# Higher-order generalized convexity and duality in nondifferentiable multiobjective mathematical programming ${ }^{\text {x }}$ 

Xin Min Yang ${ }^{\text {a,* }}$, Kok Lay Teo ${ }^{\text {b }}$, Xiao Qi Yang ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Department of Mathematics, Chongqing Normal University, Chongqing 400047, China<br>${ }^{\text {b }}$ Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong<br>Received 13 February 2003<br>Submitted by J.P. Dauer


#### Abstract

In this paper, a class of generalized convexity is introduced and a unified higher-order dual model for nondifferentiable multiobjective programs is described, where every component of the objective function contains a term involving the support function of a compact convex set. Weak duality theorems are established under generalized convexity conditions. The well-known case of the support function in the form of square root of a positive semidefinite quadratic form and other special cases can be readily derived from our results. © 2004 Elsevier Inc. All rights reserved.


## 1. Introduction

Consider the nonlinear programming problem
(P) Minimize $f(x)$ subject to $g(x) \geqslant 0$,

[^0]where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are twice differentiable functions. The Mangasarian second-order dual [1] is
(MD) Maximize $f(u)-y^{T} g(u)-\frac{1}{2} p^{T} \nabla^{2}\left[f(u)-y^{T} g(u)\right] p$
subject to $\quad \nabla\left[f(u)-y^{T} g(u)\right]+\nabla^{2}\left[f(u)-y^{T} g(u)\right] p=0$,
$$
y \geqslant 0
$$

By introducing two differentiable functions $h: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $k: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, Mangasarian [1] formulates the higher-order dual:
(HD) Maximize $f(u)-y^{T} g(u)+h(u, p)-y^{T} k(u, p)$
subject to $\quad \nabla_{p} h(u, p)=\nabla_{p}\left(y^{T} k(u, p)\right)$,

$$
y \geqslant 0
$$

where $\nabla_{p} h(u, p)$ denotes the $n \times 1$ gradient of $h$ with respect to $p$ and $\nabla_{p}\left(y^{T} k(u, p)\right)$ denotes the $n \times 1$ gradient of $y^{T} k$ with respect to $p$.

Recently, Mishra and Rueda [2] consider higher-order duality for the following nondifferentiable mathematical programming:
(NP) Minimize $f(x)+\left(x^{T} B x\right)^{1 / 2}$ subject to $g(x) \geqslant 0$,
where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are twice differentiable functions, and $B$ is an $n \times n$ positive semidefinite (symmetric) matrix.

In [2], Mishra and Rueda generalize Zhang's Mangasarian type and Mond-Weir type higher-order duality [3] to higher-order type I functions. In this paper, we extend the results in [2] to a class of nondifferentiable multiobjective programming problems. A unified higher-order dual model for nondifferentiable multiobjective programs is presented, where every component of the objective function contains a term involving the support function of a compact convex set. Weak duality theorems are established under generalized convexity conditions. As a special case of these conditions appears repeatedly in the literature with the support function in the form of square root of a positive semidefinite quadratic form. Other special cases can be readily generated from our results.

Consider the nondifferentiable multiobjective programming problem:
(NMP) Minimize $\left(f_{1}(x)+s\left(x \mid C_{1}\right), f_{2}(x)+s\left(x \mid C_{2}\right), \ldots, f_{p}(x)+s\left(x \mid C_{p}\right)\right)$
subject to $g(x) \geqslant 0, \quad x \in D$,
where $f=\left[f_{1}, f_{2}, \ldots, f_{p}\right]^{T}$ and $g$ are differentiable functions from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ and $\mathbb{R}^{n} \rightarrow$ $\mathbb{R}^{m}$, respectively, $C_{i}$ is a compact convex set of $\mathbb{R}^{n}$ for each $i \in P=\{1,2, \ldots, p\}$, and $D$ is an open subset of $\mathbb{R}^{n}$.

Definition 1.1. A functional $F: D \times D \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is sublinear if, for any $x, u \in D$,

$$
\begin{aligned}
& F\left(x, u ; a_{1}+a_{2}\right) \leqslant F\left(x, u ; a_{1}\right)+F\left(x, u ; a_{2}\right), \quad \forall a_{1}, a_{2} \in \mathbb{R}^{n} \quad \text { and } \\
& F(x, u ; \alpha a)=\alpha F(x, u ; a), \quad \forall \alpha \in \mathbb{R}, \alpha \geqslant 0, \text { and } a \in \mathbb{R}^{n} .
\end{aligned}
$$

## 2. Duality

We propose the following general dual (NMD) to (NMP):

$$
\begin{aligned}
& \text { (NMD) Maximize }\left(f_{1}(u)+h_{1}(u, p)-p^{T} \nabla_{p} h_{1}(u, p)+u^{T} w_{1}\right. \\
& -\sum_{i \in I_{0}}\left[y_{i} g_{i}(u)+y_{i} k_{i}(u, p)-p^{T} \nabla_{p} y_{i} k_{i}(u, p)\right], \\
& f_{2}(u)+h_{2}(u, p)-p^{T} \nabla_{p} h_{2}(u, p)+u^{T} w_{2} \\
& -\sum_{i \in I_{0}}\left[y_{i} g_{i}(u)+y_{i} k_{i}(u, p)-p^{T} \nabla_{p} y_{i} k_{i}(u, p)\right], \ldots, \\
& f_{p}(u)+h_{p}(u, p)-p^{T} \nabla_{p} h_{p}(u, p)+u^{T} w_{p} \\
& \left.-\sum_{i \in I_{0}}\left[y_{i} g_{i}(u)+y_{i} k_{i}(u, p)-p^{T} \nabla_{p} y_{i} k_{i}(u, p)\right]\right)
\end{aligned}
$$

subject to

$$
\begin{align*}
& \lambda^{T} \nabla_{p} h(u, p)+\sum_{i=1}^{p} \lambda_{i} w_{i}=\nabla_{p}\left(y^{T} k(u, p)\right),  \tag{2}\\
& \sum_{i \in I_{\alpha}}\left[y_{i} g_{i}(u)+y_{i} k_{i}(u, p)-p^{T} \nabla_{p}\left(y_{i} k_{i}(u, p)\right)\right] \leqslant 0, \\
& \quad \alpha=1,2, \ldots, r,  \tag{3}\\
& y \geqslant 0,  \tag{4}\\
& w_{i} \in C_{i}, \quad i=1,2, \ldots, p, \quad \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right) \in \Lambda^{+}, \tag{5}
\end{align*}
$$

where $\Lambda^{+}=\left\{\lambda \in \mathbb{R}^{p}: \lambda>0, \lambda^{T} e=1, e=\{1,1, \ldots, 1\} \in \mathbb{R}^{p}\right\}, w=\left(w_{1}, w_{2}, \ldots, w_{p}\right)$, $I_{\alpha} \subset M=\{1,2, \ldots, m\}, \alpha=0,1,2, \ldots, \gamma$ with $\bigcup_{\alpha=0}^{\gamma} I_{\alpha}=M$ and $I_{\alpha} \cap I_{\beta}=\emptyset$ if $\alpha \neq \beta$.

Theorem 2.1 (Weak duality). Let $x$ be feasible for (NMP) and let ( $u, \lambda, w, y, p$ ) be feasible for (NMD). Supposed that for all feasible ( $x, u, y, w, p$ ), there exist a sublinear functional $F: \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
\begin{align*}
& \sum_{i \in I_{\alpha}}\left[y_{i} g_{i}(u)+y_{i} k_{i}(u, p)-p^{T} \nabla_{p}\left(y_{i} k_{i}(u, p)\right)\right] \leqslant 0 \\
& \quad \Longrightarrow \quad F\left(x, u,-\nabla_{p}\left[\sum_{i \in I_{\alpha}} y_{i} k_{i}(u, p)\right]\right) \leqslant-\beta_{\alpha} d^{2}(x, u), \quad \alpha=1,2, \ldots, \gamma \tag{6}
\end{align*}
$$

Furthermore, it is assumed that one of the following three conditions holds:
(a) For $i \in P$,

$$
F\left(x, u, \nabla_{p} h_{i}(u, p)+w_{i}-\nabla_{p}\left(\sum_{i \in I_{0}} y_{i} k_{i}(u, p)\right)\right) \geqslant-\rho_{i} d^{2}(x, u)
$$

$$
\begin{aligned}
& \Longrightarrow \quad f_{i}(x)+x^{T} w_{i}-\left(f_{i}(u)+u^{T} w_{i}-\sum_{i \in I_{0}} y_{i} g_{i}(u)\right) \\
&-\left(h_{i}(u, p)-\sum_{i \in I_{0}} y_{i} k_{i}(u, p)\right) \\
&+p^{T}\left[\nabla_{p} h_{i}(u, p)-\nabla_{p}\left(\sum_{i \in I_{0}} y_{i} k_{i}(u, p)\right)\right] \geqslant 0 ; \\
& f_{i}(x)+x^{T} w_{i}-\left(f_{i}(u)+u^{T} w_{i}-\sum_{i \in I_{0}} y_{i} g_{i}(u)\right) \\
&-\left(h_{i}(u, p)-\sum_{i \in I_{0}} y_{i} k_{i}(u, p)\right) \\
&+p^{T}\left[\nabla_{p} h_{i}(u, p)-\nabla_{p}\left(\sum_{i \in I_{0}} y_{i} k_{i}(u, p)\right)\right] \leqslant 0 \\
& \Longrightarrow \quad F\left(x, u, \nabla_{p} h_{i}(u, p)+w_{i}-\nabla_{p}\left(\sum_{i \in I_{0}} y_{i} k_{i}(u, p)\right)\right) \leqslant-\rho_{i} d^{2}(x, u),
\end{aligned}
$$

and

$$
\sum_{\alpha=1}^{\gamma} \beta_{\alpha}+\sum_{i=1}^{p} \lambda_{i} \rho_{i} \geqslant 0
$$

(b) There exists $k \in P$ such that

$$
\begin{gathered}
F\left(x, u, \nabla_{p} h_{k}(u, p)+w_{k}-\nabla_{p}\left[\sum_{i \in I_{0}} y_{i} k_{i}(u, p)\right]\right) \geqslant-\rho_{k} d^{2}(x, u) \\
\Longrightarrow f_{k}(x)+x^{T} w_{k}-\left(f_{k}(u)+u^{T} w_{k}-\sum_{i \in I_{0}} y_{i} g_{i}(u)\right) \\
-\left(h_{k}(u, p)-\sum_{i \in I_{0}} y_{i} k_{i}(u, p)\right) \\
+p^{T}\left[\nabla_{p} h_{k}(u, p)-\nabla_{p}\left(\sum_{i \in I_{0}} y_{i} k_{i}(u, p)\right)\right] \geqslant 0
\end{gathered}
$$

while

$$
\begin{aligned}
& f_{i}(x)+x^{T} w_{i}-\left(f_{i}(u)+u^{T} w_{i}-\sum_{i \in I_{0}} y_{i} g_{i}(u)\right)-\left(h_{i}(u, p)-\sum_{i \in I_{0}} y_{i} k_{i}(u, p)\right) \\
& \quad+p^{T}\left[\nabla_{p} h_{i}(u, p)-\nabla_{p}\left(\sum_{i \in I_{0}} y_{i} k_{i}(u, p)\right)\right] \leqslant 0
\end{aligned}
$$

$$
\Longrightarrow F\left(x, u, \nabla_{p} h_{i}(u, p)+w_{i}-\nabla_{p}\left(\sum_{i \in I_{0}} y_{i} k_{i}(u, p)\right)\right) \leqslant-\rho_{i} d^{2}(x, u)
$$

for all $i \in P$
and

$$
\sum_{\alpha=1}^{\gamma} \beta_{\alpha}+\sum_{i=1}^{p} \lambda_{i} \rho_{i} \geqslant 0
$$

(c) $F\left(x, u, \lambda^{T} \nabla_{p} h(u, p)+\sum_{i=1}^{p} \lambda_{i} w_{i}-\nabla_{p} y^{T} k(u, p)\right) \geqslant-\rho d^{2}(x, u)$

$$
\begin{aligned}
\Longrightarrow \quad & \lambda^{T} f(x)+x^{T} \sum_{i=1}^{p} \lambda_{i} w_{i}-\left(\lambda^{T} f(u)+u^{T} \sum_{i=1}^{p} \lambda_{i} w_{i}-y^{T} g(u)\right) \\
& -\left(\lambda^{T} h(u, p)-y^{T} k(u, p)\right)+p^{T}\left[\lambda^{T} \nabla_{p} h(u, p)-\nabla_{p} y^{T} k(u, p)\right] \\
& \geqslant 0
\end{aligned}
$$

and

$$
\sum_{\alpha=1}^{\gamma} \beta_{\alpha}+\rho \geqslant 0
$$

Then, the following relationships do not hold:

$$
\begin{align*}
& f_{i}(x)+s\left(x \mid C_{i}\right) \\
& \leqslant f_{i}(u)+h_{i}(u, p)-p^{T} \nabla_{p} h_{i}(u, p)+u^{T} w_{i} \\
& \quad-\sum_{i \in I_{0}}\left[y_{i} g_{i}(u)+y_{i} k_{i}(u, p)-p^{T} \nabla_{p} y_{i} k_{i}(u, p)\right], \quad \text { for all } i \in P \tag{7}
\end{align*}
$$

and

$$
\begin{align*}
& f_{k}(x)+s\left(x \mid C_{k}\right) \\
& \quad<f_{k}(u)+h_{k}(u, p)-p^{T} \nabla_{p} h_{k}(u, p)+u^{T} w_{k} \\
& \quad-\sum_{i \in I_{0}}\left[y_{i} g_{i}(u)+y_{i} k_{i}(u, p)-p^{T} \nabla_{p} y_{i} k_{i}(u, p)\right], \quad \text { for some } k \in P . \tag{8}
\end{align*}
$$

Proof. Since $x$ is feasible for (NMP) and ( $u, \lambda, w, y, p$ ) is feasible for (NMD), it follows that

$$
\begin{aligned}
& \sum_{i \in I_{\alpha}}\left[y_{i} g_{i}(u)+y_{i} k_{i}(u, p)-p^{T} \nabla_{p}\left(y_{i} k_{i}(u, p)\right)\right] \leqslant 0 \\
& \quad \Longrightarrow F\left(x, u,-\nabla_{p}\left[\sum_{i \in I_{\alpha}} y_{i} k_{i}(u, p)\right]\right) \leqslant-\beta_{\alpha} d^{2}(x, u), \\
& \alpha=1,2, \ldots, \gamma, \quad \text { by }(6) .
\end{aligned}
$$

By the sublinearity of $F$, we have

$$
\begin{equation*}
F\left(x, u,-\nabla_{p}\left[\sum_{i \in M \backslash I_{0}} y_{i} k_{i}(u, p)\right]\right) \leqslant-\sum_{\alpha}^{\gamma} \beta_{\alpha} d^{2}(x, u) \tag{10}
\end{equation*}
$$

From (2), (10) and the sublinearity of $F$, we obtain

$$
\begin{align*}
& F\left(x, u ; \nabla_{p} \lambda^{T} h(u, p)+\sum_{i=1}^{p} \lambda_{i} w_{i}-\nabla_{p}\left(\sum_{i \in I_{0}} y_{i} k_{i}(u, p)\right)\right) \\
& \quad \geqslant\left(\sum_{\alpha=1}^{\gamma} \beta_{\alpha}\right) d^{2}(x, u) \tag{11}
\end{align*}
$$

Now on the contrary, we suppose that (7) and (8) hold. Since $x^{T} w_{i} \leqslant s\left(x \mid C_{i}\right), i=$ $1,2, \ldots, p$, we have

$$
\begin{align*}
f_{i}(x)+x^{T} w_{i} \leqslant & f_{i}(x)+s\left(x \mid C_{i}\right) \\
\leqslant & f_{i}(u)+h_{i}(u, p)-p^{T} \nabla_{p} h_{i}(u, p)+u^{T} w_{i} \\
& -\sum_{i \in I_{0}}\left[y_{i} g_{i}(u)+y_{i} k_{i}(u, p)-p^{T} \nabla_{p} y_{i} k_{i}(u, p)\right], \quad \forall i \in P, \tag{12}
\end{align*}
$$

and

$$
\begin{align*}
& f_{k}(x)+x^{T} w_{k} \\
& \quad \leqslant f_{k}(x)+s\left(x \mid C_{k}\right)<f_{k}(u)+h_{k}(u, p)-p^{T} \nabla_{p} h_{k}(u, p)+u^{T} w_{k} \\
& \quad-\sum_{i \in I_{0}}\left[y_{i} g_{i}(u)+y_{i} k_{i}(u, p)-p^{T} \nabla_{p} y_{i} k_{i}(u, p)\right], \quad \text { for some } k \in P . \tag{13}
\end{align*}
$$

If case (a) is satisfied, then we obtain

$$
\begin{equation*}
F\left(x, u ; \nabla_{p} h_{i}(u, p)+w_{i}-\nabla_{p}\left(\sum_{i \in I_{0}} y_{i} k_{i}(u, p)\right)\right) \leqslant-\rho_{i} d^{2}(x, u), \quad \forall i \in P, \tag{14}
\end{equation*}
$$

and

$$
\begin{align*}
& F\left(x, u ; \nabla_{p} h_{k}(u, p)+w_{k}-\nabla_{p}\left(\sum_{i \in I_{0}} y_{i} k_{i}(u, p)\right)\right)<-\rho_{k} d^{2}(x, u), \\
& \quad \text { for some } k \in P . \tag{15}
\end{align*}
$$

Since $\lambda \in \Lambda^{+}$, it follows from (14), (15) and the sublinearity of $F$ that

$$
\begin{align*}
& F\left(x, u ; \sum_{i=1}^{p} \lambda_{i}\left(\nabla_{p} h_{i}(u, p)+w_{i}-\nabla_{p}\left(\sum_{i \in I_{0}} y_{i} k_{i}(u, p)\right)\right)\right) \\
& \quad<\left(-\sum_{i=1}^{p} \lambda_{i} \rho_{i}\right) d^{2}(x, u) . \tag{16}
\end{align*}
$$

Since $\sum_{\alpha=1}^{\gamma} \beta_{\alpha}+\sum_{i=1}^{p} \lambda_{i} \rho_{i} \geqslant 0$, it is clear from (16) that

$$
\begin{align*}
& F\left(x, u ; \sum_{i=1}^{p} \lambda_{i}\left[\nabla_{p} h_{i}(u, p)+w_{i}-\nabla_{p}\left(\sum_{i \in I_{0}} y_{i} k_{i}(u, p)\right)\right]\right) \\
& \quad<\left(\sum_{\alpha=1}^{\gamma} \beta_{\alpha}\right) d^{2}(x, u) \tag{17}
\end{align*}
$$

which contradicts (11). Hence, (7) and (8) cannot hold.
If case (b) is satisfied, then we note that (14) holds and that (13) implies

$$
\begin{equation*}
F\left(x, u ; \nabla_{p} h_{k}(u, p)+w_{k}-\nabla_{p}\left(\sum_{i \in I_{0}} y_{i} g_{i}(u)\right)\right)<-\rho_{k} d^{2}(x, u) \tag{18}
\end{equation*}
$$

for some $k \in P$.
Since (18) and (14) imply (17), it is clear that (7) and (8) cannot hold.
Now suppose that case (c) is satisfied. Since $\lambda \in \Lambda^{+}$, it follows from (12) and (13) that

$$
\begin{aligned}
\sum_{i=1}^{p} \lambda_{i}\left(f_{i}(x)+x^{T} w_{i}\right)<\sum_{i=1}^{p} \lambda_{i}\{ & f_{i}(u)+h_{i}(u, p)-p^{T} \nabla_{p} h_{i}(u, p)+u^{T} w_{i} \\
& \left.-\sum_{i \in I_{0}}\left[y_{i} g_{i}(u)+y_{i} k_{i}(u, p)-p^{T} \nabla_{p} y_{i} k_{i}(u, p)\right]\right\}
\end{aligned}
$$

Thus, by (c),

$$
\begin{equation*}
F\left(x, u ; \sum_{i=1}^{p} \lambda_{i}\left[\nabla_{p} h_{i}(u, p)+w_{i}-\nabla_{p}\left(\sum_{i \in I_{0}} y_{i} g_{i}(u)\right)\right]\right)<-\rho d^{2}(x, u) \tag{19}
\end{equation*}
$$

Since $\sum_{\alpha=1}^{\gamma} \beta_{\alpha}+\rho \geqslant 0$, it follows from (19) that

$$
F\left(x, u ; \sum_{i=1}^{p} \lambda_{i}\left[\nabla_{p} h_{i}(u, p)+w_{i}-\nabla_{p}\left(\sum_{i \in I_{0}} y_{i} g_{i}(u)\right)\right]\right)<\left(\sum_{\alpha=1}^{\gamma} \beta_{\alpha}\right) d^{2}(x, u)
$$

which contradicts (11). Hence, (7) and (8) cannot hold.

## 3. Special cases

Let us consider the case, where $C_{i}=\left\{B_{i} w: w^{T} B_{i} w \leqslant 1\right\}$. It is easily shown that $\left(x^{T} B_{i} x\right)^{1 / 2}=s\left(x \mid C_{i}\right)$ and that the sets $C_{i}, i=1,2, \ldots, p$, are compact and convex. Then, the primal problem (NMP) and the dual problem (NMD) become, respectively,
$(\mathrm{NMP})_{1} \quad$ Minimize $\left(f_{1}(x)+\left(x^{T} B_{1} x\right)^{1 / 2}, \ldots, f_{p}(x)+\left(x^{T} B_{p} x\right)^{1 / 2}\right)$ subject to $g(x) \geqslant 0, \quad x \in D$,
and
$(\mathrm{NMD})_{1} \quad$ Maximize $\left(f_{1}(u)+h_{1}(u, p)-p^{T} \nabla_{p} h_{1}(u, p)+u^{T} B_{1} w\right.$

$$
\begin{aligned}
& -\sum_{i \in I_{0}}\left[y_{i} g_{i}(u)+y_{i} k_{i}(u, p)-p^{T} \nabla_{p} y_{i} k_{i}(u, p)\right] \\
& \ldots, f_{p}(u)+h_{p}(u, p)-p^{T} \nabla_{p} h_{p}(u, p)+u^{T} B_{p} w \\
& \left.-\sum_{i \in I_{0}}\left[y_{i} g_{i}(u)+y_{i} k_{i}(u, p)-p^{T} \nabla_{p} y_{i} k_{i}(u, p)\right]\right)
\end{aligned}
$$

subject to

$$
\begin{aligned}
& \lambda^{T} \nabla_{p} h(u, p)+\sum_{i=1}^{p} \lambda_{i} B_{i} w=\nabla_{p}\left(y^{T} k(u, p)\right), \\
& \sum_{i \in I_{\alpha}}\left[y_{i} g_{i}(u)+y_{i} k_{i}(u, p)-p^{T} \nabla_{p}\left(y_{i}^{T} k_{i}(u, p)\right)\right] \leqslant 0, \\
& \quad \alpha=1,2, \ldots, r, \quad y \geqslant 0, \\
& w^{T} B_{i} w \leqslant 1, \quad i=1,2, \ldots, p, \quad \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right) \in \Lambda^{+} .
\end{aligned}
$$

## Remark 3.1.

(i) If $p=1$, then (NMP) $)_{1}$ and (NMD) ${ }_{1}$ reduce, respectively, to (NDP) and (NDHGD) considered in [2].
(ii) If $p=1, I_{0}=M, I_{\alpha}=\emptyset(1 \leqslant \alpha \leqslant \gamma)$, then $(\mathrm{NMP})_{1}$ and (NMD) $)_{1}$ reduce, respectively, to (NDP) and (NDHMD) considered in [2].
(iii) If $p=1, I_{0}=\emptyset, I_{1}=M, I_{\alpha}=\emptyset(2 \leqslant \alpha \leqslant \gamma)$, then (NMP) $)_{1}$ and (NMD) $)_{1}$ reduce, respectively, to (NDP) and (NDHD) considered in [2].
(iv) If $h(u, p)=p^{T} \nabla f(u)$ and $k_{i}(u, p)=p^{T} \nabla g_{i}(u), i=1,2, \ldots, m$, then (NMD) $)_{1}$ reduce to (VD) considered in [4].

We note that if $F(x, u ; \nabla \phi(u))=\nabla \phi(u)^{T} \eta(x, u)$, where $\eta: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a vectorvalued function, then the conditions of Theorem 2.1 reduce to higher-order generalized invexity considered in [2]. Thus, our results in Theorem 2.1 improve, extend and unify the results obtained in [2,4].

## References

[1] O.L. Mangasarian, Second and higher order duality in nonlinear programming, J. Math. Anal. Appl. 51 (1975) 607-620.
[2] S.K. Mishra, N.G. Rueda, Higher order generalized invexity and duality in nondifferentiable mathematical programming problems, J. Math. Anal. Appl. 272 (2002) 496-506.
[3] J. Zhang, Generalized convexity and higher order duality for mathematical programming, PhD thesis, La Trobe University, Australia, 1998.
[4] X.M. Yang, K.L. Teo, X.Q. Yang, Duality for a class of nondifferentiable multiobjective programming programs, J. Math. Anal. Appl. 252 (2000) 999-1005.


[^0]:    ${ }^{4}$ This research was partially supported by the National Natural Science Foundation of China, the Natural Science Foundation of Chongqing and The Project-sponsored by SRF for ROCS, SEM.

    * Corresponding author. Current address: Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.

    E-mail address: maxmyang @ polyu.edu.hk (X.M. Yang).
    0022-247X/\$ - see front matter © 2004 Elsevier Inc. All rights reserved.
    doi:10.1016/j.jmaa.2004.03.036

