž .2 1 1 2 1 2 2 1

² : yand hence h q d , h q d s 0. Further, since t V is an indecompos-2 2 2 2 A
² : Ž y .able C -module, we have h , d s dim Hom H , t V / 0, and then1 1 2 K A 1 A

² : ² : ² : ² :0 s d, d s h , d q h , d implies h , d / 0. Thus h q d is2 1 2 2 2 2 2 2 2
Ž . Ž .a positive connected vector of K A with x h q d s 0. This again0 A 2 2

Ž .leads to a contradiction with 3.4 because h q d is neither a multiple of2 2
h nor a multiple of h . Hence V is also injective. This completes our1 2
proof.

4.14

The following final result completes the proof of Theorem 2.

PROPOSITION. Assume V is a sincere internal directing A-module. Then V
is exceptional if and only if A or Aop is isomorphic to one of the 2-parametric

Ž . Ž .tilted algebras A p, q, r, s , p, q, r, s G 1, F p, q, r, s , p, r G 1, q, s G 2,
Ž . Ž .p q r G 3, 1r p q r y 1 q 1rq q 1rs ) 1, D p, q , p G 2, r G 1,

Ž . Ž .E9 p, r or E0 p, r , p G 2, r G 1, 4 F p q r F 6, and V is its unique
indecomposable projectï e-injectï e module.

Proof. Assume V is an exceptional internal directing sincere A-mod-
Ž .ule. We use notation introduced in 4.5 . Hence dim V s d s h q h with1 2

² : ² : Ž .h , h s 1, and h , h s 0. Moreover, it follows from 4.13 that V is1 2 2 1
projective-injective. Hence, there is a unique sink a and a unique source c

Ž . Ž .in Q such that I a s V s P c . Further, there is an Auslander]ReitenA
Ž w x.sequence in mod see 9 of the formA

0 ª rad V ª rad Vrsoc V [ V ª Vrsoc V ª 0,
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and hence rad V, Vrsoc V are directing modules lying in the connecting
component CC. Hence, for any convex subcategory D of A containing the

Ž . <sink a respectively, the source c , the restriction V of V to D is anD
Ž .indecomposable injective respectively, indecomposable projective D-

Ž .module. Let D respectively, D be the convex subcategory of A given1 2
Ž .by all objects of A except c respectively, except a . Then it follows from

w x Ž .17, Proposition 3.3 that D respectively, D is a one-parameter tame1 2
Žtilted algebra having the sincere indecomposable module rad V respec-

. Žtively, Vrsoc V in the unique preinjective component of G respectively,D1
.in the unique preprojective component of G . Consider now the restric-D 2

< <tions M s V of V to C and N s V of V to C . It follows from theC C1 21 2

above remarks that M is a sincere indecomposable injective C -module1
and N is a sincere indecomposable projective C -module. Moreover, we2
have d s h q h . Then a simple inspection of the Bongartz]Happel]1 2

w xVossieck list of the frames of tame concealed algebras 4, 11 shows that
C and C are tame concealed canonical algebras, that is, are of one of the1 2
forms:

Ž . Ž .L p, q , p, q G 1, the path algebra KQ p, q of the quiver

or

Ž . Ž . Ž . Ž . Ž . Ž .L p, q, r , with p, q, r s 3, 3, 2 , 4, 3, 2 , 5, 3, 2 or m y 2, 2, 2 ,
Ž . Ž .m G 4, the bound quiver algebra KQ p, q, r rJ p, q, r , where
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Ž . Ž .and J p, q, r is the ideal in KQ p, q, r generated by a ??? a q b ???1 p 1
Žb q g ??? g . We know also that the tubular extension B of C in ourq 1 r 1 1

Ž ..notation 4.6 is a tilted algebra of Euclidean type having the sincere
<indecomposable injective module V in the preinjective component ofB1

G . Similarly, the tubular coextension B of C is a tilted algebra ofB 2 21
<Euclidean type having the sincere indecomposable projective module V B2

in the preprojective component of G . Now we involve the completeB2

description of all indecomposable modules lying on the mouth of tubes
w Ž .xof tame concealed canonical algebras given in 20, 3.7 . In particular, we

know that the mouth of any tube in G or G contains exactly oneC C1 2

module which is not simple. Hence, if B is a proper tubular extension of1
Ž .C respectively, if B is a proper tubular coextension of C then the1 2 2

Žpresence of an indecomposable sincere injective B -module respectively,1
.of indecomposable sincere projective B -module implies that in this2

Ž .extension respectively, coextension process only the nonsimple indecom-
Ž .posable modules from the mouth of tubes of G respectively, G areC C1 2

used. Then a simple analysis shows that B s D , B s D , A is the1 1 2 2
w xone-point extension A s B rad V of B by the indecomposable injective1 1

w xB -module rad V, A is the one-point coextension Vrsoc V B of B by1 2 2
the indecomposable projective B -module Vrsoc V, and A or Aop is2

Ž .isomorphic to one of the algebras A p, q, r , s , p, q, r , s G 1,
Ž . Ž .F p, q, r, s , p, r G 1, q, s G 2, p q r G 3, 1r p q r y 1 q 1rq q 1rs )

Ž . Ž . Ž .1, D p, r , p G 2, r G 1, E9 p, r or E0 p, r , p G 2, r G 1, 4 F p q r F 6.
op Ž .Conversely, if A or A is one of the above algebras A p, q, r, s ,

Ž . Ž . Ž . Ž .F p, q, r, s , D p, r , E9 p, r , or E0 p, r then we easily deduce that A is
a 2-parametric tilted algebra and its unique projective-injective indecom-
posable A-module V is an exceptional sincere directing A-module. We

Ž .shall indicate it in the case A s E9 3, 2 . In this case, A is the bound
Ž . Ž . Ž .quiver algebra KD9 3, 2 rI9 3, 2 , where D9 3, 2 is the quiver

Ž . Ž .and I9 3, 2 is the ideal of KD9 3, 2 generated by a r , g s , b r r y3 1 2 1 2 1 2
Ž .b s s , a a a q b b q g g . Then the injective envelope I a of the1 1 2 1 2 3 1 2 1 2

Ž . Ž .simple module S a coincides with the projective cover P c of the simple
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Ž . Ž . Ž .module S c , and this projective-injective A-module I a s V s P c is
given by the representation

Ž .Let C respectively, B be the convex subcategory of A given by the1 1
Ž .objects a, 1, 2, 3, 4, b respectively, a, 1, 2, 3, 4, b, 5, 6 and C2

Ž .respectively, B the full subcategory of A given by the objects b, 5, 6, c2
Ž .respectively, 1, 2, 3, 4, b, 5, 6, c . Then C is a tame concealed algebra of1

˜ ˜type D and B is a tilted algebra of type E , obtained from C by two5 1 7 1
one-point extensions using nonsimple modules

lying respectively on the mouth of the tube of rank 3 in G containing theC1
Ž . Ž .simple modules S 1 and S 2 , and the tube of rank 2 in G containing theC1 ˜Ž .simple module S 4 . Similarly, C is a tame concealed algebra of type A2 4

˜and B is a tilted algebra of type E , obtained from C by a tubular2 7 2
coextension using the nonsimple modules
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Žlying on the mouth of two tubes in G of rank 2 and one branch of lengthC1
.2 given by the vertices 1 and 2 and the module

lying on the mouth of a tube of rank 1. Moreover, A is the one-point
w x w xextension B rad V and the one-point coextension Vrsoc V B . Further1 2

G has a component CC being the following glueing of the preinjectiveA
component of G and the preprojective component of G :B B1 2

˜̃The modules in the boxes form a section S of type S s E in CC. Clearly7
Ž .the equality Hom X, t Y s 0 holds for any modules X and Y from S,A A

and S is a faithful section of CC, because it contains the projective-injective
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Ž .module V. Then applying 3.2 we conclude that A is a 2-parametric tame
˜̃tilted algebra of type E . Then gl. dim A F 2, and consequently the Euler7

² :form coincides with the Tits form q , and so the bilinear form ], ] isA
given by

² :x, y s x y q x y q x y q x y q x y q x y q x y q x y q x ya a 1 1 2 2 3 3 4 4 b b 5 5 6 6 c c

y x y y x y y x y y x y y x y y x y y x y1 a 3 a 4 a 2 1 b 2 b 3 b 4

y x y y x y y x y y x y q x y q x y q x y q x y .5 b 6 b c 5 c 6 b a 5 2 6 4 c 3

Finally, observe that

1 1 0 00 1h s 0 and h s 1,1 1 1 0 0 11 20 11 0

² : ² :dim V s h q h and h , h s 1, h , h s 0. Therefore, V is an ex-1 2 1 2 2 1
Ž .ceptional internal directing sincere projective-injective A-module.

5. EXAMPLES

We shall illustrate our considerations by some examples.

5.1

Let A s KQrI be the bound quiver algebra given by the quiver

ba

¤ ¤Q: 1 2 3¤ ¤
g s

and the ideal I in KQ generated by ab , gs , and gb y as . Then A is a
tame tilted algebra obrtained by a glueing of two Kronecker algebras

Ž1. Ž2. Ž1. Ž Ž2..C s KQ and C s KQ , where Q respectively, Q is the full1 2
Ž .subquiver of A given by vertices 1 and 2 respectively, 2 and 3 . Moreover,

G is of the formA

G s PP k TT k CC k TT k QQ ,A 1 1 2 2

Ž .where PP is the preprojective component of G , TT is a P K -family of1 C 1 11
Ž . Ž . Žstable homogeneous tubes of G , TT is a P K -family of stable homo-C 2 11
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.geneous tubes of G , QQ is the preinjective component, and CC is theC 22

connecting component of the form

obtained by the glueing of the preinjective component of G with theC1

preprojective component of G using the indecomposable projective-injec-C2
Ž .tive A-module P of dimension-vector d s 1, 2, 1 . Observe that d s h q1

Ž . Ž .h , where h s 1, 1, 0 and h s 0, 1, 1 are generators of the radicals of2 1 2
² : ² :x and x , respectively. Moreover, h , h s 1 and h , h s 0, andA AC C 1 2 2 11 2
Ž .it follows from Theorem 2 that mod d is neither normal nor irreducible.A

On the other hand, any indecomposable A-module nonisomorphic to P is
either a C -module or a C -module. Since C and C are hereditary1 2 1 2

Ž .algebras we conclude that mod e is normal and irreducible for theA
remaining dimension-vectors e of indecomposable A-modules.

5.2

Let A s KQrI be the found quiver algebra given by the quiver

and the ideal I in KQ generated by aj y bh, bh y gr, gr y sn . Denote
˜Ž .by C respectively, C the tame hereditary algebra of type D given by1 2 4

Ž .the vertices 1, 2, 3, 4, 5 respectively 2, 3, 4, 5, 6 . Then A is a tame tilted
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algebra whose Auslander]Reiten quiver is of the form

G s PP k TT k CC k TT k QQ ,A 1 1 2 2

Ž .where PP is the preprojective component of G , TT is the P K -family of1 C 1 11
Ž .stable tubes of G , TT is the P K -family of stable tubes of G , QQ is theC 2 1 C 21 2

preinjective component of G , and CC is the connecting component of theC2

form

obtained by the glueing of the preinjective component of G with theC1

preprojective component of G using the indecomposable projective-C2

injective A-module P of dimension-vector

1
1

d s .1 1
1
1

Observe that d / h q h , where1 2

1 1
1 1

h s and h s2 0 0 21 2
1 1
1 1

are generators of the radicals of x and x . Hence P is an ordinaryC C 21

internal directing A-module. Moreover, any indecomposable A-module
nonisomorphic to P is either a C -module or a C -module. Since C and1 2 1

Ž .C are hereditary algebras, we conclude that the module varieties mod e2 A
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given by the dimension-vectors e of all indecomposable A-modules are
irreducible, complete intersections and normal.

5.3

Finally, let A s KQrI be the bound quiver algebra given by the quiver

and the ideal I generated by jsg y hdg and jsga . Denote by C the1
˜tame hereditary algebra of type A given by the vertices 4, 5, 6, 7, and by4

˜C the tame hereditary algebra of type D given by ver tices 1, 2, 3, 4, 5, 6.2 5
Moreover, let B be the convex subcategory of A given by all vertices1

˜except 1. Then B is a tilted algebra of type D being the tubular extension1 5
of C using the simple homogeneous module.1

w xMoreover, A is the one-point extension B R of B by the indecompos-1 1
able preinjective B -module R of the form1
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Further, the radicals of x and x are generated respectively byC C1 2

0 1 1 1
h s and h s .0 1 1 2 2 01 1

0 1 1 1

Ž w Ž .x.Then it follows see also 18, 1.5 that A is a tame tilted algebra whose
Auslander]Reiten quiver is of the form

G s PP k TT k CC k TT k QQ ,A 1 1 2 2

Ž .where PP is the preprojective component of G , TT is the P K -family of1 C 1 11
Ž .ray tubes of G , TT is the P K -family of stable tubes of G , QQ is theB 2 1 C 21 2

preinjective component of G , and the connecting component CC containsC2
Ž .a unique sincere indecomposable directing module M and

1 2 0 1 1 1
dim M s s q s h q h .2 3 1 0 1 1 2 2 0 1 2

1 2 0 1 1 1

In fact, CC is a glueing of the preinjective component of G with theB1

preprojective component of G , and the neighborhood of M in CC isC2

² :Moreover, it is easy to check that h , h s 2, and hence M is anA1 2
ordinary internal directing A-module. Observe that if N is an arbitrary
indecomposable directing A-module then N is not an exceptional internal

Ž .directing A-module, and consequently mod dim N is irreducible, nor-A
mal, and a complete intersection. On the other hand, we note that the
tubular family TT has one nonstable tube containing indecomposable1
modules with the dimension-vectors

0 n 0 0 0 n 0 0s q nh , s q nh , n G 1,1 n n 1 0 0 1 n n 1 0 01 1
0 n 0 0 1 n 1 0

wfor which the associated modules varieties are, according to 1, Theorem
x2 , neither irreducible nor normal.
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