
Journal of Combinatorial Theory, Series A 120 (2013) 64–76
Contents lists available at SciVerse ScienceDirect

Journal of Combinatorial Theory,
Series A

www.elsevier.com/locate/jcta

An explicit formula for ndinv, a new statistic for two-shuffle
parking functions

Angela Hicks 1, Yeonkyung Kim 1

University of California, San Diego, Mathematics Department, 9500 Gilman Drive # 0112, La Jolla, CA 92093-0112, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 November 2011
Available online 17 July 2012

Keywords:
Parking functions
Diagonal inversions
dinv
Shuffle conjecture
Hall–Littlewood polynomials

In a recent paper, Duane, Garsia, and Zabrocki introduced a new
statistic, “ndinv”, on a family of parking functions. The defini-
tion was guided by their study of a recursion on 〈�hm C p1 C p2 . . .

C pk 1, en〉 for �hm a Macdonald eigenoperator, C pi a modified Hall–
Littlewood operator, and (p1, p2, . . . , pk) a composition of n. Using
their newly introduced statistic, one can give a new interpretation
for 〈∇en,h jhn− j〉 as a sum of parking functions q, t counted by
area and ndinv. This is a departure from the traditional sum, as
stated by the shuffle conjecture, which q, t counts area and diag-
onal inversion number (dinv). Since their definition is necessarily
recursive, they pose the problem of obtaining a non-recursive defi-
nition. In this paper, we solve this problem by giving an explicit
formula for ndinv similar to the classical definition of dinv and
prove it is equivalent to the ndinv of Duane, Garsia, and Zabrocki.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

We begin with a brief introduction to parking functions and some related algebraic expressions
before giving our formula for ndinv.

1.1. Parking functions

Definition 1.1 (Parking function). A two-line array

PF =
[

c1 c2 . . . cn

d1 d2 . . . dn

]

E-mail addresses: ashicks@math.ucsd.edu (A. Hicks), yeonkyung@math.ucsd.edu (Y. Kim).
1 Work supported by NSF grant.
0097-3165/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcta.2012.07.006

http://dx.doi.org/10.1016/j.jcta.2012.07.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcta
mailto:ashicks@math.ucsd.edu
mailto:yeonkyung@math.ucsd.edu
http://dx.doi.org/10.1016/j.jcta.2012.07.006

A. Hicks, Y. Kim / Journal of Combinatorial Theory, Series A 120 (2013) 64–76 65
Fig. 1. PF as shown in the 5 × 5 lattice.

is a parking function exactly when

• The first line is a permutation of {1,2, . . . ,n}.
• (Dyck path condition.) d1 = 0 and when i > 1, 0 � di � di−1 + 1.
• (Increasing column condition.) If di = di−1 + 1, then ci > ci−1.

The numbers in the first row of the array are referred to as cars, and car ci is said to be in
the di th diagonal, with the 0th diagonal being referred to as the main diagonal. We sometimes find

it convenient to consider a parking function as a sequence of “dominoes”
[

ci
di

]
. Frequently, as first

shown in [1], parking functions are also represented in an n by n lattice. The elements in the second
row define a Dyck path in the n by n lattice, where di gives the number of full squares between the
path and the main (southwest to northeast) diagonal. Car ci is then placed directly to the right of the
ith north step of the Dyck path. (See Fig. 1.) Note that, when di = di−1 + 1, cars ci and ci−1 are in the
same column with ci atop ci−1.

Definition 1.2 (Reading word). The reading word of a parking function (word(PF)) is the permutation
which records the cars by diagonals, reading cars in the highest diagonal first, then working down-
ward. Cars within a diagonal are recorded from northeast to southwest.

Example 1.3. The reading word of the parking function in Fig. 1 is (1,3,4,5,2).

For the purposes of this paper, we work with a subset of these parking functions. Recall that a
permutation σ is a shuffle of (1, . . . ,m) and (m + 1, . . . ,m + n) when if i1 < i2 � m or m < i1 < i2,
then i1 occurs before i2 in σ .

Definition 1.4 (Two-shuffle parking functions). A parking function PF is a two-shuffle parking function
(as first defined in [2]) when for two integers m,n, we have:

1. word(PF) is a shuffle of (1, . . . ,m) and (m + 1, . . . ,m + n);
2. cn+m > m; and
3. dn+m = 0.

Example 1.5. The parking function in Fig. 1 is a two-shuffle parking function for m = 2.

For the remainder of this paper, we call a car c a “big car” when c > m and a “small car” when
c � m. We may also use the symbols “cs” or “cb” to denote a small car or a big car (respectively).

Definition 1.6 (Composition). Let the set of f i such that c fi is big and d fi = 0 be given in increasing
order as (f1, f2, . . . , fk). Then we say a car c j is in the first part if j � f1 and otherwise in the ith
part if f i−1 < j � f i . Then the “composition of PF” (comp(PF)) is the vector (p1, p2, . . . , pk), where pi

gives the number of big cars in the ith part.

66 A. Hicks, Y. Kim / Journal of Combinatorial Theory, Series A 120 (2013) 64–76
Example 1.7.

PF =
[

3 4 1 6 2 5
0 1 1 0 0 0

]
then for m = 3 we have

comp(PF) = (2,1).

There are two parking function statistics that have been extensively studied in the literature:

area(PF) =
∑

i

di,

first described in [1] and

dinv(PF) =
∑
i< j

χ(di = d j and ci < c j) + χ(di = d j + 1 and ci > c j),

first described in [3], where here, as elsewhere in this paper, χ gives the truth function. These two
statistics are of interest because they play an essential role in a variety of results tying parking func-
tions to the theory of Macdonald polynomials and the representation theory of the symmetric group;
they are also core ingredients in the formulation of the “shuffle conjecture”.

1.2. Some algebraic theorems and conjectures

The shuffle conjecture as given in [4] states in particular that

∇en = �en en =
∑
PF

tarea(PF)qdinv(PF) Q ides(PF),

where Q is the Gessel quasi-symmetric function, ides(PF) = des((word(PF))−1), and � f is the linear
operator defined by the following with H̃μ[X;q, t] the modified Macdonald basis in [5]:

� f H̃μ[X;q, t] = f

[∑
(i, j)∈μ

ti−1q j−1
]

H̃μ[X;q, t].

A number of authors have given related expressions in terms of the area and dinv of particular fami-
lies of parking functions. In [2], Haglund proved the identity

〈�hm En,k, en〉 =
∑

F (n,k,m)

tarea(PF)qdinv(PF), (1.1)

where F (n,k,m) denotes the family of parking functions that start with a big car, have m small cars
and n big cars, k of which are on the main diagonal and whose word is a shuffle of 1,2, . . . ,m with
m + 1,m + 2, . . . ,m + n. Note that here En,k are the symmetric functions introduced by Garsia and
Haglund in [6] with the property that

En,1 + En,2 + · · · + En,n = en.

Recent work in [7] used modified Hall–Littlewood operators (represented here as Ca) to give a refine-
ment of the shuffle conjecture. The identity

En,k =
∑

(p1,p2,...,pk)|�n

C p1 C p2 . . . C pk 1

suggested to Duane, Garsia, and Zabrocki (in [8]), that the polynomials

〈�hm C p1 C p2 . . . C pk 1, en〉,

A. Hicks, Y. Kim / Journal of Combinatorial Theory, Series A 120 (2013) 64–76 67
might yield a refinement of (1.1). In particular they found that

〈�hm C p1 . . . C pk 1, en〉|q=1 =
∑

PF∈F (n,k,m)
comp(PF)=(p1,p2,...,pk)

tarea(PF).

In an effort to obtain a combinatorial interpretation of the left hand side without the restric-
tion “q = 1”, they were led to introduce a new statistic, which they called “ndinv”. In [8] they
only obtain an algorithmic construction of ndinv based on a recursion satisfied by the polynomial
〈�hm C p1 . . . C pk 1, en〉, and pose the problem of finding a non-recursive definition. In this paper, we
solve this problem by giving an explicit formula for ndinv which has some analogy with the defini-
tion of the classical “dinv”.

Example 1.8. We repeat a small example from [8] that illustrates the need for a new statistic. By
explicit calculation, we know

〈�h2 C3C21, e5〉 = t3q4.

There is a single such two-shuffle parking function with comp(PF) = (3,2), in particular

PF =
[

7 2 5 4 6 1 3
0 0 1 1 0 0 1

]
.

Since both the area and the dinv of PF is three (and in particular dinv(PF) �= 4), the ‘q’ statistic must
not be weighted by the dinv.

2. An explicit formula for ndinv

To compute the ndinv of a parking function PF explicitly, it is expedient to work with a slight
modification of PF. (This modification was first explored in [8] in what the author refereed to as
“Stage 1”.) This modification is constructed as follows:

Procedure 2.1. Beginning with a parking function PF:

1. Working from left to right, if cs is small, then shift
[

cs

ds

]
to the left past ds big cars.

2. For every big car cb , count the number of small cars which shifted past it in the previous step.
Increase db by this number.

Use this modified parking function to define the first two lines of the following three-line array.

Ψ (PF) =
⎡
⎣ cΨ

1 cΨ
2 . . . cΨ

n+m

dΨ
1 dΨ

2 . . . dΨ
n+m

rΨ
1 rΨ

2 . . . rΨ
n+m

⎤
⎦ .

Next, in a departure from Duane, Garsia, and Zabrocki’s work we assign to each car cΨ
i an explicit

statistic rΨ
i by setting:

rΨ
i =

⎧⎪⎨
⎪⎩

1, i = 1,

rΨ
i−1 + 1, cΨ

i−1 � m and i > 1,

dΨ
i−1 + 1, cΨ

i−1 > m and i > 1.

(2.1)

Example 2.2. Again let m = 3 and

PF =
[

3 4 1 6 2 5
0 1 1 0 0 0

]
.

68 A. Hicks, Y. Kim / Journal of Combinatorial Theory, Series A 120 (2013) 64–76
Then

Ψ (PF) =
[3 1 4 6 2 5

0 1 2 0 0 0
1 2 3 3 1 2

]
.

Now we define ndinv(PF) explicitly.

Definition 2.3 (ndinv). If m gives the number of small cars,

ndinv(PF) :=
∑

cΨ
b >m

cΨ
s �m

(
χ(b < s)χ

(
dΨ

b � rΨ
s < rΨ

b

) + χ(b > s)χ
(
dΨ

b < rΨ
s � rΨ

b

)) − m. (2.2)

Mirroring previous conventions for dinv, we will say that:

Definition 2.4 (Diagonal inversion). A big car cb and a small car cs form a diagonal inversion in Ψ (PF)
exactly when they contribute to the sum in the above definition, that is if either b < s and dΨ

b � rΨ
s <

rΨ
b or b > s and dΨ

b < rΨ
s � rΨ

b .

Example 2.5. As in Example 1.7, m = 3 and

PF =
[

3 4 1 6 2 5
0 1 1 0 0 0

]
and

Ψ (PF) =
[3 1 4 6 2 5

0 1 2 0 0 0
1 2 3 3 1 2

]
.

Then there are six pairs of cars which form diagonal inversions, namely (cΨ
1 , cΨ

4), (cΨ
1 , cΨ

6), (cΨ
2 , cΨ

4),
(cΨ

2 , cΨ
6), (cΨ

5 , cΨ
4), and (cΨ

5 , cΨ
6).

Since there are 3 small cars, ndinv(PF) = 6 − 3 = 3.

The main results of this paper is that

Theorem 2.6. For any (p1, p2, . . . , pk) |� n and the preceding definition of ndinv we have

〈�hm C p1 . . . C pk 1, en〉 =
∑

PF an m,n two-shuffle parking function
comp(PF)=(p1,...,pk)

tarea(PF)qndinv(PF). (2.3)

3. A recursion satisfied by ndinv

Since 〈�h0 C11, e1〉 = 1, to be consistent we must set

ndinv

([
1
0

])
= 0.

In [8], Duane, Garsia, and Zabrocki prove the following recursion:

〈�hm C p1 . . . C pk 1, en〉 =
∑

p′|�p1

t p1−1qk−1〈�hm−1 C p2 . . . C pk C p′ 1, en〉

+ χ(p1 = 1)〈�hm C p2 . . . C pk 1, en−1〉

A. Hicks, Y. Kim / Journal of Combinatorial Theory, Series A 120 (2013) 64–76 69
where p′ |� p1 denotes that p′ = (p′
1, . . . , p′

l(p′)) is a composition of p1 and we use C p′ for
C p′

1
. . . C p′

l(p′)
. Guided by this symmetric function recursion, Duane, Garsia, and Zabrocki give a re-

cursive map on two-shuffle parking functions. We give a slightly modified version of their map below
that we will use to show that, with ndinv as defined above, the right hand side of (2.3) satisfies the
same recursion as the left hand side.

Procedure 3.1. We begin by modifying the first part:

PF =
[

c1 c2 . . . c f1 . . .

d1 d2 . . . d f1 . . .

]
.

1. Remove its first domino
[

c1
d1

]
.

2. For each 1 < b < f1 such that cb > m, replace
[

cb
db

]
by

[
cb

db−1

]
.

3. If adjacent dominoes in the result are of the form
[

... cb cs ...

... d−1 d ...

]
, with cb > m and cs � m, then

replace them by
[

... cs cb ...

... d−1 d ...

]
.

4. Move the modified first part (all f1 − 1 dominoes) to the end of the sequence.

We will call the resulting two-line array

Φ(PF) =
[

c̄1 c̄2 . . . c̄n+m−1
d̄1 d̄2 . . . d̄n+m−1

]
.

Example 3.2. As in Example 1.7, let m = 3 and

PF =
[

3 4 1 6 2 5
0 1 1 0 0 0

]
.

Then

Φ(PF) =
[

2 5 1 4 6
0 0 0 1 0

]
.

Remark 3.3. Notice that the resulting parking function may no longer be a proper shuffle as written.
While it is convenient to keep track of the original numbers of the cars in future proofs, it is easy to
slightly modify our result to again get a two-shuffle parking function. Thus the two-line array Φ(PF)
should represent the two-shuffle parking function PF obtained by the following steps:

• Let m′ = m − 1 if the removed car is small and m′ = m if the removed car is big.
• Replace in Φ(PF) all ci � m by a “1” and all ci > m by a “2”.
• Next, from the highest to the lowest di values and from right to left replace all the “1′s” by

1,2, . . . ,m′ and all the “2′s” by m′ + 1,m′ + 2, . . . ,n + m − 1.

For a proof that PF is always a two-shuffle parking function, we refer the reader to [8]. Notice next
that by calling a car � m “small” and a car > m “big”, we can freely apply the operation PF → Ψ (PF)
to the two-line array Φ(PF) and denote the result Ψ (Φ(PF)). Since the action of the map Ψ on a car
domino depends only on whether the car is big or small, it follows that the second and third rows
of Ψ (Φ(PF)) will be identical to those we would obtain by constructing Ψ (PF). Since the contents of
these two rows together with the relative size of the corresponding cars (i.e. whether they are big
or small) is the only information that will be used in the following, we will use Ψ (Φ(PF)) rather
than Ψ (PF). This will substantially simplify the notational conventions we must adopt to carry out
our arguments. Using these notational conventions, the recursive step used by Duane, Garsia, and
Zabrocki in the algorithm giving their ndinv can be simply written in the following form:

70 A. Hicks, Y. Kim / Journal of Combinatorial Theory, Series A 120 (2013) 64–76
Recursion 3.4. For a parking function PF with k parts,

ndinv(PF) =
{

0 if c1 is big, n = 1,

ndinv(PF) + (k − 1)χ(c1 � m) otherwise.
(3.1)

Thus, if Ψ is applied to the two-line array Φ(PF), the result is the three-line array

Ψ
(
Φ(PF)

) =
⎡
⎢⎣

cΨ
1 cΨ

2 . . . cΨ
n+m−1

d
Ψ

1 d
Ψ

2 . . . d
Ψ

n+m−1

rΨ
1 rΨ

2 . . . rΨ
n+m−1

⎤
⎥⎦ .

Then to show that their ndinv and our explicit formulation are identical we need only prove that (3.1)
holds true with ndinv(PF) replaced by (2.2) and ndinv(PF) replaced by∑

cΨ
b >m

cΨ
s �m

(
χ(b < s)χ

(
dΨ

b � rΨ
s < rΨ

b

) + χ(b > s)χ
(
dΨ

b < rΨ
s � rΨ

b

)) − m′ (3.2)

with m′ as defined in Remark 3.3. Notice that to calculate ndinv using the recursion in (3.1), as
Duane, Garsia and Zabrocki do in their paper, we need to apply Procedure 3.1 repeatedly. Every time
we apply the procedure once, we will remove the first domino and move the resulting first part to
the end. Suppose there are k parts in PF. If we apply Procedure 3.1 k times, the first car of each part
will be removed. We call this the first round. Let k1 be the number of parts after the first round.
Again, applying Procedure 3.1 k1 times removes the first car of each of these k1 parts. We call this
the second round.

Definition 3.5 (Round). We then define the ith round as applying Procedure 3.1 an additional ki−1
times, where ki−1 is the number of parts after the (i − 1)st round.

This notion of “round” beautifully enlightens the relation between our definition of ndinv with the
definition of Duane, Garsia, and Zabrocki. In fact, it will follow from our proofs that the dΨ

i gives the
round at which a big car cΨ

i first appears in the main diagonal and r̄Ψ
i gives the round at which car

cΨ
i is removed. Using this it is not difficult to derive that for any given small car cΨ

s the expression

−1 +
∑

cΨ
b >m

(
χ(b < s)χ

(
dΨ

b � rΨ
s < rΨ

b

) + χ(b > s)χ
(
dΨ

b < rΨ
s � rΨ

b

))

gives precisely the number of big cars that are to the right of cΨ
s at the round of its removal in the

recursive algorithm of Duane, Garsia and Zabrocki.

4. Our ndinv and Recursion 3.4

To show that our ndinv satisfies Recursion 3.4 we need to further examine the combination of Φ

and Ψ , as it occurs in the following diagram:

PF
Ψ−−−−→ Ψ (PF)⏐⏐�Φ

Φ(PF)
Ψ−−−−→ Ψ (Φ(PF)).

Let us say that a certain car cb is in position i in Ψ (PF) and position j in Ψ (Φ(PF)). More precisely
suppose that cΨ

i = cb and cΨ
j = cb then, using the symbol “ind” to denote an index, we will, simply

write “indΨ (cb) = i” and “indΨ Φ(cb) = j”. It will also be convenient to have an alternate notation for

A. Hicks, Y. Kim / Journal of Combinatorial Theory, Series A 120 (2013) 64–76 71
the d,d, and r, r values. For instance, if we have i = indΨ (cb), dΨ
i = 3, and rΨ

i = 5, we will simply

express this by writing dΨ (cb) = 3 and rΨ (cb) = 5. On the other hand if j = indΨ Φ(cb), dΨ
j = 3, and

rΨ
j = 5, we will write dΨ (cb) = 3 and rΨ (cb) = 5. The entries of PF and Φ(PF) will be handled in an

analogous manner. Thus if di = 4, we may also write ind(ci) = i and d(ci) = 4. Similarly if ci = cb
and di = 4, we may write indΦ(cb) = i and d(cb) = 4 etc. Finally, it will also be convenient to write
c1 → c2 to state that car c1 is to the left of car c2 in a given expression. Using this notation, we
can give an overview of the path we will follow to establish that our ndinv and the ndinv of Duane,
Garsia and Zabrocki satisfy the same recursion. To be precise, we plan to establish the following facts:

Theorem 4.1. With Ψ (PF) and Ψ (Φ(PF)) as defined above, we have for any cars c, c1, c2:

• Fact (1). If f1 < indΨ (c1), indΨ (c2), then c1 → c2 in Ψ (PF) if and only if c1 → c2 in Ψ (Φ(PF)).

• Fact (2). If 1 < indΨ (c1), indΨ (c2) � f1 , then c1 → c2 in Ψ (PF) if and only if c1 → c2 in Ψ (Φ(PF)).

• Fact (3). If 1 < indΨ (c1) � f1 < indΨ (c2), then indΨ Φ(c1) > indΨ Φ(c2).

• Fact (4). For indΨ (c) > f1 we have dΨ (c) = dΨ (c) and rΨ (c) = rΨ (c).

• Fact (5). For 1 < indΨ (c) < f1 we have dΨ (c) = dΨ (c) − 1 if c is a big car and rΨ (c) = rΨ (c) − 1,
whether c is big or small.

Before we immerse ourselves in the technicalities required for a proof of all these facts, it will be
good to see how they give all that is needed to establish our desired goal. Recall that, in the present
notation, by definition, a big car cb and a small car cs form a diagonal inversion in Ψ (PF) if either
cb → cs and dΨ (cb) � rΨ (cs) < rΨ (cb) or cs → cb and dΨ (cb) < rΨ (cs) � rΨ (cb).

Theorem 4.2. In Ψ (PF), if the first car is small, then it forms a diagonal inversion with a big car cb only when
the big car is on the main diagonal (dΨ (cb) = 0). If the first car is big, it forms no diagonal inversions.

Proof. By definition rΨ
1 = 1. We look at the two cases separately.

• (cΨ
1 = cs � m.) Then we want all big cars (cb) such that dΨ (cb) < 1 � rΨ (cb). Those are exactly

the big cars on the main diagonal.
• (cΨ

1 = cb > m.) Then we want all small cars (cs) such that dΨ (cb) � rΨ (cs) < 1. Since rΨ (cs) � 1,
there are no such cars. �

Keeping this in mind let us see how these diagonal inversions change after we apply Φ .

Theorem 4.3. For indΨ (cs) > 1 and indΨ (cb) > 1, a small car cs and a big car cb form a diagonal inversion
in Ψ (PF) if and only if they form a diagonal inversion in Ψ (Φ(PF)).

Proof. We split the argument into cases:

• (indΨ (cs), indΨ (cb) > f1.) Fact (1) and Fact (4) make this case trivial.
• (1 < indΨ (cs), indΨ (cb) � f1.) Fact (2) gives cb → cs or cs → cb in both Ψ (PF) and Ψ (Φ(PF)) and

Fact (5) gives that dΨ (cb) � rΨ (cs) < rΨ (cb) is dΨ (cb) − 1 � rΨ (cs) − 1 < rΨ (cb) − 1 in the first
case and dΨ (cb) < rΨ (cs) � rΨ (cb) is dΨ (cb) − 1 < rΨ (cs) − 1 � rΨ (cb) − 1 in the second case.

• (1 < indΨ (cs) � f1 < indΨ (cb).) Then cs → cb in Ψ (PF) but Fact (3) gives cb → cs in Ψ (Φ(PF)).
Nevertheless, Facts (4) and (5) give dΨ (cb) < rΨ (cs) � rΨ (cb), or better dΨ (cb) � rΨ (cs) − 1 <

rΨ (cb) and thus dΨ (cb) � rΨ (cs) < rΨ (cb) as desired.
• (1 < indΨ (cb) � f1 < indΨ (cs).) Then cb → cs in Ψ (PF) but Fact (3) gives cs → cb in Ψ (Φ(PF)).

Nevertheless, again Facts (4) and (5) give dΨ (cb) � rΨ (cs) < rΨ (cb), or better dΨ (cb) − 1 <

rΨ (cs) � rΨ (cb) − 1 and thus dΨ (cb) < rΨ (cs)� rΨ (cb) as desired. �

72 A. Hicks, Y. Kim / Journal of Combinatorial Theory, Series A 120 (2013) 64–76
As we can clearly see, Theorem 4.2 accounts for the second term in the second case of (3.1) and
Theorem 4.3 accounts for the first term in the second case of (3.1), when we replace ndinv(PF) by
the expression in (3.2). Since our ndinv and the ndinv of Duane, Garsia, and Zabrocki are equal in the
base case, Theorem 4.1 is all that is needed to show that these two ndinvs satisfy the same recursion
and that, consequently, they must be identical.

5. Proof of Theorem 4.1

In this section, Facts (1)–(5) will be progressively established by a combination of claims and
auxiliary lemmas. To begin to understand the relation between the arrays Ψ (PF) and Ψ (Φ(PF)), we
will start by showing that unlike when we apply Φ and reorder the parts, applying Ψ does not change
the part containing any particular car. Before we can proceed, we need an observation. Suppose that
for two diagonal numbers of a Dyck path we have di1 < di2 for some i1 < i2 and notice that the “slow
growth” condition di � di−1 + 1 assures that for any di1 < d � di2 there must be an index i1 < i � i2
such that di = d and di−1 = d − 1. This simple fact immediately implies that, in any one of our two-
shuffle parking functions, between any two cars c1 and c2 with d(c1) < d(c2) there must be at least
d(c2) − d(c1) big cars. Let us keep this in mind.

Claim 5.1. If a car c is in the jth part of PF, then c is in the jth part of Ψ (PF).

Proof. Since only small cars are shifted by Ψ , we only need to show that if a small car cs is to the
right of big car cb on the main diagonal, then cs does not move past cb . Since d(cb) = 0 our above
observation shows that between cb and cs there are at least d(cs) big cars; this insures that cs will
remain to the right of cb after applying Ψ . �

Next we show that if two cars are adjacent in the first part of Ψ (PF), they are also adjacent in
Ψ (Φ(PF)). We begin with a useful claim.

Claim 5.2. If cs1 and cs2 are both small cars in PF and ind(cs1) < ind(cs2), then cs2 does not move past cs1

when we form Ψ (PF).

Proof. The proof is similar to that of Claim 5.1. Assume d(cs1) < d(cs2) or else we are done. Then our
prior observation shows that there are at least d(cs2) − d(cs1) big cars between cs1 and cs2 . Thus cs2

moves past at least d(cs2) − d(cs1) big cars before reaching the original position of car cs1 . Thus cs2

moves past at most d(cs1) big cars that were originally to the left of cs1 in PF and must remain to the
right of cs1 in Ψ (PF). �

To better understand the next lemma, notice that when we apply Φ to our parking function PF,
elements in the first part of PF are moved to the end, as below:

f1︷︸︸︷ ︷ ︸︸ ︷
�����︸ ︷︷ ︸ ︸︷︷︸

f1−1

Lemma 5.3. If two cars are adjacent in the first part of Ψ (PF), then they are adjacent also in Ψ (Φ(PF)). Thus
the relative order of cars in the first part of Ψ (PF) (excluding the first car) is the same as the relative order of
the last f1 − 1 cars in Ψ (Φ(PF)) or stated differently, if 1 < indΨ (c) = j � f1 then

indΨ Φ(c) = j − f1 + n + m − 1.

A. Hicks, Y. Kim / Journal of Combinatorial Theory, Series A 120 (2013) 64–76 73
Proof. Again observe that a car c in PF with 1 < ind(c) � f1 will be shifted to the end by Φ . Thus the
position J it occupies in Φ(PF) must satisfy n + m − f1 < J � n + m − 1. We would like to show that
J = j + n + m − f1 − 1. By Claim 5.2, no small car moves past another small car under Ψ . Since no
two small cars change their relative order in Φ , we have that the relative order of small cars within
the first part of PF is the same as the relative order of small cars in the last f1 − 1 cars in Ψ (Φ(PF)).
Clearly the relative order of any two big cars in the first part of PF is the same as their relative order
in the last f1 − 1 cars in Ψ (Φ(PF)). Thus we need to show that if a small car cs in PF moves past t
big cars when we apply Ψ , then it moves past a total of t big cars when we apply Φ and then Ψ .
We split the remaining proof into three cases, for convenience let c′

s or c′
b denote the car immediately

preceding cs (or cb respectively) in PF:

• c′
s � m. Then since cs has a small car to its left, it will not switch places with any car in the

construction of Φ(PF). Thus cs occupies position ind(cs)+n+m− f1 −1 in Φ(PF) and its diagonal
number remains d(cs). Thus cs moves past d(cs) big cars when we form Ψ (PF) and Ψ (Φ(PF))
respectively, as below2:(

c′
s

d(c′
s)

cs

d(cs)

)
Ψ−−−−→

(
c′

s
d(c′

s)

cs

d(cs)

d(cs)

)
⏐⏐�Φ(

c′
s

d(c′
s)

cs

d(cs)

)
Ψ−−−−→

(
c′

s
d(c′

s)

cs

d(cs)

d(cs)

)
.

• c′
b > m and d(cs) �= d(c′

b). Since d(cs) �= d(c′
b), after we replace d(c′

b) with d(c′
b) − 1 in step (2) of

Procedure 3.1, we do not need to interchange car cs and c′
b in step (3) of Procedure 3.1, as below:(

c′
b

d(c′
b)

cs

d(cs)

)
Ψ−−−−→

(
cs

d(cs)

c′
b

?
d(cs)−1

)
⏐⏐�Φ(

c′
b

d(c′
b) − 1

cs

d(cs)

)
Ψ−−−−→

(
cs

d(cs)

c′
b

?
d(cs)−1

)
.

• c′
b > m and d(cs) = d(c′

b). Since d(cs) = d(c′
b), after we replace d(c′

b) with d(c′
b) − 1 in step (2)

of Procedure 3.1, we need to interchange cars cs and c′
b in step (3) of Procedure 3.1. These then

will occupy positions ind(cs) + n + m − f1 − 2 and ind(c′
b) + n + m − f1 in Φ(PF). When we form

Ψ (PF), we move cs past d(cs) cars, including c′
b . (We may assume d(cs) = d(c′

b) �= 0 or else cs and
c′

b are in two different parts and we are done by Claim 5.1.) When we move cs in Procedure 2.1,
we move it past d(c′

b) − 1 big cars. In addition, as we previously discussed, we moved car cs past
car c′

b , meaning that in total we shifted the car d(c′
b) − 1 + 1 = d(cs) times, as required. Thus we

have: (
c′

b
d(cs)

cs

d(cs)

)
Ψ−−−−→

(
cs

d(cs)

c′
b

?
d(cs)−1

)
⏐⏐�Φ(

cs

d(cs) − 1
c′

b
d(cs)

)
Ψ−−−−→

(
cs

d(cs) − 1
c′

b
?

d(cs)−1

)
. �

2 Here, as in the following diagrams, the variable above the left pointing arrow gives the number of big cars not shown in
the diagram that the boxed car must pass to form Ψ (PF) or Ψ (Φ(PF)). Note that we give the relative order of the two cars in
the right hand diagram, but there may be additional cars between them.

74 A. Hicks, Y. Kim / Journal of Combinatorial Theory, Series A 120 (2013) 64–76
Theorem 5.4. For all cars c we have

indΨ Φ(c) = indΨ (c) − f1 + χ(i � f1)(n + m − 1).

Proof. Lemma 5.3 deals with the case that c is in the first part of our parking function. It remains to
consider cars that are not in the first part. The only part whose interior is altered by Φ is the first
part so the only thing that the map Φ does to the last k − 1 parts is to rigidly shift them to the
beginning of the parking function (i.e. for i > f1, the ith car of PF becomes (i − f1)th car in Φ(PF)).
That means for i > f1, ci = c̄i− f1 and di = d̄i− f1 . By Claim 5.1, the map Ψ moves small cars within
each part, so when we consider the effects of Ψ on all but the first part of PF or on the first k − 1
parts of Φ(PF), we can ignore its effect on the remaining parts. We are applying Ψ to pairs of objects
which are locally identical, and thus we are done. �

Notice that at this point we have completed the proof of Facts (1) and (2). Since Fact (3) is an
immediate consequence of the definition of the map Φ , it remains to prove Facts (4) and (5) which
together express the relationship between dΨ (c) and dΨ (c) for a big car c and between rΨ (c) and
rΨ (c) for any car c. We begin with the easiest case:

Lemma 5.5. If ind(c) > f1 , then dΨ (c) = d̄Ψ (c) and rΨ (c) = r̄Ψ (c).

Proof. As we observed in the proof of Theorem 5.4, the map Φ alters only the interior of the first
part; thus it is clear that dΨ (c) = d̄Ψ (c). Thus we only need to prove that rΨ

f1+1 = 1 since r̄Ψ
1 should

be 1 by definition of Ψ . The f1th car in PF is the last car of the first part in PF, so c f1 > m and
d f1 = 0. Thus by definition, rΨ

f1+1 = 1. �
Next, we again consider elements from the first part of PF.

Lemma 5.6. If 1 < indΨ (cb) � f1 and cb > m, then

d̄Ψ (cb) = dΨ (cb) − 1.

Proof. Recall that if t small cars move past a big car cb under Ψ , then t cars move past cb when we
apply the combination of Φ and Ψ . As in Lemma 5.3, we split the argument into cases but now we
use c′

s and c′
b to denote the car that immediately follows cs and cb (respectively) in PF.

• c′
b > m. Then d(cb) is replaced by d(cb) − 1 in step (2) of Procedure 3.1. Since c′

b > m, cb and c′
b

do not switch places in the following step. Thus if t cars move past the car cb when we apply the
combination of Φ and Ψ , t cars move past cb when we apply Ψ to Φ(PF). Thus dΨ (cb) = d(cb)+t
and d̄Ψ (cb) = (d(cb) − 1) + t . Thus we have3:(

cb
d(cb)

c′
b

d(c′
b)

)
Ψ−−−−→

(
cb

d(cb) + t
c′

b
?

t

)
⏐⏐�Φ(

cb
d(cb) − 1

c′
b

d(c′
b) − 1

)
Ψ−−−−→

(
cb

d(cb) − 1 + t
c′

b
?

t

)
.

3 In the following diagrams, the variable above the left pointing arrow gives the number of small cars moved past the boxed
car to form Ψ (PF) or Ψ (Φ(PF)). As before, we give the relative order of the two cars in the right hand diagram, but there may
be additional cars between them.

A. Hicks, Y. Kim / Journal of Combinatorial Theory, Series A 120 (2013) 64–76 75
• c′
s � m and d(c′

s) �= d(cb). Then d(cb) is replaced by d(cb) − 1 in step (2) of Procedure 3.1, but in
the following step cb and c′

s do not switch places. Thus by the same argument as in the previous
case, dΨ (cb) = d(cb) + t and d̄Ψ (cb) = (d(cb) − 1) + t . Thus we have:(

cb
d(cb)

c′
s

d(c′
s)

)
Ψ−−−−→

(
cb

d(cb) + t
c′

s
d(c′

s)
t

)
⏐⏐�Φ(

cb
d(cb) − 1

c′
s

d(c′
s)

)
Ψ−−−−→

(
cb

d(cb) − 1 + t
c′

s
d(c′

s)
t

)
.

• c′
s � m and d(c′

s) = d(cb). Then d(cb) is replaced by d(cb) − 1 in step (2) of Procedure 3.1, and in
the following step cb and c′

s switch places. Notice that if t cars move past car cb when we apply
the combination of Φ and Ψ , only t − 1 cars move past cb when we apply Ψ to Φ(PF). Thus
dΨ (cb) = d(cb) + t and d̄Ψ (cb) = d(cb) + (t − 1). Finally, we have:(

cb
d(cb)

c′
s

d(cb)

)
Ψ−−−−→

(
c′

s
d(cb)

cb
d(cb) + t

t

)
⏐⏐�Φ(

c′
s

d(cb) − 1
cb

d(cb)

)
Ψ−−−−→

(
c′

s
d(cb) − 1

cb
d(cb) + t − 1

t−1

)
. �

Lemma 5.7. If 1 < indΨ (c)� f1 , then

r̄Ψ (c) = rΨ (c) − 1.

Proof. For 1 < indΨ (c) � f1, by Theorem 5.4, the relative order of the first f1 − 1 cars in Ψ (PF) is
same as of the last f1 − 1 cars in Ψ (Φ(PF)). We split the argument into cases and denote by c′

s or c′
b

the car immediately preceding c in Ψ (PF):

• (c′
b > m.) Then c′

b immediately precedes c in Ψ (Φ(PF)) and by the definition of Ψ , rΨ (c) =
dΨ (c′

b) + 1 and r̄Ψ (c) = d̄Ψ (c′
b) + 1. By Theorem 5.6, however, d̄Ψ (c′

b) = dΨ (c′
b) − 1. Thus r̄Ψ (c) =

dΨ (c′
b) = rΨ (c) − 1.

• (c′
s � m and indΨ (c) = 2.) Then r̄Ψ (c) = 1 since it follows the last car in the previous part of

Ψ (Φ(PF)), which by definition is a big car on the main diagonal. Clearly rΨ (c) = 2 as required.
• (c′

s � m and indΨ (c) > 2.) Inductively, we may assume r̄Ψ (c′
s) = rΨ (c′

s) − 1. Then by definition
r̄Ψ (c) = r̄Ψ (c′

s) + 1 = rΨ (c′
s) = rΨ (c) − 1. �

6. Conclusion

We have seen that Theorems 4.1, 4.2 and 4.3 prove that our ndinv satisfies Recursion 3.4. In par-
ticular, this combinatorial result combined with the symmetric function results of Duane, Garsia, and
Zabrocki in [8] proves that

Theorem 6.1. With the ndinv defined in (3.2) and (p1, p2, . . . , pk)
 n for any integer m � 0 we have

〈�hm C p1 . . . C pk 1, en〉 =
∑

PF an m,n two-shuffle parking function
comp(PF)=(p1,...,pk)

tarea(PF)qndinv(PF).

76 A. Hicks, Y. Kim / Journal of Combinatorial Theory, Series A 120 (2013) 64–76
It would be interesting to consider if the ndinv statistic could be extended to give a statistic on all
parking functions. We end now with the proof of a prior statement about the sequence rΨ

i .

Theorem 6.2. For each car c, r̄Ψ (c) gives the number of the round in which car c is removed when we apply
Procedure 3.1 repeatedly.

Proof. Suppose r̄Ψ (c) = 1 for some car c. This happens if and only if for the car c′
b preceding c is a big

car and d(c′
b) = 0, in other words c′

b is a big car on the main diagonal of PF. This is true exactly when
c is the first car in some part of PF and will be removed in the first round. Moreover, by Theorem 5.7,
the rΨ

j value of any car will decreased by 1 in any round where it is not removed. This completes the
proof by induction. �
References

[1] A.M. Garsia, M. Haiman, A remarkable q, t-Catalan sequence and q-Lagrange inversion, J. Algebraic Combin. 5 (3) (1996)
191–244, http://dx.doi.org/10.1023/A:1022476211638.

[2] J. Haglund, A proof of the q, t-Schröder conjecture, Int. Math. Res. Not. IMRN 11 (2004) 525–560, http://dx.doi.org/
10.1155/S1073792804132509.

[3] J. Haglund, N. Loehr, A conjectured combinatorial formula for the Hilbert series for diagonal harmonics, Discrete
Math. 298 (1–3) (2005) 189–204, http://dx.doi.org/10.1016/j.disc.2004.01.022.

[4] J. Haglund, M. Haiman, N. Loehr, J.B. Remmel, A. Ulyanov, A combinatorial formula for the character of the diagonal coin-
variants, Duke Math. J. 126 (2) (2005) 195–232, http://dx.doi.org/10.1215/S0012-7094-04-12621-1.

[5] A.M. Garsia, M. Haiman, Some natural bigraded Sn-modules and q, t-Kostka coefficients, Electron. J. Combin. 3 (2)
(1996), Research Paper 24, approx. 60 pp. (electronic), the Foata Festschrift, http://www.combinatorics.org/Volume_3/
Abstracts/v3i2r24.html.

[6] A.M. Garsia, J. Haglund, A proof of the q, t-Catalan positivity conjecture, in: laCIM 2000 Conference on Combinatorics,
Computer Science and Applications, Montreal, QC, Discrete Math. 256 (3) (2002) 677–717, http://dx.doi.org/10.1016/S0012-
365X(02)00343-6.

[7] J. Haglund, J. Morse, M. Zabrocki, A compositional shuffle conjecture specifying touch points of the dyck path, Canad. J.
Math., in press, arXiv:1008.0828.

[8] A. Duane, A.M. Garsia, M. Zabrocki, A new ‘dinv’ arising from the two part case of the shuffle conjecture, J. Algebraic
Combin., in press, arXiv:1205.6128.

http://dx.doi.org/10.1023/A:1022476211638
http://dx.doi.org/10.1155/S1073792804132509
http://dx.doi.org/10.1155/S1073792804132509
http://dx.doi.org/10.1016/j.disc.2004.01.022
http://dx.doi.org/10.1215/S0012-7094-04-12621-1
http://www.combinatorics.org/Volume_3/Abstracts/v3i2r24.html
http://www.combinatorics.org/Volume_3/Abstracts/v3i2r24.html
http://dx.doi.org/10.1016/S0012-365X(02)00343-6
http://dx.doi.org/10.1016/S0012-365X(02)00343-6

	An explicit formula for ndinv, a new statistic for two-shufﬂe parking functions
	1 Introduction
	1.1 Parking functions
	1.2 Some algebraic theorems and conjectures

	2 An explicit formula for ndinv
	3 A recursion satisﬁed by ndinv
	4 Our ndinv and Recursion 3.4
	5 Proof of Theorem 4.1
	6 Conclusion
	References

