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HIGHLIGHTS

e Serotonin and nitric oxide interact at different levels to control behavior.
® 5-HT;p antagonists decrease reactivity to novelty in zebrafish.

® The 5-HT;p inverse agonist SSB224,289 decreased bottom-dwelling and erratic swimming in zebrafish.
® The nitric oxide synthase inhibitor L-NAME blocked the effect of SSB224,289 on bottom-dwelling.
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Nitric oxide (NO) and serotonin (5-HT) interact at the molecular and systems levels to control behavioral
variables, including agression, fear, and reactions to novelty. In zebrafish, the 5-HT;g receptor has been
implicated in anxiety and reactions to novelty, while the 5-HT;4 receptor is associated with anxiety-like
behavior; this role of the 5-HT;4 receptor is mediated by NO. This work investigated whether NO also
participates in the mediation of novelty responses by the 5-HT;p receptor. The 5-HT; receptor inverse

agonist SB 224,289 decreased bottom-dwelling and erratic swimming in zebrafish; the effects on bottom-
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anxiety-like states.

dwelling, but not on erratic swimming, were blocked by pre-treatment with the nitric oxide synthase
inhibitor L-NAME. These effects underline a novel mechanism by which 5-HT controls zebrafish reactivity
to novel environments, with implications for the study of neotic reactions, exploratory behavior, and

© 2014 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

An interaction between serotonin (5-HT) and the nitrergic sys-
tem has been observed in the brain at the molecular [1,2], systems
[3,4],and behavioral [5-9] levels. This complex interaction involves
both nitric oxide (NO) mediation of 5-HT release/uptake [9-12]
as well as the 5-HTergic mediation of NO activity [1,13,14]. In
this sense, chronic treatment with 5-HTq4 receptor (5-HT{4R)
agonists has been shown to decrease anxiety-like behavior in a
NO-dependent way [6], and activation of the 5-HT;sR decreases
NMDA receptor-mediated increases in NO production in cortical
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slices [13]. While the role of the 5-HT;R in anxiety-like behavior
is relatively well-established, the participation of 5-HTg receptors
(5-HT¢gR) is emergent; 5-HT;gR knockout mice show increased
reactivity to novelty and decreased anxiety-like behavior [15],
while zebrafish treated with 5-HT{gR antagonists show decreased
reactivity to novelty [16,17]. Elsewhere, we have shown that the
anxiolytic-like effect of 5-HT;sR antagonists in zebrafish is blocked
by pre-treatment with the nitric oxide synthase (NOS) inhibitor 1-
NG-nitroarginine methyl ester (I-NAME) [18]; in the present work,
we analyzed whether the behavioral effects of the 5-HTgR inverse
agonist SB 224,289 in zebrafish are also mediated by NOS.

2. Materials and methods

47 adult zebrafish from the lof phenotype were acquired in a
local aquarium shop and kept in collective tanks (40L, 10 ani-
mals/2 L) for at least two weeks before experiments begun. Water
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Table 1
SB224,289 decreases erratic swimming, and this effect is not blocked by L-NAME. Values refer either to mean +S.E.M. or median =+ interquartile range (IQR). *, p<0.05 vs.
Vehicle.
Vehicle SB 2.5 mg/kg SB 5.0 mg/kg SB 2.5 mg/kg + SB 5mg/kg +
(n=9) (n=8) (n=9) NAME (n=12) NAME (n=12)
Squares crossed (median £ IQR, N) 141 £ 89 61.5 + 75.75 175 £ 50 125+ 75 190 + 85.5
Erratic swimming (median £ IQR, N) 7+4 1+£1* 0+ 3* 1+£1 3+£15
Freezing (mean +S.E.M., s) 23.59 + 8.25 24.85 + 15.84 15.80 + 7.07 14.01 £+ 3.52 31.54 +9.27
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Fig. 1. The effects of SB224,289 on bottom-dwelling are blocked by pre-treatment
with L-NAME. Bars refer to mean +S.E.M. ***, p<0.001 vs. Vehicle; *, p<0.05 vs.
Vehicle; ##4#, p<0.001 vs. 2.5 mg/kg.

conditions, housing, and feeding conditions were standardised as
per recommendations for zebrafish [19]. Animals were then swiftly
and individually removed from the housing tank, cold-anesthetized
(17°C<T<12°C) and injected intraperitoneally [20] with either
vehicle (DMSO 0.5%) or SB 224,289 (2.5 or 5.0 mg/kg). Another
cohort of animals was pre-treated with I-NAME (1 mg/kg) before
SB 224,289. 30 min after injection, animals were subjected to the
novel tank test [21]; behavioral variables were defined as per the
Zebrafish Behavior Catalog [22]. Data were analyzed using ANOVAs
or Kruskal-Wallis tests whenever appropriate, with either Tukey
or Bonferroni post-tests whenever p-values < 0.05. Raw data can be
downloaded at figshare (doi:10.6084/m9.figshare.1272823).

3. Results

SB 224,289 dose-dependently decreased bottom-dwelling
(F441=6.814, p=0.0003; Fig. 1) and erratic swimming
(Hgf=4=20.08, p=0.0005; Table 1), without effects on freez-
ing (F446=0.6668, NS; Table 1) or locomotion (Hg¢-4=8.55, NS;
Table 1). Pre-treatment with I-NAME blocked the effects of SB
224,289 on bottom-dwelling, but not on erratic swimming (Fig. 1,
Table 1).

4. Discussion

The reduction in bottom-dwelling, the main response of adult
zebrafish to a novel environment [23,24], as well as in erratic
swimming, are indicative of reduced anxiety, stress or fear. The
results from the present experiment provide a novel mechanism
by which serotonin controls behavioral responses to novelty, sug-
gesting an important interaction between the 5-HT; receptor and
the nitrergic system. The specific mechanism by which NOS inhi-
bition blocks the neotic effects of 5-HT;gR antagonists in zebrafish
is unclear; this interaction could be due to presynaptic effects of
NO on 5-HT release or uptake [9-12] or to a postsynaptic effect,
with 5-HT;g receptor activation increasing NOS activity [25]. Futher
experiments are needed to clarify the issue.
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