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h i g h l i g h t s

• Serotonin and nitric oxide interact at different levels to control behavior.
• 5-HT1B antagonists decrease reactivity to novelty in zebrafish.
• The 5-HT1B inverse agonist SSB224,289 decreased bottom-dwelling and erratic swimming in zebrafish.
• The nitric oxide synthase inhibitor L-NAME blocked the effect of SSB224,289 on bottom-dwelling.
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a b s t r a c t

Nitric oxide (NO) and serotonin (5-HT) interact at the molecular and systems levels to control behavioral
variables, including agression, fear, and reactions to novelty. In zebrafish, the 5-HT1B receptor has been
implicated in anxiety and reactions to novelty, while the 5-HT1A receptor is associated with anxiety-like
behavior; this role of the 5-HT1A receptor is mediated by NO. This work investigated whether NO also
participates in the mediation of novelty responses by the 5-HT1B receptor. The 5-HT1B receptor inverse
agonist SB 224,289 decreased bottom-dwelling and erratic swimming in zebrafish; the effects on bottom-
dwelling, but not on erratic swimming, were blocked by pre-treatment with the nitric oxide synthase
inhibitor L-NAME. These effects underline a novel mechanism by which 5-HT controls zebrafish reactivity
to novel environments, with implications for the study of neotic reactions, exploratory behavior, and
anxiety-like states.

© 2014 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

An interaction between serotonin (5-HT) and the nitrergic sys-
tem has been observed in the brain at the molecular [1,2], systems
[3,4], and behavioral [5–9] levels. This complex interaction involves
both nitric oxide (NO) mediation of 5-HT release/uptake [9–12]
as well as the 5-HTergic mediation of NO activity [1,13,14]. In
this sense, chronic treatment with 5-HT1A receptor (5-HT1AR)
agonists has been shown to decrease anxiety-like behavior in a
NO-dependent way [6], and activation of the 5-HT1AR decreases
NMDA receptor-mediated increases in NO production in cortical
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slices [13]. While the role of the 5-HT1AR in anxiety-like behavior
is relatively well-established, the participation of 5-HT1B receptors
(5-HT1BR) is emergent; 5-HT1BR knockout mice show increased
reactivity to novelty and decreased anxiety-like behavior [15],
while zebrafish treated with 5-HT1BR antagonists show decreased
reactivity to novelty [16,17]. Elsewhere, we have shown that the
anxiolytic-like effect of 5-HT1AR antagonists in zebrafish is blocked
by pre-treatment with the nitric oxide synthase (NOS) inhibitor l-
NG-nitroarginine methyl ester (l-NAME) [18]; in the present work,
we analyzed whether the behavioral effects of the 5-HT1BR inverse
agonist SB 224,289 in zebrafish are also mediated by NOS.

2. Materials and methods

47 adult zebrafish from the lof phenotype were acquired in a
local aquarium shop and kept in collective tanks (40 L, 10 ani-
mals/2 L) for at least two weeks before experiments begun. Water
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Table 1
SB224,289 decreases erratic swimming, and this effect is not blocked by L-NAME. Values refer either to mean ± S.E.M. or median ± interquartile range (IQR). *, p < 0.05 vs.
Vehicle.

Vehicle
(n = 9)

SB 2.5 mg/kg
(n = 8)

SB 5.0 mg/kg
(n = 9)

SB 2.5 mg/kg +
NAME (n = 12)

SB 5 mg/kg +
NAME (n = 12)

Squares crossed (median ± IQR, N) 141 ± 89 61.5 ± 75.75 175 ± 50 125 ± 75 190 ± 85.5
Erratic swimming (median ± IQR, N) 7 ± 4 1 ± 1* 0 ± 3* 1 ± 1 3 ± 1.5
Freezing (mean ± S.E.M., s) 23.59 ± 8.25 24.85 ± 15.84 15.80 ± 7.07 14.01 ± 3.52 31.54 ± 9.27

Fig. 1. The effects of SB224,289 on bottom-dwelling are blocked by pre-treatment
with L-NAME. Bars refer to mean ± S.E.M. ***, p < 0.001 vs. Vehicle; *, p < 0.05 vs.
Vehicle; ###, p < 0.001 vs. 2.5 mg/kg.

conditions, housing, and feeding conditions were standardised as
per recommendations for zebrafish [19]. Animals were then swiftly
and individually removed from the housing tank, cold-anesthetized
(17 ◦C < T < 12 ◦C) and injected intraperitoneally [20] with either
vehicle (DMSO 0.5%) or SB 224,289 (2.5 or 5.0 mg/kg). Another
cohort of animals was pre-treated with l-NAME (1 mg/kg) before
SB 224,289. 30 min after injection, animals were subjected to the
novel tank test [21]; behavioral variables were defined as per the
Zebrafish Behavior Catalog [22]. Data were analyzed using ANOVAs
or Kruskal–Wallis tests whenever appropriate, with either Tukey
or Bonferroni post-tests whenever p-values < 0.05. Raw data can be
downloaded at figshare (doi:10.6084/m9.figshare.1272823).

3. Results

SB 224,289 dose-dependently decreased bottom-dwelling
(F4,41 = 6.814, p = 0.0003; Fig. 1) and erratic swimming
(Hdf= 4 = 20.08, p = 0.0005; Table 1), without effects on freez-
ing (F4,46 = 0.6668, NS; Table 1) or locomotion (Hdf = 4 = 8.55, NS;
Table 1). Pre-treatment with l-NAME blocked the effects of SB
224,289 on bottom-dwelling, but not on erratic swimming (Fig. 1,
Table 1).

4. Discussion

The reduction in bottom-dwelling, the main response of adult
zebrafish to a novel environment [23,24], as well as in erratic
swimming, are indicative of reduced anxiety, stress or fear. The
results from the present experiment provide a novel mechanism
by which serotonin controls behavioral responses to novelty, sug-
gesting an important interaction between the 5-HT1B receptor and
the nitrergic system. The specific mechanism by which NOS inhi-
bition blocks the neotic effects of 5-HT1BR antagonists in zebrafish
is unclear; this interaction could be due to presynaptic effects of
NO on 5-HT release or uptake [9–12] or to a postsynaptic effect,
with 5-HT1B receptor activation increasing NOS activity [25]. Futher
experiments are needed to clarify the issue.
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