Some Blocking Semiovals which Admit a Homology Group

Chimiro Suetake

Abstract

The study of blocking semiovals in finite projective planes was motivated by Batten [1] in connection with cryptography. Dover in [4] studied blocking semiovals in a finite projective plane of order q which meet some line in $q-1$ points. In this note, some blocking semiovals in $P G(2, q)$ are considered which admit a homology group, and three new families of blocking semiovals are constructed. Any blocking semioval in the first or the third family meets no line in $q-1$ points.

(C) 2000 Academic Press

1. Introduction

Let $\Pi=(\mathcal{P}, \mathcal{L})$ be a projective plane. A blocking set in Π is a set B of points such that for every line $l \in \mathcal{L}, l \cap B \neq \phi$, but l is not entirely contained in B. A semioval in Π is a set S of points such that for every point $P \in S$, there exists a unique line $l \in \mathcal{L}$ such that $l \cap S=\{P\}$. The idea of a semioval was introduced in [3] and [7]. A blocking semioval in Π is a set of R of points which is both a semioval and a blocking set.
At the CMS Special Session in Finite Geometry in 1997, L. M. Batten posed the problem of classifying all blocking semiovals. The study of the problem was started by Batten and Dover in [2] and Dover in [4,5]. Known families of blocking semiovals are few. Dover in [5] constructed a family of blocking semiovals of size $3 q-4$ in a projective plane Π of order q, with $q \geq 5$, if Π contains a Δ-configuration. Of course, any desarguesian plane $P G(2, q)$ has this property. The author in [6] constructed two families of blocking semiovals in $P G(2, q)$. The first one is a family of blocking semiovals of size $3 q-4$, where $q \geq 5$. This family contains the one constructed by Dover as a special case. The second one is a family of blocking semiovals of size $3 q-n-2$, where $q=n^{e}, n \geq 3, n$ is a prime power and $e \geq 2$. Any blocking semioval in these families meets some line in $q-1$ points, and admits a nontrivial homology group if q is odd.

Let S be a blocking semioval in a projective plane Π of order q. Then let x_{i} denote the number of lines of Π which meet S in exactly i points. Clearly $x_{0}=0$ and $x_{1}=|S|$ by the definition of S. Dover in [4] proved that $x_{q}=0$ for $q>3$.

In this note, we consider some blocking semiovals in $P G(2, q)$ which admit a nontrivial homology group, and construct the following three families of blocking semiovals:
(i) If $q=r^{e}, r \geq 3, r$ is a prime power and $e \geq 2$, then there exist blocking semiovals of size $3 q-4$ with $x_{q-1}=0$ (see Theorem 3.4).
(ii) If $q=r^{e}, r \geq 3, r$ is a prime power, $e \geq 2$ and $3 \leq n \leq r$, then there exist blocking semiovals of size $3 q-n-2$ with $x_{q-1}=1$ (see Theorem 4.5).
(iii) If $q=r^{e_{1} e_{2}}, r \geq 3, r$ is a prime power, $e_{1} \neq 1, e_{2} \neq 1$ and $3 \leq n \leq r$, then there exist blocking semiovals of size $3 q-n-2$ with $x_{q-1}=0$ (see Theorem 4.6).

All the other known families of blocking semiovals are unitals and vertexless triangles.

2. Blocking Semiovals of Homology Type

Let \mathcal{P} and \mathcal{L} be the set of points and the set of lines in a desarguesian plane $P G(2, q)$ with $q \geq$ 7. $P G(2, q)$ is defined on the three-dimensional vector space $V=\{(a, b, c) \mid a, b, c \in$
$G F(q)\}$ over $G F(q)$. For $(a, b, c) \in V$, set $[a, b, c]=\{(a x, b x, c x) \mid x \in G F(q)\}$. Then $\mathcal{P}=\{[a, b, c] \mid a, b, c \in G F(q)$ and $(a, b, c) \neq(0,0,0)\}$. The lines of $P G(2, q)$ are the twodimensional subspaces of V. Choose a line l_{0} from \mathcal{L}. Let $P_{0}, P_{1}, \ldots, P_{n}$ be $n+1$ distinct points on l_{0}, where $2 \leq n \leq q-2$. Choose a point Q_{0} off l_{0}. Let, for $i \in\{0,1, \ldots, n\}, \Omega_{i}$ be a subset of $P_{i} Q_{0}-\left\{Q_{0}, P_{i}\right\}$ with $\left|\Omega_{i}\right| \geq 2$. Set

$$
S=\left(l_{0}\right) \cup \Omega_{0} \cup \Omega_{1} \cup \ldots \cup \Omega_{n}-\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}
$$

We will derive a necessary and sufficient condition for S to be a blocking semioval. We may assume that $Q_{0}=[1,0,0], P_{0}=[0,0,1], P_{i}=\left[0,1, a_{i}\right](i=1,2, \ldots, n)$. We define subsets Δ_{i} of $G F(q)^{*}=G F(q)-\{0\}(i=0,1, \ldots, n)$ as follows:

$$
\begin{aligned}
\Delta_{0} & =\left\{x \in G F(q) \mid[1,0, x] \in \Omega_{0}\right\}, \\
\Delta_{i} & =\left\{x \in G F(q) \mid\left[1, x, a_{i} x\right] \in \Omega_{i}\right\} \quad(i=1,2, \ldots, n) .
\end{aligned}
$$

Clearly, $\left|\Delta_{i}\right| \geq 2(i=0,1, \ldots, n)$. For $i, j, k \in\{1,2, \ldots, n\}$ with $i \neq j$, set $\Phi_{j k}=$ $\left(a_{k}-a_{j}\right) \Delta_{k}$ and $\Phi_{i j k}=\frac{a_{k}-a_{j}}{a_{i}-a_{j}} \Delta_{k}$.

In the rest of this section we assume the following.
ASSUMPTION 2.1. If q is odd, $-\Delta_{i}=\Delta_{i}$ for all $i \in\{0,1, \ldots, n\}$.

Lemma 2.2. S is a blocking set if and only if the following hold.
(i) $G F(q)^{*}=\Delta_{1} \cup \Delta_{2} \cup \cdots \cup \Delta_{n}$.
(ii) For any $i \in\{1,2, \ldots, n\}, G F(q)^{*}=\Delta_{0} \cup \bigcup_{1 \leq j(\neq i) \leq n} \Phi_{i j}$.

Proof. S is a blocking set if and only if for any $i \in\{0,1, \ldots, n\}$, any line through the point P_{i} except $Q_{0} P_{i}$ and l_{0} intersects $\Omega_{0} \cup \Omega_{1} \cup \cdots \cup \widehat{\Omega}_{i} \cup \cdots \cup \Omega_{n}$.
Any line $\{[1, b, x] \mid x \in G F(q)\} \cup\left\{P_{0}\right\}\left(b \in G F(q)^{*}\right)$ through the point P_{0} except $Q_{0} P_{0}$ and l_{0} intersects $\Omega_{1} \cup \Omega_{2} \cup \cdots \cup \Omega_{n}$.
\Leftrightarrow If $b \in G F(q)^{*}$, then there exists $j \in\{1,2, \ldots, n\}$ such that $b \in \Delta_{j}$.
$\Leftrightarrow G F(q)^{*}=\Delta_{1} \cup \Delta_{2} \cup \cdots \cup \Delta_{n}$.
Next let $i \in\{1,2, \ldots, n\}$.
Any line $\left\{\left[1, x, a_{i} x+b\right] \mid x \in G F(q)\right\} \cup\left\{P_{i}\right\}\left(b \in G F(q)^{*}\right)$ through the point P_{i} except $Q_{0} P_{i}$ and l_{0} intersects $\Omega_{0} \cup \Omega_{1} \cup \cdots \cup \widehat{\Omega}_{i} \cup \cdots \cup \Omega_{n}$.
\Leftrightarrow If $b \in G F(q)^{*}-\Delta_{0}$, then there exists $j \in\{1,2, \ldots \hat{i}, \ldots, n\}$ such that $a_{i} x+b=a_{j} x$.
\Leftrightarrow If $b \in G F(q)^{*}-\Delta_{0}$, then there exists $j \in\{1,2, \ldots, \hat{i}, \ldots, n\}$ such that $b \in\left(a_{j}-\right.$ $\left.a_{i}\right) \Delta_{j}=\Phi_{i j}$.
$\Leftrightarrow G F(q)^{*}=\Delta_{0} \cup \bigcup_{1 \leq j(\neq i) \leq n} \Phi_{i j}$.
Lemma 2.3. S is a semioval if and only if the following hold.
(i) If $a \in G F(q)-\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, then $G F(q)^{*}=\Delta_{0} \cup \bigcup_{1 \leq i \leq n}\left(a_{i}-a\right) \Delta_{i}$.
(ii) If $a \in \Delta_{0}$, then there exists a unique element $j \in\{1,2, \ldots, n\}$ such that $a \notin \bigcup_{1 \leq k(\neq j) \leq n} \Phi_{j k}$, but $a \in \bigcup_{1 \leq k(\neq i) \leq n} \Phi_{i k}$ for all $i \in\{1,2, \ldots, \hat{j}, \ldots, n\}$.
(iii) Let $i \in\{1,2, \ldots, n\}$ and $a \in \Delta_{i}$. Then one of the following occurs.
(a) If $a \notin \bigcup_{1 \leq k(\neq i) \leq n} \Delta_{k}$, then $a \in \frac{1}{a_{i}-a_{j}} \Delta_{0} \cup \bigcup_{1 \leq k(\neq i, j) \leq n} \Phi_{i j k}$ for all $j \in$ $\{1,2, \ldots, \hat{i}, \ldots, n\}$.
(b) If $a \in \bigcup_{1 \leq k(\neq i) \leq n} \Delta_{k}$, then there exists a unique element $j \in\{1,2, \ldots, \hat{i}, \ldots, n\}$ such that $a \notin \frac{1}{a_{i}-a_{j}} \Delta_{0} \cup \bigcup_{1 \leq k(\neq i, j) \leq n} \Phi_{i j k}$, but $a \in \frac{1}{a_{i}-a_{s}} \Delta_{0} \cup \bigcup_{1 \leq k(\neq i, s) \leq n} \Phi_{i s k}$ for all $s \in\{1,2, \ldots, \hat{i}, \ldots, \hat{j}, \ldots, n\}$.

Proof. S is a semioval if and only if the following hold.
(α) Let $P \in\left(l_{0}\right)-\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}$. If $l \in \mathcal{L}, P \in l, Q_{0} \notin l$ and $l \neq l_{0}$, then $(l) \cap\left(\Omega_{0} \cup\right.$ $\left.\Omega_{1} \cup \cdots \cup \Omega_{n}\right) \neq \phi$.
(β) For any $i \in\{0,1, \ldots, n\}$ and for any $P \in \Omega_{i}$, there exists a unique element $j \in$ $\{0,1, \ldots, \hat{i}, \ldots, n\}$ such that the line $P P_{j}$ does not intersect $\Omega_{0} \cup \Omega_{1} \cup \cdots \cup \widehat{\Omega}_{i} \cup \cdots \cup \widehat{\Omega}_{j} \cup$ $\cdots \cup \Omega_{n}$.
Let $P \in\left(l_{0}\right)-\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}$. Then $P=[0,1, a]$ for some $a \in G F(q)-\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Let l be a line such that $P \in l, Q_{0} \notin l$ and $l \neq l_{0}$. Then $l=\{[1, x, a x+b] \mid x \in G F(q)\} \cup\{P\}$ for some $b \in G F(q)^{*} .(l) \cap \Omega_{0} \neq \phi$ if and only if $b \in \Delta_{0}$.
Let $1 \leq i \leq n$.
$(l) \cap \Omega_{i} \neq \phi . \Leftrightarrow$ There exists $x \in \Delta_{i}$ such that $a x+b=a_{i} x . \Leftrightarrow b \in\left(a_{i}-a\right) \Delta_{i}$. Therefore, (α) is equivalent to (i).
Let $i=0$ and $P \in \Omega_{0}$. Then $P=[1,0, a]$ for some $a \in \Delta_{0}$. Let $1 \leq j \leq n . P P_{j}=$ $\left\{\left[1, x, a_{j} x+a\right] \mid x \in G F(q)\right\} \cup\left\{P_{j}\right\}$. Let $k \in\{\hat{0}, 1, \ldots, \hat{j}, \ldots, n\}$.
The line $P P_{j}$ does not intersect Ω_{k}.
\Leftrightarrow For any $x \in \Delta_{k} a_{j} x+a \neq a_{k} x$.
$\Leftrightarrow \frac{a}{a_{k}-a_{j}} \notin \Delta_{k}$.
$\Leftrightarrow a \notin\left(a_{k}-a_{j}\right) \Delta_{k}=\Phi_{j k}$.
Therefore, when $i=0,(\beta)$ is equivalent to (ii).
Let $1 \leq i \leq n$ and $P \in \Omega_{i}$. Then $P=\left[1, a, a_{i} a\right]$ for some $a \in \Delta_{i} . P P_{0}=\{[1, a, x] \mid x \in$ $G F(q)\} \cup\left\{P_{0}\right\}$. Let $k \in\{\hat{0}, 1, \ldots, \hat{i}, \ldots, n\}$.
The line $P P_{0}$ does not intersect Ω_{k}.
\Leftrightarrow For any $x \in \Delta_{k} x \neq a$.
$\Leftrightarrow a \notin \Delta_{k}$.
Let $j \in\{1,2, \ldots, \hat{i}, \ldots, n\}$. Then $P P_{j}=\left\{\left[1, x+a, a_{j} x+a_{i} a\right] \mid x_{i} \in G F(q)\right\} \cup\left\{P_{j}\right\}=$ $\left\{\left[1, x, a_{j}(x-a)+a_{i} a\right] \mid x \in G F(q)\right\} \cup\left\{P_{j}\right\}$. Let $k^{\prime} \in\{1, \ldots, \hat{i}, \ldots, \hat{j}, \ldots, n\}$.
The line $P P_{j}$ intersects Ω_{0}.
$\Leftrightarrow a_{i} a-a_{j} a \in \Delta_{0}$.
$\Leftrightarrow a \in \frac{1}{a_{i}-a_{j}} \Delta_{0}$.
The line $P P_{j}$ intersects $\Omega_{k^{\prime}}$.
$\Leftrightarrow a_{j}(x-a)+a_{i} a=a_{k^{\prime}} x$ for some $x \in \Delta_{k^{\prime}}$.
$\Leftrightarrow \frac{a\left(a_{i}-a_{j}\right)}{a_{k^{\prime}}-a_{j}} \in \Delta_{k^{\prime}}$.
$\Leftrightarrow a \in \frac{a_{k^{\prime}}-a_{j}}{a_{i}-a_{j}} \Delta_{k^{\prime}}=\Phi_{i j k^{\prime}}$.
Therefore, when $1 \leq i \leq n,(\beta)$ is equivalent to (iii). Thus the lemma is proved.

$$
\text { 3. } n=2
$$

In this section, under Assumption 2.1 we consider the point set S of $P G(2, q)$ defined in Section 2, when $n=2$. We remark that from the definition of Δ 's, $\left|\Delta_{i}\right| \geq 2(i=0,1,2)$. Then we may assume that $a_{1}=1, a_{2}=0$.

Lemmas 2.2 and 2.3 yield the following theorem.

THEOREM 3.1. Let $n=2$ and $a_{1}=1, a_{2}=0$. Then, S is a blocking semioval if and only if the following hold.
(i) If $i \neq j \in\{0,1,2\}$, then $G F(q)^{*}=\Delta_{i} \cup \Delta_{j}$.
(ii) If $a \in G F(q)-\{0,1\}$, then $G F(q)^{*}=\Delta_{0} \cup(1-a) \Delta_{1} \cup a \Delta_{2}$.
(iii) If $\{i, j, k\}=\{0,1,2\}$, then $\Delta_{i}=\left(\Delta_{j}-\Delta_{k}\right) \cup\left(\Delta_{k}-\Delta_{j}\right)$.

From Theorem 3.1 the next result follows.
Corollary 3.2. If S is a blocking semioval, then $|S|=3 q-4$ and, furthermore, when q is odd, an involutory homology $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$ acts on S.

Proof. Let S be a blocking semiovals. Since Theorem 3.1(iii) implies that the sets Δ_{0}, Δ_{1} and Δ_{2} exactly double cover $G F(q)^{*},|S|=\left|\Delta_{0}\right|+\left|\Delta_{1}\right|+\left|\Delta_{2}\right|+(q-2)=2(q-1)+(q-2)=$ $3 q-4$. The existence of the involutory homology follows from Assumption 2.1.

Example 3.3. Set $\Delta_{0}=G F(q)^{*}$. If q is odd, let $\Delta_{1} \neq \phi$ be a subset of $G F(q)^{*}$ such that $-\Delta_{1}=\Delta_{1}$ and $\Delta_{1} \neq G F(q)^{*}$. If q is even, let Δ_{1} be a subset of $G F(q)^{*}$ such that $2 \leq\left|\Delta_{1}\right| \leq q-3$. Set $\Delta_{2}=G F(q)^{*}-\Delta_{1}$. Then, Δ_{0}, Δ_{1} and Δ_{2} satisfy (i), (ii) and (iii) of Theorem 3.1. Therefore, the point set S corresponding to Δ_{0}, Δ_{1} and Δ_{2} is a blocking semioval of size $3 q-4$ such that $x_{q-1}=1$. This is a blocking semioval as defined in Theorem 4.2 of [5].

THEOREM 3.4. Let $q=r^{e}, r \geq 3, r$ be a prime power and $e \geq 2$. Set $\Delta_{2}=G F(r)^{*}$. Let Φ be a nonempty subset of $G F(r)^{*}$ such that $-\Phi=\Phi$ and $\Phi \neq G F(r)^{*}$. Here, if r is even, let $2 \leq|\Phi| \leq r-3$. Set $\Delta_{1}=\left(G F(q)^{*}-G F(r)^{*} \cup \Phi\right.$ and $\Delta_{0}=G F(q)^{*}-\Phi$. Then Δ_{0}, Δ_{1} and Δ_{2} satisfy (i), (ii) and (iii) of Theorem 3.1. Therefore, the point set S corresponding to Δ_{0}, Δ_{1} and Δ_{2} is a blocking semioval of size $3 q-4$ such that $x_{q-1}=0$ and $x_{q-2} \neq 0$.

Proof. It is clear that Δ_{0}, Δ_{1} and Δ_{2} satisfy (i) and (iii) of Theorem 3.1. We will show that Δ_{0}, Δ_{1}, and Δ_{2} satisfy (ii) of Theorem 3.1. Let $a \in G F(q)-\{0,1\}$. We want to show that $G F(q)^{*}=\Delta_{0} \cup(1-a) \Delta_{1} \cup a \Delta_{2}$. Let $x \in G F(q)^{*}-\Delta_{0}$. Then $x \in \Phi \subseteq G F(r)^{*}$. If $a \notin G F(r)^{*}$, then $\frac{x}{1-a} \notin G F(r)^{*}$, and hence $x \in(1-a) \Delta_{1}$. If $a \in G F(r)^{*}$, then $\frac{x}{a} \in G F(r)^{*}=\Delta_{2}$ and therefore $x \in a \Delta_{2}$. Thus $G F(q)^{*}=\Delta_{0} \cup(1-a) \Delta_{1} \cup a \Delta_{2}$.

The author proved that the following conjecture is true for $q \in\{7,11,13,17\}$ using a computer.

CONJECTURE 3.5. If q is a prime with $q \geq 7$, then any blocking semioval S defined in Theorem 3.1 is one of the blocking semiovals constructed in Example 3.3.

$$
\text { 4. } n \geq 3
$$

In this section we consider the set S of points of $P G(2, q)$ defined in Section 2 for $n \geq 3$.
ASSUMPTION 4.1. (i) $q=r^{e}, r \geq 3, r$ is a prime power and $e \geq 2$.
(ii) $3 \leq n \leq r$ and $G F(r) \supseteq\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
(iii) For any $i \in\{0,1, \ldots, n\}$ and for any $x \in G F(r)^{*}, x \Delta_{i}=\Delta_{i}$.

Lemmas 2.2 and 2.3 yield the following theorem.

THEOREM 4.2. Under Assumption 4.1, S is a blocking semioval if and only if the following hold.
(i) For any $i \in\{0,1, \ldots, n\}, G F(q)^{*}=\cup_{0 \leq j(\neq i) \leq n} \Delta_{j}$.
(ii) For any $a \in G F(q)-\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}, G F(q)^{*}=\Delta_{0} \cup \bigcup_{1 \leq i \leq n}\left(a_{i}-a\right) \Delta_{i}$.
(iii) For any $i \in\{0,1, \ldots, n\}$ and for any $a \in \Delta_{i}$, there exists a unique element $j \in$ $\{0,1, \ldots, \hat{i}, \ldots, n\}$ such that $a \in \Delta_{j}$.

Proof. Assume that S is a blocking semioval. It is clear that (i) and (ii) hold. Let $i \in$ $\{0,1, \ldots, n\}$ and $a \in \Delta_{i}$. Then, by (ii) and (iii) of Lemma 2.3, there exists a unique element $j \in\{0,1, \ldots, \hat{i}, \ldots, n\}$ such that $a \notin \bigcup_{0 \leq k(\neq i, j) \leq n} \Delta_{k}$. However, since $G F(q)^{*}=$ $\bigcup_{0 \leq k(\neq i) \leq n} \Delta_{n}, a \in \Delta_{j}$. Thus we obtain (iii).
The converse is clear.

Theorem 4.3. Under Assumption 4.1, S is a blocking semioval if and only if for all distinct $i, j \in\{0,1, \ldots, n\}$ there exists a subset $\Delta_{i j}$ of $G F(q)^{*}$ which satisfies the following.
(i) Each $\Delta_{i j}$ is closed under multiplication by $G F(r)^{*}$.
(ii) For all distinct $i, j \in\{0,1, \ldots, n\}, \Delta_{i j}=\Delta_{j i}$.
(iii) For any $i \in\{0,1, \ldots, n\}, \Delta_{i}=\bigcup_{0 \leq j(\neq i) \leq n} \Delta_{i j} \neq \phi$.
(iv) $G F(q)^{*}=\bigcup_{0 \leq i<j \leq n} \Delta_{i j}$ is a disjoint union.
(v) For any $a \in G \bar{F}(q)-\left\{a_{1}, \ldots, a_{n}\right\}, G F(q)^{*}=\Delta_{0} \cup \bigcup_{1 \leq i \leq n}\left(a_{i}-a\right) \Delta_{i}$.

Proof. Assume that S is a blocking semioval. For all distinct $i, j \in\{0,1, \ldots, n\}$, set $\Delta_{i j}=\Delta_{i} \cap \Delta_{j}$. Then clearly (i), (ii) and (v) hold.
Let $0 \leq i \leq n$. From Theorem 4.2(i) it follows that $\Delta_{i}=\Delta_{i} \cap G F(q) *=\Delta_{i} \cap$ $\left(\bigcup_{0 \leq j(\neq i) \leq n} \Delta_{j}\right)=\bigcup_{0 \leq j(\neq i) \leq n}\left(\Delta_{i} \cap \Delta_{i}\right)=\bigcup_{0 \leq j(\neq i) \leq n} \Delta_{i j}$. Therefore we obtain (iii).
Let $0 \leq i \neq j \leq n, 0 \leq i \neq j^{\prime} \leq n$, and $j \neq \overline{j^{\prime}}$. If $b \in \Delta_{i j} \cap \Delta_{i j^{\prime}}$, then $b \in \Delta_{i}, b \in \Delta_{j}$ and $b \in \Delta_{j^{\prime}}$ which are contrary to (i) and (iii) of Theorem 4.2. Therefore $\Delta_{i j} \cap \Delta_{i j^{\prime}}=\phi$. Furthermore, let $0 \leq i^{\prime} \neq i \leq n$ and $i^{\prime} \leq j^{\prime}$. Since $\Delta_{i j}$ and $\Delta_{i j^{\prime}}$ are mutually disjoint, and $\Delta_{i j^{\prime}}=\Delta_{i} \cap \Delta_{j^{\prime}}=\Delta_{j^{\prime} i}$ and $\Delta_{i^{\prime} j^{\prime}}$ are mutually disjoint, $\Delta_{i j} \cap \Delta_{i^{\prime} j^{\prime}}=\phi$. Thus, by (i) of Theorem 4.2, we have (iv).
The converse is clear.

Corollary 4.4. If S is a blocking semioval, then $|S|=3 q-n-2$ and the homology $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s\end{array}\right)\left(s \in G F(r)^{*}\right)$ acts on S.

Proof. $|S|=\sum_{0 \leq i \leq n}\left|\Delta_{i}\right|+(q-n)=\sum_{0 \leq i \leq n} \sum_{0 \leq j(\neq i) \leq n}\left|\Delta_{i j}\right|+(q-n)=$ $2 \sum_{0 \leq i<j \leq n}\left|\Delta_{i j}\right|+(q-n)=2(q-1)+(q-n)=3 q-n-2$. Since each Δ_{i} is closed under multiplication by $G F(r)^{*}$, the homologies do exist.

Theorem 4.5. Assume Assumption 4.1. Set $\Delta_{0}=G F(q)^{*}$ and let $G F(q)^{*}=\Delta_{1} \cup \cdots \cup$ Δ_{n} be a mutually disjoint union. Then $\Delta_{0}, \Delta_{1}, \ldots, \Delta_{n}$ satisfy (i), (ii) and (iii) of Theorem 4.2, and the size of the blocking semioval corresponding to $\Delta_{0}, \Delta_{1}, \ldots, \Delta_{n}$ is $3 q-n-2$ and $x_{q-1}=1$. In particular, when $n=r$, the blocking semioval is one of the blocking semiovals defined in Theorem 5.2 of [6].

THEOREM 4.6. Let $q=r^{e}=r^{e_{1} e_{2}}$, r be a prime power, $e_{1} \neq 1, e_{2} \neq 1$ and $3 \leq n \leq r$. Set $\Delta_{01}=G F(q)-G F\left(r^{e_{1}}\right)$. Let $G F\left(r^{e_{1}}\right)^{*}=\bigcup_{0 \leq i<j \leq n,(i, j) \neq(0,1)} \Delta_{i j}$ be a partition such that each $\Delta_{i j}$ is closed under multiplication by $G F(r)^{*}$. For distinct $i, j \in\{0,1, \ldots, n\}$ with $i<j$, set $\Delta_{j i}=\Delta_{i j}$. Then, $\Delta_{i j}(0 \leq i \neq j \leq n)$ satisfy $(i)-(v)$ of Theorem 4.3. Therefore, the set S of points corresponding to $\Delta_{i j}(0 \leq i \neq j \leq n)$ is a blocking semioval of size $3 q-n-2$ with $x_{q-1}=0$ and $x_{q-n} \neq 0$.

Proof. We must show that $\Delta_{i j}(0 \leq i \neq j \leq n)$ satisfy (i)-(v) of Theorem 4.3. It is clear that (i), (ii), (iii) and (iv) hold. We will show that (v) holds. Let $a \in G F(q)-\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Let $x \in G F(q)-\Delta_{0}$. Then $x \in G F\left(r^{e_{1}}\right)^{*}$.

Assume that $a \notin G F\left(r^{e_{1}}\right)^{*}$. Then for any $i \in\{1,2, \ldots, n\}, \frac{x}{a_{i}-a} \notin G F\left(r^{e_{1}}\right)^{*}$ and hence $\frac{x}{a_{i}-a} \in \Delta_{01} \subseteq \Delta_{1}$. In particular, let $i=1$. Then $x \in\left(a_{1}-a\right) \Delta_{1}$.
Assume that $a \in G F\left(r^{e_{1}}\right)^{*}$. Then, for any $i \in\{1, \ldots, n\}, \frac{x}{a_{i}-a} \in G F\left(r^{e_{1}}\right)^{*}=$ $\bigcup_{0 \leq i<j \leq n,(i, k) \neq(0,1)} \Delta_{i j}$. Therefore there exists $j \in\{1,2, \ldots, n\}$ such that $\frac{x}{a_{i}-a} \in \Delta_{j}$. In particular, let $i=j$. Then $x \in\left(a_{j}-a\right) \Delta_{j}$.

References

1. L. M. Batten, Determining sets, submitted.
2. L. M. Batten and J. M. Dover, Blocking semiovals with three intersection sizes, preprint.
3. F. Buekenhout, Characterizations of semiquadrics. A survey, Teorie Combinatorie (Rome, 1973), vol. I, Atti Acc. Naz. Lincei, 17 (1976), 393-421.
4. J. M. Dover, Semiovals with large collinear subsets, J. Geom., to appear.
5. J. M. Dover, A lower bound on blocking semiovals, Europ. J. Combinatorics, to appear.
6. C. Suetake, Two families of blocking semiovals, Europ. J. Combinatorics, to appear.
7. J. A. Thas, On semiovals and semiovoids, Geom. Ded., 3 (1974), 229-231.

Chiniro Suetake
Himeji-kita High School,
Himeji,
Hyogo 670-0012,
Japan

