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Abstract

We show that the topological space of any infinite graph and its ends is normal. In particular, end spaces
themselves are normal.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The notion of the ends of an arbitrary infinite graph, not necessarily locally finite, was intro-
duced by Halin [8]. Jung [9] defined a topology on the set of ends, which was extensively studied
and extended to the set of vertices and ends by Polat [10–12]. Diestel and Kühn [4,5] extended
this topology to the entire graph (vertices, edges and ends); see also [3]. Some fundamental
topological questions about this space—in particular, when it is compact or metrizable—were
recently answered by Diestel [2].

One basic question that has remained open, for the end space Ω(G) of a graph G as well as
for the space V̂ (G) = V (G) ∪ Ω(G) and for the entire space |G| including both G and its ends,
is whether or not this space is normal. (They are easily seen to be regular.) When G is connected
and locally finite, then |G| coincides with the Freudenthal compactification of the cell-complex
corresponding to G, and hence both |G| and the closed subspace Ω(G) of its ends are normal.
When G has a normal spanning tree, then V̂ (G) is metrizable [11] and so is |G| [2], so all three
spaces are normal. In this paper, we show that Ω(G), V̂ (G), and |G| are always normal.
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2. Notation, background, and statement of results

We assume familiarity with the basic notions of infinite graph theory, for example as presented
in Diestel [3]. However, let us quickly review some of these. One-way infinite paths are called
rays. Every subray of a ray R is a tail of R. The union of two rays that have a common starting
vertex and are otherwise disjoint, is called a double ray. We call two rays equivalent if, for every
finite set S of vertices, both rays have a tail in the same component of G − S. It is quite easy to
see that this is an equivalence relation, the equivalence classes are called ends. The set of ends
of G is denoted by Ω(G).

The topology on Ω(G) is defined as follows. Let S be a finite set of vertices and C a compo-
nent of G−S. Let ΩS(C) denote the set of those ends of G whose rays have a tail in C. The sets
ΩS(C), taken over all S and C, form a basis of the topology on Ω(G). We call Ω(G) together
with this topology the end space of G.

Definition. A Hausdorff space X is called normal if any two disjoint closed subsets have disjoint
neighbourhoods.

It is well known that compact Hausdorff spaces are normal, and so are metric spaces. But the
end space of an arbitrary graph need be neither compact nor metrizable (see [2,6] for characteri-
sations of those that are), nor even have a countable basis. The standard ways to prove normality
therefore fail; our proof will be from first principles.

The first main result of this paper is

Theorem 2.1. Let G be an infinite graph. Then its end space Ω(G) is normal.

The topology on Ω(G) has been extended to V̂ (G) := V (G)∪Ω(G) by Polat [11] and to the
space |G|—which additionally contains the edges of G—by Diestel and Kühn [4,5].

The topology on V̂ (G) is defined as follows. We start with the discrete topology on V (G),
i.e. for each vertex v, the set {v} is open. For an end ω ∈ Ω(G) and a finite set S of vertices,
denote by C(S,ω) the component of G − S that contains a ray from ω. The sets Ĉ(S,ω) :=
C(S,ω) ∪ ΩS(C(S,ω)), taken over all S, form a neighbourhood basis of ω.

It is easy to see that the subspace topology V̂ (G) induces on its closed subspace Ω(G) is
exactly the topology on Ω(G) defined earlier.

As closed subspaces of normal spaces are also normal (note that this is not true for arbitrary
subspaces), Theorem 2.1 therefore follows at once from our second main result:

Theorem 2.2. Let G be an infinite graph. Then the space V̂ (G) consisting of the vertices and
ends of G is normal.

We will prove Theorem 2.2 in Section 3. In Section 4, we will discuss the space |G| and the
topologies given to it.

A spanning tree T of G is normal if there is a vertex r (called root of T ) such that for every
edge e of G, one of the endvertices of e lies on the path in T from r to the other endvertex of e.
If G has a normal spanning tree, V̂ (G) is metrizable [11, Theorems 5.8 and 5.15] and therefore
Theorem 2.2 is trivial.

A set S ⊂ V (G) separates two points x, y ∈ V̂ (G) if they do not lie (or have rays) in the same
component of G − S. It separates two sets A,B ⊂ V̂ (G) if it separates every point in A from
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every point in B . If an end ω cannot be separated by finitely many vertices from a given (infinite)
set Z of vertices, then no ray R in ω can be separated by finitely many vertices from Z. Thus,
there are infinitely many disjoint paths from V (R) to Z; the union of R with these paths is called
a comb. The last vertices of these paths are called the teeth of the comb, and R is its spine. A tail
of a comb is the union of a tail of its spine and all the paths that meet this tail. Note that not every
vertex of the spine has to be the first vertex of one of the paths, and a tooth may lie on the spine
if (and only if) its finite path is trivial. (See [3] for more on combs.)

We thus have the following lemma.

Lemma 2.3. If an end ω of an infinite graph G cannot be separated by finitely many vertices
from a given set Z of vertices, then there is a comb with teeth in Z and spine in ω.

Given a subset U of a topological space X, we call the set of all points x ∈ X such that every
neighbourhood of x meets both U and X \ U the boundary of U and denote it by ∂U . Further,
we denote the closure U ∪ ∂U of U by U .

We shall later need the following lemma.

Lemma 2.4. If U is the union of (arbitrarily many) open sets Ĉ(Si,ωi) in V̂ (G), then ∂U is
contained in the closure of

⋃
Si in V̂ (G).

Proof. Assume, for contradiction, that ∂U \⋃
Si �= ∅. First note that no vertex v lies in ∂U , since

the neighbourhood {v} of v avoids either U or V̂ (G) \ U . Hence there is an end ω in ∂U \ ⋃
Si .

There is a neighbourhood Ĉ(S,ω) of ω that avoids
⋃

Si . Thus for each i the component C(S,ω)

of G − S is contained in some component of G − Si and hence either Ĉ(S,ω) ⊂ Ĉ(Si,ωi) or
Ĉ(S,ω) ∩ Ĉ(Si,ωi) = ∅. If the latter holds for all i, we have Ĉ(S,ω) ∩ U = ∅, contradicting
the fact that ω ∈ ∂U . On the other hand, if Ĉ(S,ω) ⊂ Ĉ(Si,ωi) for at least one i, we have
Ĉ(S,ω) ⊂ U , again a contradiction. �
3. Proof of the normality theorem

As we observed in Section 2, Theorem 2.2 is trivial for graphs that have a normal spanning
tree. For arbitrary graphs, Theorem 2.2 will follow easily from

Lemma 3.1. Let G be an infinite graph and A,B ⊂ Ω(G) disjoint closed sets in V̂ (G). Then
there exist disjoint neighbourhoods of A and B in V̂ (G).

Proof. If A and B are both countable and infinite (the case where A or B is finite is trivial), there
is a simple way of constructing disjoint neighbourhoods of A and B: Enumerate the ends in A

by ω0,ω1, . . . and the ends in B by ω̃0, ω̃1, . . . . Now for i = 0,1, . . . , there are finite sets Si and
S̃i of vertices separating ωi from B and ω̃i from A, respectively. We now have neighbourhoods
U := ⋃

i<ω Ĉ(Si,ωi) of A and Ũ := ⋃
j<ω Ĉ(S̃j , ω̃j ) of B . These will be disjoint if the neigh-

bourhoods Ĉ(Si,ωi) and Ĉ(S̃j , ω̃j ) are disjoint for any i, j . To achieve this, it suffices to choose
the separators Si in a special way, namely, containing

⋃
j<i S̃j . Then, for every j < i, C(Si,ωi)

will be contained in the component C(S̃j ,ωi) of G − S̃j , which cannot be C(S̃j , ω̃j ), because
C(S̃j , ω̃j ) avoids A but C(Si,ωi) contains ωi ∈ A. Hence Ĉ(Si,ωi) ∩ Ĉ(S̃j , ω̃j ) = ∅. Likewise,
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we choose each S̃j so as to contain
⋃

i�j Si , which ensures that Ĉ(S̃j , ω̃j ) will be disjoint from

every Ĉ(Si,ωi) with i � j . Thus, U and Ũ will be disjoint.
This procedure fails for uncountable A or B , as it may be impossible at a transfinite step for a

finite separator Si to contain every previous separator.
For A and B that are not necessarily countable, we shall construct a neighbourhood U of A

in V̂ (G), whose closure in V̂ (G) will not meet B . The desired neighbourhood of B can then be
chosen as V̂ (G) \ U , completing the proof of Lemma 3.1.

Let us write A = {ωi | i < λ}. At step i < λ we will choose a finite set Si of vertices separat-
ing ωi from B and put Ui := Ĉ(Si,ωi). Finally, let U := ⋃

i<λ Ui .
Obviously, we are not allowed to choose the sets Si arbitrarily; the choice has to guarantee

that U does not meet B . To find out how we may ensure that, let us take a look at what happens if
we have chosen the sets Si already, but badly: there is an end ω ∈ B in U . By choice of the Ui , we
have ω ∈ ∂U . Hence Lemma 2.4 yields ω ∈ ⋃

i<λ Si . Thus, ω cannot be separated from
⋃

i<λ Si

by finitely many vertices; hence Lemma 2.3 yields a comb with spine in ω and teeth in
⋃

i<λ Si .
As every Si is finite, the comb has teeth in infinitely many Si . Our aim will be to choose the Si so
that infinitely many of these teeth can be linked by disjoint rays to (pairwise different) ends in A.
Then ω ∈ B will lie in the closure of these ends, and hence in A, contrary to our assumption that
A ∩ B = ∅.

For every i < λ let Si be a finite set of vertices that separates ωi from B , chosen so that

Si \
⋃

j<i

Sj is minimal (under set containment). (1)

In particular, if ωi can be separated from B by a finite subset of
⋃

j<i Sj , then Si is such a subset.
We claim that every set Si also satisfies

For every s ∈ Si \
⋃

j<i

Sj and every finite S ⊂
⋃

j<i

Sj , there exists a ray in ωi that starts in s,

avoids S, and is contained in Ui ∪ {s}. (2)

Indeed, for every s ∈ Si \ ⋃
j<i Sj and every finite S ⊂ ⋃

j<i Sj , the set S′
i := S ∪ Si \ {s} does

not separate ωi from B , as this would contradict (1). So there is a double ray D that joins ωi with
an end in B and avoids S′

i . As Si separates ωi from B , D hits Si . But D avoids Si \ {s} ⊂ S′
i ,

so D meets Si only in s. Thus, D contains a ray as required in (2).
Let us prove that U ∩ B = ∅. Suppose not, and pick ω ∈ U ∩ B . As described earlier, there

is a comb C in G with spine in ω and teeth in
⋃

i<λ Si . Let Z be the set of its teeth. For every
z ∈ Z there is a smallest index i = i(z) < λ with z ∈ Si . Since the sets Si are finite, we may
assume that i(z) �= i(z′) for z �= z′. Inductively, for all j ∈ N, choose z(j) ∈ Z as the vertex
z ∈ Z \ {z(k) | k < j} with smallest value i(z). Write i(j) for i(z(j)). Note that the function i(j)

is strictly increasing. Hence for every positive integer j , the finite set
⋃

k<j Si(k) is a subset of
the (possibly infinite) set

⋃
l<i(j) Sl .

We now inductively define disjoint rays Rj for all j ∈ N such that Rj ∈ ωj starts at z(j).
By the choice of z(j) and the definition of i(j), we have z(j) /∈ ⋃

l<i(j) Sl . In particular, as
z(j) ∈ Si(j),

Si(j) �⊂
⋃

l<i(j)

Sl. (3)

By (2), there exists a ray Rj ∈ ωi(j) that starts in z(j), avoids the finite subset
⋃

k<j Si(k) of⋃
Sl and is contained in Ui(j) ∪ {z(j)}. As Rj avoids

⋃
Si(k), we have for every k < j
l<i(j) k<j



802 P. Sprüssel / Journal of Combinatorial Theory, Series B 98 (2008) 798–804
either Rj ⊂ Ui(k) or Rj ∩ Ui(k) = ∅. If Rj was contained in Ui(k), then ωi(j) would also be con-
tained in Ui(k). But then ωi(j) could be separated from B by the finite subset Si(k) of

⋃
l<i(j) Sl .

By (1), this would imply Si(j) ⊂ ⋃
l<i(j) Sl , contradicting (3). We thus have Rj ∩ Ui(k) = ∅, as

well as z(k) /∈ Rj for all k < j .
Therefore, R := {Rj | j < ℵ0} is a set of disjoint rays, where Rj belongs to the end ωi(j) and

starts at the vertex z(j). As every finite set of vertices misses both a tail of our comb C and all
but finitely many rays in R, no finite set of vertices separates ω from A, in contradiction to the
fact that A is closed and ω /∈ A. �
Proof of Theorem 2.2. Let A,B be disjoint closed sets in V̂ (G). As A ∩ Ω(G) and B ∩ Ω(G)

are closed in V̂ (G), Lemma 3.1 gives us disjoint neighbourhoods O of A ∩ Ω(G) and U of
B ∩ Ω(G) in V̂ (G). Then

(O \ B) ∪ (
A ∩ V (G)

)
and (U \ A) ∪ (

B ∩ V (G)
)

are disjoint neighbourhoods of A and B , respectively. Thus, V̂ (G) is normal. �
4. Topologies including edges

The topological space |G| of an infinite graph G consists of the disjoint union of V (G), Ω(G)

and a copy e̊ = (u, v) of (0,1) for every edge e = uv ∈ E(G). The bijection between (0,1) and
(u, v) can be extended to a bijection of [0,1] and [u,v] := {u} ∪ (u, v) ∪ {v}, which induces a
metric on [u,v]. For any edge e, let de denote this metric.

In [2–5] several topologies on |G| are studied. We shall present one of them, called MTOP.
However, it turns out that all these topologies induce the same topology on V̂ (G): the topology
we defined in Section 2.

MTOP is generated by the following basic open sets. For every z ∈ e̊ = (u, v) and ε such that
0 < ε � min{de(u, z), de(v, z)}, we let the open ε-ball around z in e̊ be open in |G| and denote it
by Oε(z). For every vertex u and ε ∈ (0,1], we let the set of all points on edges [u,v] of distance
less than ε from u (measured in de for each e = uv) be open in |G| and denote it by Oε(u).
For every end ω, ε ∈ (0,1] and every finite set S of vertices, we let the set Ĉε(S,ω) be open in
|G|, where Ĉε(S,ω) consists of Ĉ(S,ω), all inner points of edges that have both endvertices in
C(S,ω), and, for each edge uv from C(S,ω) to S, all points on [u,v] of distance less than ε

from u (measured in de for e = uv).
As a generalisation of Theorem 2.2 (note that since V̂ (G) is a closed subspace of |G|, nor-

mality of |G| implies that V̂ (G) is normal) we prove the following result.

Theorem 4.1. Let G be an infinite graph. Then |G| with MTOP is normal.

Proof. Let A, B be disjoint closed sets in |G|. As A ∩ Ω(G) and B ∩ Ω(G) are closed in |G|,
Lemma 3.1 gives us disjoint neighbourhoods Ô of A∩Ω(G) and Û of B∩Ω(G) in V̂ (G). These
sets can be extended to disjoint open sets in |G|: Indeed, adding all edges with both endvertices
in Ô ∩ V (G) as well as, for each edge uv from Ô ∩ V (G) to V (G) \ Ô , all points on [u,v] of
distance less than 1

2 from u yields a neighbourhood O1 of A∩Ω(G) in |G|. Likewise, we obtain
a neighbourhood U1 of B ∩ Ω(G) in |G| disjoint from O1.

We will now construct further neighbourhoods O2 of A ∩ Ω(G) and U2 of B ∩ Ω(G) as well
as neighbourhoods O3 of A \Ω(G) and U3 of B \Ω(G) so that O3 is disjoint from U2 ∪U3 and
U3 is disjoint from O2 ∪ O3.
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Since B is closed, there exists for every a ∈ A a neighbourhood Ĉεa (Sa, a) (if a is an end) or
Oεa (a) (if a is a vertex or a point on an edge) of a avoiding B . Choose O2 as the union of all the
open sets Ĉ 1

2 εa
(Sa, a) for a ∈ A ∩ Ω(G) and O3 as the union of all the open sets O 1

2 εa
(a) for

a ∈ A \ Ω(G). The sets U2 and U3 are chosen analogously.
It is straightforward to check that these neighbourhoods satisfy the desired conditions. As

O1 ∩ U1 = ∅, we deduce that

O := (O1 ∩ O2) ∪ O3 and U := (U1 ∩ U2) ∪ U3

are disjoint neighbourhoods of A and B , respectively. Thus, |G| is normal. �
MTOP is the topology defined in [3]. In [2,4,5] some more topologies on |G| are studied.

These can equip |G| with certain desirable properties, such as metrizability, or compactness.
(See [2] for characterisations of those graphs for which |G| is metrizable or compact with this
topologies.) Our proof of Theorem 4.1 can be adapted to one of those topologies, called TOP.
(The third, VTOP, is not even Hausdorff.) We thus have

Theorem 4.2. Let G be an infinite graph. Then |G| with TOP is normal.

In some contexts, however, such as plane duality [1], the most natural space associated with
a graph G is not |G|, but a certain quotient space G̃ of |G| [5] (where |G| carries either TOP or
VTOP, but one can also define G̃ starting from |G| with MTOP). In this section we show that G̃,
and its end space Ω̃(G), are also normal. We may assume that the topology on |G| is TOP, since
we know that |G| is normal in this case.

To define G̃, let us say that a vertex v dominates an end ω if every finite set of vertices that
separates v from ω contains v. Let Ωv denote the set of ends of G that are dominated by the
vertex v. Throughout this section, we assume that

no end of G is dominated by more than one vertex. (∗)

By (∗), we have Ωu ∩ Ωv = ∅ for all u �= v. Let G̃ be the quotient space of |G| obtained by
identifying each vertex v with the ends in Ωv . This means that there is an identification map
σ : |G| � G̃ with σ(x) = v if x ∈ Ωv and σ(x) = x otherwise, and a subset U of G̃ is open if
and only if σ−1(U) is open in |G|. We write Ω̃(G) for the set of undominated ends of G, which
we informally also call the ends of G̃. Note that Ω̃(G) is a subspace both of |G| and of G̃; the
subspace topologies coincide (even if we had chosen the topology on |G| as MTOP or VTOP),
and we endow Ω̃(G) with this topology.

If G is connected, then by (∗) and Halin’s [7] theorem that connected graphs not containing
a subdivision of an infinite complete graph have normal spanning trees, |G| is metrizable in
MTOP [2, Theorem 3.1(i)]. Hence Ω̃(G), too, is a metric space, and therefore normal.

Theorem 4.3. For every graph G satisfying (∗), the space G̃ is normal.

Given a set X ⊂ |G|, write [X] for σ−1(σ (X)). (Thus, [X] is the union of X and all the sets
of the form Ωv ∪ {v} that meet X.)

Lemma 4.4. If X ⊂ |G| is closed in |G|, then so is [X].
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Proof. If [X] is not closed, there exists a point x /∈ [X] in the closure of [X]. Clearly, x is an
end.

As x does not lie in X, and X is closed, there is an ε ∈ (0,1] and a finite set S of vertices
such that Ĉε(S, x) ∩ X = ∅. Then any point z of [X] in Ĉε(S, x) must lie in a set Ωv ∪ {v} that
meets X. Since S separates x—and therefore also z—from every point in (Ωv ∪ {v}) ∩ X, the
vertex v has to lie in S ∩ [X] and z is an end in Ωv .

By a result of [5], the sets Ωv are closed in |G|, so the finite union
⋃

v∈S∩[X] Ωv is also

closed. The intersection of its complement in |G| with Ĉε(S, x) is a neighbourhood of x that
avoids [X]. �
Proof of Theorem 4.3. Let disjoint closed subsets Ã, B̃ of G̃ be given. Then A := σ−1(Ã) and
B := σ−1(B̃) are disjoint closed sets in |G|. By Theorem 2.2, we have disjoint open sets U ⊃ A

and V ⊃ B in |G|.
As |G| \ U is closed, Lemma 4.4 yields that [|G| \ U ] is closed. Since [A] = A, by the

definition of A, we have A ∩ [|G| \ U ] = ∅. Hence, U ′ := |G| \ [|G| \ U ] is an open subset
of U that still contains A and satisfies [U ′] = U ′. Likewise, V has an open subset V ′ that still
contains B and satisfies [V ′] = V ′.

Thus, σ(U ′) and σ(V ′) are disjoint neighbourhoods of Ã and B̃ , respectively. �
Problem. Is G̃ metrizable?

Vella and Richter [13] solve this problem by proving that if G is 2-connected and no two
vertices are connected by infinitely many internally disjoint paths, G̃ is even a Peano space.
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