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a b s t r a c t

We give an upper bound and a class of lower bounds on the coefficients of the
characteristic polynomial of a simple binary matroid. This generalizes the corresponding
bounds for graphic matroids of Li and Tian (1978) [3], as well as a matroid lower bound
of Björner (1980) [1] for simple binary matroids. As the flow polynomial of a graph
G is the characteristic polynomial of the dual matroid M∗(G), the bound applies to
flow polynomials.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph with p vertices and x be a natural number, the value PG(x) is the number of proper colorings f : V (G) →

[x]. PG(x) is a degree p polynomial, called the chromatic polynomial of G. It is well known that this polynomial has degree
|V (G)| with integer coefficients alternating in sign. Let G be a simple connected graph on p vertices and q edges. For the rest
of the paper, we write that PG(x) =

p
k=0(−1)p−kakxk.

The characteristic polynomial of a rank-r matroidM with ground set E is defined as

χ(M, x) =


X⊆E

(−1)|X |xr(M)−r(X).

Clearly, this polynomial has degree r(M). It has integer coefficients alternating in sign [6].
The characteristic polynomial of a graphicmatroidM(G) is related to the graph chromatic polynomial ofG by the equation

PG(x) = xω(G)χ(M(G), x),

where ω(G) is the number of components of G. For notation, we generally follow Oxley [4]. Throughout the paper assume
thatM is a rank-r matroid on n elements, ck is the number of k-element circuits ofM , and dk(e) is the number of k-element
circuits of M containing the specified element e of E(M). A k-element circuit will also be called a k-circuit. The matroid
obtained by deleting or contracting of an element e fromM is denoted byM\e andM/e, respectively. The girth of a graph or
a matroid is the length of a shortest circuit of the graph or matroid.

The next two theorems, due to Li and Tian, give an upper bound and a class of lower bounds on coefficients of the
chromatic polynomial of a graph.
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Theorem 1.1 ([3]). Let G be a simple connected graph on p vertices and q edges with girth g and cg cycles of size g. Then

ak ≤


q

p − k


−


q − g + 2

p − k − g + 2


+


q − cg − g + 2
p − k − g + 2


.

Theorem 1.2 ([3]). Let G be a simple connected graph with p vertices and q edges. Suppose that G has ci cycles of size i, for
i = 3, 4, . . . , l where l is an integer and 3 ≤ l ≤ p. Then for 0 ≤ k ≤ p,

ak ≥

l−1
i=0


q − p + i

i

 
p − 1 − i
k − 1


−

l
j=3

cj
l−j
i=0


q − p + i

i

 
p − j − i
k − 1


.

LetM be a matroid. From now on, we write χ(M, x) =
r

k=0(−1)r−kbkxk. Note that ifM is a graphic matroidM(G) for a
connected graph G, then bk = ak+1 (0 ≤ k ≤ r) as PG(x) = xχ(M(G), x). The following results give bounds for the value bk.
The first is an upper bound from Rota [6], and the second is a lower bound due to Björner [1].

Theorem 1.3 ([6]). Let M be a rank-r matroid with n elements. Then

bk ≤


n

r − k


.

Theorem 1.4 ([1]). Suppose that M is a simple matroid on n elements with girth g. Then for 0 ≤ k ≤ r,

bk ≥

g−1
i=0


n − r + i − 1

i

 
r − i
k


− cg


r − g + 1

k


.

In this paper, using the inductive techniques of [3] for graphs, we bound the absolute value of the coefficients of
characteristic polynomials of simple binarymatroids. The following are ourmain results; the proofswill be given in Section 2.
Our proofs are similar to those in [3]; the generalization from graphs to binary matroids does not affect the inductive
arguments we use to prove our bounds.

Theorem 1.5. Let M be a simple binary matroid on n elements with girth g ≥ 3. Let cg denote the number of circuits of size g.
Then for 0 ≤ k ≤ r,

bk ≤


n

r − k


−


n − g + 2

r − k − g + 2


+


n − cg − g + 2
r − k − g + 2


. (1)

Theorem 1.1 is an immediate consequence of the above result. This result also extends Theorem 1.3 for simple binary
matroids. It is easily checked that for n ≥ 3, χCn(x) = (x − 1)n + (−1)n(x − 1), where Cn is a cycle of size n. Since
χCn(x) = xχ(M(Cn), x), it is straightforward to verify that each coefficient of χ(M(Cn), x) attains the bound in Theorem 1.5.
Thus, our upper bound is best possible for the class of simple binary matroids. Furthermore, our upper bound does not hold
in general for nonbinary matroids. Indeed, χ(U2,n, x) = x2 − nx + (n − 1); therefore, the bound fails for U2,n when n ≥ 5.

Theorem 1.6. Let M be a simple binary matroid with |E(M)| = n and r(M) = r. Let ci be the number of i-element circuits of
M for 3 ≤ i ≤ l, where l is an integer such that 3 ≤ l ≤ r + 1. Then for 0 ≤ k ≤ r,

bk ≥

l−1
i=0


n − r − 1 + i

i

 
r − i
k


−

l
j=3

cj
l−j
i=0


n − r − 1 + i

i

 
r + 1 − j − i

k


. (2)

This result generalizes Theorem 1.2 from graphs to binary matroids, and it extends Theorem 1.4 (let l = g) for simple
binary matroids. We do not know if this bound holds for non-binary matroids. As the flow polynomial of a graph G is the
characteristic polynomial of the dual matroid M∗(G), new bounds for the coefficients of the flow polynomial of a graph G
are obtained as a direct consequence of the last two theorems in Section 3.

2. Proofs of the main results

The following two elementary lemmas are used in [3] and will also be used in our proof.

Lemma 2.1. For non-negative integers m1,m2, x, t (m1 ≥ m2) such that x ≤ m1 − m2,
m1 − x

t


+


m2 + x

t


≤

m1

t


+

m2

t


.
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Lemma 2.2. For non-negative integers a, b and c where a ≥ b,
a−b
i=0


c + i
i

 
a − i
b


=


a + c + 1
a − b


.

The following deletion-contraction formula for the characteristic polynomial can be found in [7,8].

Lemma 2.3. Let e be an element of a matroid M such that e is neither a loop nor a coloop. Then

χ(M, x) = χ(M\e, x) − χ(M/e, x).

Lemma 2.4. Let e be an element of a matroid M such that e is neither a loop nor a coloop and χ(M, x) =
r

k=0(−1)r−kbkxk.
Then

(i) χ(M, x) = χ(M\e, x) − χ(si(M/e), x), and
(ii) Let b′

k be the absolute value of the coefficient of xk in χ(M\e, x) and b′′

k be the absolute value of the coefficient of xk in
χ(si(M/e), x). Then bk = b′

k + b′′

k .

Proof. It is easily verified by the definition of the characteristic polynomial thatχ(M/e, x) = χ(si(M/e), x). So by Lemma 2.3,
(i) holds. (ii) is an immediate consequence of (i). �

Let e be an element of a matroid M . Recall that we use di(e) to denote the number of i-element circuits of M containing
e. Let c ′

i denote the number of i-element circuits ofM\e and c ′′

i denote the number of i-element circuits of si(M/e).

Lemma 2.5. Let M be a simple matroid. Then

(i) c ′

i = ci − di(e),
(ii) c ′′

i ≤ ci − di(e) + di+1(e), and
(iii) |E(si(M/e))| = n − d3(e) − 1 if M is binary.

Proof. Note that (i) and (ii) are easily verified. Suppose that M is a simple binary matroid and e ∈ E(M). Since M is binary,
each line containing e has at most three elements. Hence |E(si(M/e))| = n − d3(e) − 1. �

Proof of Theorem 1.5. We use induction on the girth g of M . Let ci be the number of i-circuits. Suppose g = 3. Let e be an
element of a three-element circuit ofM . Then r(M\e) = r(M) and r(si(M/e)) = r(M)−1. We now use induction on c3. First
assume that c3 = 1. Note that χ(M, x) = χ(M\e, x) − χ(si(M/e), x). By Theorem 1.3, b′

k ≤


n−1
r−k


and b′′

k ≤


n−2

r−1−k


.

Thus,

bk = b′

k + b′′

k ≤


n − 1
r − k


+


n − 2

r − k − 1


=


n

r − k


−


n − 1

r − k − 1


+


n − 2

r − k − 1


.

So the inequality (1) is satisfied when g = 3 and c3 = 1.
Nowassume the result holds for all simple binarymatroids of girth g = 3 containing fewer than c3 three-element circuits.

Again we let e be an element of a three-element circuit ofM . Note thatM\e contains c3 − d3(e) triangles. Now by inductive
hypothesis,

b′

k ≤


n − 1
r − k


−


(n − 1) − 1
r − k − 1


+


n − cg + d3(e) − 2

r − k − 1


.

AsM is binary, |E(si(M/e))| = n − d3(e) − 1. By Theorem 1.3, b′′

k ≤


n−d3(e)−1

r−1−k


. Therefore,

bk = b′

k + b′′

k

≤


n − 1
r − k


−


n − 2

r − k − 1


+


(n − cg − 1) + (d3(e) − 1)

r − k − 1


+


n − d3(e) − 1
r − k − 1


≤


n − 1
r − k


−


n − 2

r − k − 1


+


n − cg − 1
r − k − 1


+


n − 2

r − k − 1


by Lemma 2.1

=


n

r − k


−


n − 1

r − k − 1


+


n − cg − 1
r − k − 1


.

Hence (1) holds for all simple binary matroids of girth 3.
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Next suppose that g(M) = g > 3 and the result holds for all simple binary matroids with girth less than g . First we
examine the case where cg = 1. Since g(M/e) = g − 1, cg(M/e) = 1. By Theorem 1.3, b′

k ≤


n−1
r−k


and by the inductive

hypothesis,

b′′

k ≤


n − 1

r − k − 1


−


n − g + 2

r − k − g + 2


+


n − g + 1

r − k − g + 2


.

Hence, bk = b′

k + b′′

k ≤
 n
r−k


−


n−g+2

r−k−g+2


+


n−g+1

r−k−g+2


.

Now suppose that result holds for binary matroids with girth g having fewer than cg circuits of size g . Let C be a circuit of
M with |C | = g and choose an element e from C . Then by the inductive hypothesis, and by Lemma 2.1 using x = dg(e) − 1,

bk = b′

k + b′′

k

≤


n − 1
r − k


−


n − g + 1

r − k − g + 2


+


n − g − cg + dg(e) + 1

r − k − g + 2


+


n − 1

r − k − 1


−


n − g + 2

r − k − g + 2


+


n − dg(e) − g + 2
r − k − g + 2


≤


n

r − k


+


n − cg − g + 2
r − k − g + 2


+


n − g + 1

n − k − g + 2


−


n − g + 1

n − k − g + 2


−


n − g + 2

r − k − g + 2


=


n

r − k


−


n − g + 2

r − k − g + 2


+


n − cg − g + 2
r − k − g + 2


.

This completes the proof of the theorem. �

Proof of Theorem 1.6. We use induction on the integer s =
l

i=3 ici where 3 ≤ l ≤ r + 1. Suppose s = 0. Then any
circuit of M must contain at least l + 1 elements. First consider the case where M has no circuits. Then M ∼= Un,n. By
Zaslavsky [8, 7.2.2], χ(Un,n, x) = (x − 1)n. Hence bk =

 n
r−k


. Observe that

l−1
i=0


n − r − 1 + i

i

 
r − i
k


=

r−k
i=0


n − r − 1 + i

i

 
r − i
k


=


n

r − k


by Lemma 2.2. So the result holds for this case.

Now suppose that s = 0, but M has at least one circuit. Note that g(M) ≥ l + 1 > 3 as ci = 0 for all 3 ≤ i ≤ l. Hence
M/e = si(M/e). Evidently the result holds for n = 4 (in this case M ∼= U3,4, and the bound is easy to verify). Suppose that
n > 4 and the result holds for all simple binary matroids on fewer than n elements. Take an element e from a circuit of M .
Let b′

k and b′′

k be the absolute value of the coefficient of xk in χ(M\e, x) and χ(si(M/e), x), respectively. Then by the inductive
hypothesis, the theorem holds for b′

k and b′′

k . Since bk = b′

k + b′′

k , we have

bk ≥

l−1
i=1

 
n − r − 2 + i

i

 
r − i
k


+


n − r + i − 2

i − 1

 
r − i
k


+

 r
k


=

l−1
i=1


r − i
k

 
n − r + i − 1

i


+

 r
k


=

l−1
i=0


r − i
k

 
n − r + i − 1

i


.

Thus, the result holds for s = 0.
Now suppose that s =

l
i=3 ici > 0 and the results holds for all simple binary matroids with s <

l
i=3 ici. Let e be an

element of a t-circuit of M , where 3 ≤ t ≤ l. Let c ′

i and c ′′

i be the i-circuits of M\e and si(M/e), respectively. By Lemma 2.5,
c ′

i = ci − di(e), and c ′′

i ≤ ci − di(e) + di+1(e). We consider the value of s for M\e and si(M/e).
Observe that

l
i=3

ic ′

i =

l
i=3

ici −
l

i=3

idi(e) <

l
i=3

ici
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and
l−1
i=3

ic ′′

i ≤

l−1
i=3

ici −
l−1
i=3

idi(e) +

l−1
i=3

[(i + 1)di+1(e) − di+1(e)]

=

l
i=3

ici − 3d3(e) −

l
i=4

di(e) <

l
i=3

ici.

The last inequality is strict since dt(e) > 0 for some 3 ≤ t ≤ l. So by the inductive hypothesis, the result holds for b′

k and
b′′

k . Note that r(M\e) = r(M), |E(M\e)| = n − 1; r(si(M/e)) = r(M) − 1, and |E(si(M/e))| = n − d3(e) − 1 by Lemma 2.5.
Hence, the theorem holds for b′

k and

b′′

k ≥

l−2
i=0


n − d3(e) − 1 − r + 1 − 1 + i

i

 
r − 1 − i

k



−

l−1
j=3

c ′′

j

l−j−1
i=0


n − d3(e) − 1 − r + 1 − 1 + i

i

 
r − j − i

k



≥

l−2
i=0


n − r − 1 − d3(e) + i

i

 
r − 1 − i

k



−

l−1
j=3

(cj − dj(e) + dj+1(e))
l−j−1
i=0


n − r − 1 + i

i

 
r − i − j

k



=


r − 1
k


+

l−3
i=0


n − r − d3(e) + i

i + 1

 
r − 2 − i

k



−

l−1
j=3

(cj − dj(e))
l−j
i=1


n − r − 2 + i

i − 1

 
r + 1 − j − i

k



−

l
j=4

dj(e)
l−j
i=0


n − r − 1 + i

i

 
r + 1 − j − i

k


.

Therefore, bk = b′

k + b′′

k ≥

l−1
i=0


n − r − 2 + i

i

 
r − i
k



−

l
j=3

(cj − dj(e))
l−j
i=0


n − r − 2 + i

i

 
r + 1 − j − i

k



+


r − 1
k


+

l−3
i=0


n − r − d3(e) + i

i + 1

 
r − 2 − i

k



−

l−1
j=3

(cj − dj(e))
l−j
i=1


n − r − 2 + i

i − 1

 
r + 1 − j − i

k



−

l
j=4

dj(e)
l−j
i=0


n − r − 1 + i

i

 
r + 1 − j − i

k


.

Regrouping and using the identity
 x
i


=


x−1
i


+


x−1
i−1


, we obtain

bk ≥

l−1
i=0


n − r − 2 + i

i

 
r − i
k



+


r − 1
k


+

l−3
i=0


n − r − d3(e) + i

i + 1

 
r − 2 − i

k



−

l
j=3

cj
l−j
i=0


n − r + i − 1

i

 
r − i − j + 1

k


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+

l
j=3

dj(e)
l−j
i=0


n − r + i − 1

i

 
r − i − j + 1

k



−

l
j=4

dj(e)
l−j
i=0


n − r + i − 1

i

 
r − i − j + 1

k



=


r − 1
k


−

l
j=3

cj
l−j
i=0


n − r + i − 1

i

 
r − i − j + 1

k



+

l−1
i=0


n − r − 2 + i

i

 
r − i
k


+

l−3
i=0

d3(e)

n − r + i − 1

i

 
r − i − 2

k



+

l−3
i=0


n − d3(e) − r + i

i + 1

 
r − i − 2

k


.

Now

d3(e)

n − r + i − 1

i


+


n − d3(e) − r + i

i + 1


≥

d3(e)−1
j=0


n − r + i − 1 − j

i


+


n − d3(e) − r + i

i + 1


=


n − r + i
i + 1


.

Using this in the last inequality for bk, regrouping and simplifying, one can easily show that

bk ≥

l−1
i=0


n − r − 1 + i

i

 
r − i
k


−

l
j=3

cj
l−j
i=0


n − r + i − 1

i

 
r − i − j + 1

k


.

This completes the proof of the theorem. �

3. Consequences on the flow polynomials of graphs

Let G be a graph. It is well known that the flow polynomial of a graph G is the characteristic polynomial of the dual
matroid M∗(G): FG(x) = PM∗(G)(x). For more information on the flow polynomials, see [2,5]. A cocircuit of a matroid M is a
circuit in the dual matroidM∗. Note that a cocircuit in a graph is a non-empty minimal edge-cut. The cogirth of G is the size
of a smallest cocircuit. A graph is cosimple if it does not have any edge-cut of size one or two. The following are immediate
consequences of our main results.

Theorem 3.1. Let G be a cosimple graph on p vertices and q edges with cogirth g∗ and c∗
g cocircuits of size g∗. Suppose that the

flow polynomial of G is FG(x) =
r

k=0(−1)r−kfkxk, where r = q − p + ω(G).
Then for 0 ≤ k ≤ r,

fk ≤


q

r − k


−


q − g∗

+ 2
r − k − g∗ + 2


+


q − c∗

g − g∗
+ 2

r − k − g∗ + 2


. (3)

Theorem 3.2. Let G be a cosimple graph on p vertices and q edges. Suppose that the flow polynomial of G is FG(x) =r
k=0(−1)r−kfkxk, where r = q − p + ω(G). Let c∗

i be the number of i-element cocircuits of G for 3 ≤ i ≤ l, where l is an
integer such that 3 ≤ l ≤ r + 1.

Then for 0 ≤ k ≤ r,

fk ≥

l−1
i=0


q − r − 1 + i

i

 
r − i
k


−

l
j=3

c∗

j

l−j
i=0


q − r − 1 + i

i

 
r + 1 − j − i

k


. (4)
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