Spectral Expansion of a Non-Self-Adjoint Differential Operator on the Whole Axis

Gülen Başcanbaz-Tunca

E-mail: tunca@science.ankara.edu.tr

Submitted by Mark Balas

Received December 17, 1999

In this article, we consider an operator L defined by the differential expression

$$L(y) = -y'' + q(x)y, \quad x \in \mathbb{R} = (-\infty, \infty)$$

in $L_2(\mathbb{R})$, where q is a complex-valued function. Under the condition

$$\sup_{-\infty < x < \infty} \left| \exp\left(\epsilon \sqrt{|x|}\right)|q(x)|\right| < \infty, \quad \epsilon > 0,$$

we have proved a spectral expansion of L in terms of the principal functions, taking into account the spectral singularities. We have also investigated the convergence of the spectral expansion of L.

1. INTRODUCTION

Let us consider an operator L_0 defined by the differential equation

$$-y'' + q(x)y = \mu y, \quad x \in \mathbb{R}^+ = [0, \infty)$$

and the boundary condition $y'(0) - h y(0) = 0$, in $L_2(\mathbb{R}^+)$, where q is a complex-valued function and $h \in \mathbb{C}$. The spectral analysis of L_0 has been investigated by Naimark [15]. In this article, he has proved that some of the poles of the resolvent’s kernel of L are not the eigenvalues of the operator. He has also shown that those poles (which are called spectral singularities by Schwartz [17]) are on the continuous spectrum. Moreover, he has shown that the spectral singularities play an important role in the discussion of the spectral analysis of L_0, and if the condition

$$\int_0^\infty |q(x)| \exp(\epsilon x) \, dx < \infty, \quad \epsilon > 0$$

then...
holds, then the eigenvalues and the spectral singularities are of finite number, and each of them is of finite multiplicity.

Let \(E \) denote the set of all entire functions of exponential type which are integrable over the real axis, and let \(E' \) denote the dual of \(E \). Now we define

\[
\varphi(f_i, \lambda) = \int_0^\infty f_i(x) \varphi(x, \lambda) \, dx, \quad i = 1, 2,
\]

for any finite \(f_1, f_2 \in L_2(\mathbb{R}^+) \), where \(\varphi(x, \lambda) \) is the solution of \(-y'' + q(x)y = \lambda^2 y\), subject to the initial conditions \(\varphi(0, \lambda) = 1 \) and \(\varphi_x(0, \lambda) = h \). In [13] Marchenko has proved that

\[
\varphi(f_1, \lambda) \varphi(f_2, \lambda) \in E,
\]

and there exists a functional \(T \in E' \) such that

\[
\int_0^\infty f_1(x)f_2(x) \, dx = T[\varphi(f_1, \lambda) \varphi(f_2, \lambda)].
\]

This relation is a generalization of the well-known Parseval equality for the singular self-adjoint differential operators and is called a Marchenko–Parseval equality, where \(T \) is the generalized spectral function for the boundary value problem \(-y'' + q(x)y = \lambda^2 y\), \(\varphi(0, \lambda) = 1 \), \(\varphi_x(0, \lambda) = h \).

These results of Naimark and Marchenko have been extended to the case where the potential function is \(q(x) \) with \(q(x) = \int (\lambda + 1)x^{-2} + p(x) \), where \(p \) is summable on every finite interval of \((0, \infty)\), and the three-dimensional Schrödinger equations by Gasymow [6, 7] and Lyance [11].

The Laurent expansion of the resolvent of the abstract non-self-adjoint operators in the neighborhood of the spectral singularities has been investigated by Gasymov and Maksudov [8] and Maksudov and Al-lakhverdiev [12].

The spectral analysis of some class of dissipative operators with spectral singularities has been studied by Pavlov [16], using the theory of functional model [14] and scattering theory [10].

Let us consider an operator \(L \) generated in \(L_2(\mathbb{R}) \) by the equation

\[
-y'' + q(x)y = \mu y, \quad x \in \mathbb{R},
\]

where \(q \) is a complex-valued function and \(\mu \) is a spectral parameter.

The results of Naimark [15] have been generalized to the operator \(L \) by Blashak [5]; he has proved that the operator \(L \) has a finite number of eigenvalues and spectral singularities if

\[
\int_{-\infty}^{\infty} |q(x)| \exp(\epsilon|x|) \, dx < \infty, \quad \epsilon > 0,
\]

(1.2)
holds. Now we consider the quadratic pencil of Schrödinger operators $L(\lambda)$, generated in $L_2(\mathbb{R}^+)$ by the equation

$$-y'' + \left[q(x) + 2\lambda u(x) - \lambda^2\right]y = 0, \quad x \in \mathbb{R}^+,$$

and the boundary condition $y(0) = 0$, where u, q are complex-valued functions, and u is absolutely continuous in each finite subinterval of \mathbb{R}^+. If $u \equiv 0$, then the operator $L(\lambda)$ reduces to the operator L_0.

Discrete spectrum, principal functions, and eigenfunction expansion of the quadratic pencil of Schrödinger operators have been investigated in [2–4]. In [1] it has been proved that the operator L has a finite number of eigenvalues and spectral singularities, and each of them is of finite multiplicity under the condition

$$\sup_{-\infty < x < \infty} \{\exp(\epsilon \sqrt{|q(x)|})\} < \infty, \quad \epsilon > 0,$$

which is weaker than (1.2). Moreover, the properties of the principal functions corresponding to the eigenvalues and the spectral singularities of L have been obtained.

In this paper, which is a continuation of [1], we investigated the spectral expansion of L with respect to the principal functions, using a contour integral method and the regularization of divergent integrals, using summability factors.

2. SPECIAL SOLUTIONS

Let us suppose that q satisfies the condition

$$\int_{-\infty}^{\infty} (1 + |x|) |q(x)| \, dx < \infty. \quad (2.1)$$

Under the condition (2.1), Eq. (1.1) has the solutions for $\mu = \lambda^2, \lambda \in \mathbb{C}$,

$$e^+(x, \lambda) = e^{i\lambda x} + \int_{x}^{\infty} K^+(x, t) e^{i\lambda t} \, dt \quad (2.2)$$

$$e^-(x, \lambda) = e^{-i\lambda x} + \int_{-\infty}^{x} K^-(x, t) e^{-i\lambda t} \, dt \quad (2.3)$$

for $\lambda \in \mathbb{C}_+ := \{\lambda : \lambda \in \mathbb{C}, \Im \lambda \geq 0\}$, and the kernels $K^\pm(x, t)$ satisfy

$$|K^\pm(x, t)| \leq C\sigma^\pm \left(\frac{x + t}{2}\right), \quad (2.4)$$
where
\[
\sigma^+(x) = \int_{x}^{\infty} |q(t)| \, dt, \quad \sigma^-(x) = \int_{-\infty}^{x} |q(t)| \, dt \tag{2.5}
\]
and \(C > 0 \) is a constant.

Therefore \(e^+(x, \lambda) \) and \(e^-(x, \lambda) \) are analytic with respect to \(\lambda \) in \(\mathbb{C}_+ := \{ \lambda : \lambda \in \mathbb{C}, \text{Im} \lambda > 0 \} \), continuous on the real axis, and satisfy
\[
e^+(x, \lambda) = e^{i\lambda x} + o(1), \quad \lambda \in \mathbb{C}_+, |\lambda| \to \infty, \tag{2.6}
\]
\[
e^-(x, \lambda) = e^{-i\lambda x} + o(1), \quad \lambda \in \mathbb{C}_+, |\lambda| \to \infty. \tag{2.7}
\]

The above results have been given in [1].

3. THE SPECTRUM OF \(L \)

Let us define
\[
\alpha(\lambda) := W(e^+(x, \lambda), e^-(x, \lambda)).
\]

It is clear that (see [1, 5])
\[
\sigma_\Omega(L) = \{ \mu : \mu = \lambda^2, \lambda \in \mathbb{C}_+, \alpha(\lambda) = 0 \},
\]
\[
\sigma_\text{s}(L) = \{ \mu : \mu = \lambda^2, \lambda \in \mathbb{R}, \alpha(\lambda) = 0 \},
\]
\[
\sigma_\varepsilon(L) = [0, \infty),
\]
\[
\rho(L) = \{ \mu : \mu \in \lambda^2, \lambda \in \mathbb{C}_+, \alpha(\lambda) \neq 0 \},
\]

where \(\sigma_\Omega(L), \sigma_\text{s}(L), \sigma_\varepsilon(L) \), and \(\rho(L) \) denote the eigenvalues, the spectral singularities, the continuous spectrum, and the resolvent set of \(L \), respectively. Let
\[
R(x, t; \lambda^2) = \frac{1}{\alpha(\lambda)} \begin{cases} e^+(x, \lambda)e^-(t, \lambda); & -\infty < t < x \\ e^-(x, \lambda)e^+(t, \lambda); & x \leq t < \infty \end{cases} \tag{3.1}
\]
be the Green function of \(L \) for \(\lambda \in \mathbb{C}_+ \).

It is known from [1] that under the condition (1.3) \(L \) has a finite number of eigenvalues and spectral singularities, and each of them is of finite multiplicity.

Let \(\lambda_1, \ldots, \lambda_n \) denote the zeros of \(\alpha \) in \(\mathbb{C}_+ \) (i.e., \(\lambda_1^2, \ldots, \lambda_n^2 \) are the eigenvalues of \(L \)) with multiplicities \(m_1, \ldots, m_n \), respectively. Similarly, let \(\lambda_{n+1}, \ldots, \lambda_k \) be the zeros of \(\alpha \) on the real axis (i.e., \(\lambda_{n+1}^2, \ldots, \lambda_k^2 \) are the
spectral singularities of L with multiplicities $m_{\ell+1}, \ldots, m_k$, respectively. We need the Hilbert spaces

$$H(a, b; \pm m) = \left\{ f : \int_a^b (1 + |x|)^{\pm 2m} |f(x)|^2 \, dx < \infty \right\},$$

$$m = 0, 1, 2, \ldots$$

Here (a, b) may be $(-\infty, 0), (0, \infty), (-\infty, \infty)$. We have previously obtained [1]

$$U_n(x, \mu_j) = \left\{ \sum_{i=0}^n \binom{n}{i} a_{n-i}(\lambda_j) \left(\frac{\partial}{\partial \lambda} \right)^i (x, \lambda) \right\}_{\lambda = \lambda_j}; \quad -\infty < x < 0$$

$$\left(\frac{\partial}{\partial \lambda} \right)^n e^{+}(x, \lambda) \big|_{\lambda = \lambda_j}; \quad 0 \leq x < \infty$$

$$U_n(x, \mu_j) \in L^2(\mathbb{R}), \quad n = 0, 1, \ldots, m_j - 1, j = 1, \ldots, \ell.$$ \hspace{1cm} (3.2)

Here $U_0(x, \mu_j)$ is an eigenfunction and $U_l(x, \mu_j), \ldots, U_{m_j-1}(x, \mu_j)$ are the associated functions of $U_0(x, \mu_j)$,

$$U_n(x, \mu_j) \in H(-\infty, \infty; -(m_0 + 1)),$$

$$n = 0, 1, \ldots, m_j - 1, j = \ell + 1, \ldots, k.$$ \hspace{1cm} (3.3)

Here $U_n(x, \mu_j)$ are the principal functions corresponding to the spectral singularities and

$$m_0 = \max\{m_{\ell+1}, \ldots, m_k\}. \hspace{1cm} (3.4)$$

We can easily obtain that the resolvent operator of L is

$$R_\mu(L) f(x) = \int_{-\infty}^{\infty} R(x, t; \mu) f(t) \, dt$$

for $\mu \in \rho(L)$, where $R(x, t; \mu)$ was given in (3.1).

4. SPECTRAL EXPANSION

Let D denote the set of infinitely differentiable functions in \mathbb{R} with compact support. Evidently,

$$\psi(x) = \int_{-\infty}^{\infty} R(x, t; \mu) \left[-\psi''(t) + q(t) \psi(t) - \mu \psi(t) \right] dt$$
for each \(\psi \in D \). Therefore,

\[
\frac{\psi(x)}{\mu} = \frac{1}{\mu} \int_{-\infty}^{\infty} R(x,t; \mu) \left[-\psi''(t) + q(t)\psi(t) \right] dt \\
- \int_{-\infty}^{\infty} R(x,t; \mu) \phi(t) dt.
\] (4.1)

Let \(\gamma_r \) denote the disc centered at the origin having radius \(r \), and let \(\partial \gamma_r \) be the boundary of \(\gamma_r \). \(r \) will be chosen such that all eigenvalues and spectral singularities of \(L \) are in \(\gamma_r \). Let \(P_{r,\eta} \) denote the part of \(\gamma_r \) consisting of the points \(\mu \) satisfying

\[
|\text{Im} \mu| \leq \eta, \quad \text{Re} \mu > 0, \\
\gamma_{r,\eta} = \gamma_r - P_{r,\eta}, \quad \gamma_r = \gamma_{r,\eta} \cup P_{r,\eta}.
\]

So we easily see that

\[
\partial \gamma_r = \partial \gamma_{r,\eta} \cup \partial P_{r,\eta}. \tag{4.2}
\]

From (4.1) we obtain

\[
\psi(x) = \frac{1}{2\pi i} \int_{\partial \gamma_r} \left\{ \frac{1}{\mu} \int_{-\infty}^{\infty} R(x,t; \mu) \left[-\psi''(t) + q(t)\psi(t) \right] dt \\
- \int_{-\infty}^{\infty} R(x,t; \mu) \phi(t) dt \right\} d\mu. \tag{4.3}
\]

Using (2.6), (2.7), and (3.1), we see that the first term of the right-hand side of (4.3) vanishes as \(r \to \infty \). Then considering (4.2) we get

\[
\psi(x) = -\lim_{r \to \infty, \eta \to 0} \frac{1}{2\pi i} \int_{\partial \gamma_{r,\eta}} R_{\mu}(L) \psi(x) d\mu \\
- \lim_{r \to \infty, \eta \to 0} \frac{1}{2\pi i} \int_{\partial P_{r,\eta}} R_{\mu}(L) \psi(x) d\mu. \tag{4.4}
\]
We easily obtain that the first integral in (4.4) gives

\[\int_{\gamma R, \gamma} R_{\mu}(L) \, d\mu = \sum_{j=1}^{\ell} \text{Res}_{\mu = \mu_j} R_{\mu}(L) \psi(x). \quad (4.5) \]

Here

\[R_{\mu}(L) \psi(x) = \int_{-\infty}^{\infty} R(x, t; \mu) \psi(t) \, dt. \]

Now we want to reduce (4.4) to a spectral expansion. We know from [9] that if \(\mu_j, j = 1, \ldots, \ell \) are poles of the resolvent, then the principal part of the resolvent for \(\mu_j \) can be expressed in the form

\[
\frac{U_0 V_0}{(\mu - \mu_j)m_{j-1}} + \frac{U_1 V_1 + U_1 V_0}{(\mu - \mu_j)m_{j-2}} + \ldots + \frac{U_m V_{m-1} + U_{m-1} V_0}{\mu - \mu_j},
\]

where \(U_0, U_1, \ldots, U_{m-1} \) are the eigenfunction and associated functions of \(L \) corresponding to the eigenvalue \(\mu_j \) with order \(m_j \), and \(V_0, V_1, \ldots, V_{m-1} \) are the eigenfunction and associated functions of the operator \(L^* \) adjoint to \(L \), corresponding to the eigenvalue \(\bar{\mu}_j, j = 1, \ldots, \ell \), which is uniquely determined for the given \(U_0, U_1, \ldots, U_{m-1} \). And \(U_0 V_0 \) denotes the operator defined by

\[B\psi = (\psi, V_0)U_0. \]

Moreover, for every function \(\psi \in L_2(\mathbb{R}), \)

\[(\psi, V_m), \quad m = 1, 2, \ldots, m_j - 1, j = 1, \ldots, \ell \]

is defined because of (3.2). Considering (4.6) in (4.5), we obtain the first integral in (4.4) as follows:

\[
\int_{\gamma R, \gamma} R_{\mu}(L) \psi(x) \, d\mu = \sum_{j=1}^{\ell} \sum_{\nu=0}^{m_j-1} U_\nu(x, \mu) V_{m_j-1-\nu}(\psi, \mu) \bigg|_{\mu = \mu_j}. \quad (4.7)
\]

Assumption. Let us suppose that the operator \(L \) has no spectral singularities.

Under the assumption, to reduce (4.4) to a spectral expansion, we first obtain the second integral in (4.4), by using the classical method in [15], as
follows:

\[
\lim_{r \to \infty, \eta \to 0} \frac{1}{2\pi i} \int_{\partial P_{r,\eta}} R_\mu(L) \psi(x) \, d\mu
\]

\[
= \frac{1}{2\pi i} \int_0^\infty \{ R_{\mu+i\eta}(L) \psi(x) - R_{\mu-i\eta}(L) \psi(x) \} \, d\mu. \quad (4.8)
\]

Now we must evaluate the right-hand side of (4.8). Since

\[
W\{e^+(x, \lambda), e^+(x, -\lambda)\} = -2i\lambda, \quad \text{Im} \lambda = 0, x \to \infty
\]

and

\[
W\{e^-(x, \lambda), e^-(x, -\lambda)\} = 2i\lambda, \quad \text{Im} \lambda = 0, x \to -\infty,
\]

then we can write \(e^-(t, \lambda) \) and \(e^+(x, -\lambda) \) as

\[
e^-(t, \lambda) = \frac{2i\lambda}{\alpha(-\lambda)} e^+(t, -\lambda) - \frac{W\{e^-(t, \lambda), e^+(t, -\lambda)\}}{\alpha(-\lambda)} e^-(t, -\lambda),
\]

\[
e^+(x, -\lambda) = \frac{W\{e^+(x, -\lambda), e^-(x, \lambda)\}}{\alpha(\lambda)} e^+(x, \lambda) - \frac{2i\lambda}{\alpha(\lambda)} e^-(x, \lambda). \quad (4.10)
\]

Substituting (4.9) and (4.10) in the right-hand side of (4.8), we obtain

\[
\frac{1}{2\pi i} \int_{-\infty}^\infty \{ R_{\mu+i\eta}(L) \psi(x) - R_{\mu-i\eta}(L) \psi(x) \} \, d\mu
\]

\[
= \int_{-\infty}^\infty \frac{\sqrt{\mu}}{\pi \alpha(\sqrt{\mu}) \alpha(-\sqrt{\mu})} \{ e^+(x, \sqrt{\mu}) e^+(\psi, \sqrt{\mu})
\]

\[
+ e^-(x, \sqrt{\mu}) e^-(\psi, -\sqrt{\mu}) \} \, d\mu, \quad (4.11)
\]

where

\[
e^\pm(\psi, -\sqrt{\mu}) := \int_{-\infty}^\infty e^\pm(t, -\sqrt{\mu}) \psi(t) \, dt
\]

and

\[
\{ e^+(x, \sqrt{\mu}), e^-(x, \sqrt{\mu}) \}, \quad \{ e^+(x, -\sqrt{\mu}), e^-(x, -\sqrt{\mu}) \}, \quad \mu > 0,
\]
are the principal functions of the continuous spectrum of L and L^*, respectively. Therefore,
\[
\left[e^+(x, \sqrt{\mu}) \right]^* = e^+(x, \sqrt{-\mu}), \quad \left[e^-(x, \sqrt{\mu}) \right]^* = e^-(x, -\sqrt{\mu}),
\]
\[
\alpha^* = (\sqrt{\mu}) = \alpha(-\sqrt{\mu}).
\]

The integral in (4.11) converges in the norm of $L_2(\mathbb{R})$. Taking (4.7) and (4.11) into account, (4.4) takes the form
\[
\psi(x) = \sum_{j=1}^{\nu - 1} \sum_{\nu = 0}^{m_j - 1} U_j(x, \mu) V_{m_j - 1 - \nu}^*(\psi, \mu) \bigg|_{\mu = \mu_j} \nonumber
\]
\[
+ \int_{-\infty}^{\infty} \frac{\sqrt{\mu}}{\pi \alpha(\sqrt{\mu}) \alpha(-\sqrt{\mu})} \left(e^+(x, \sqrt{\mu}) e^+(\psi, -\sqrt{\mu}) + e^-(x, \sqrt{\mu}) e^-(\psi, -\sqrt{\mu}) \right) d\mu. \quad (4.12)
\]

Since $\bar{D} = L_2(-\infty, \infty)$, we have the following:

Remark. For every $f \in L_2(\mathbb{R})$ the spectral expansion formula (4.12) is valid under the assumption, and the integral converges in the norm of $L_2(\mathbb{R})$.

Now we want to reduce (4.4) to a spectral expansion under the condition (1.3), which guarantees the finiteness of eigenvalues and spectral singularities with finite multiplicities. It is clear that if $\alpha(\lambda) = 0$ then $\alpha(-\lambda) = 0$.

Let Γ_+ be the contour that isolates the positive numbers $\mu_j = \lambda_j^2$, $\alpha(\lambda_j) = 0$, $\lambda_j > 0$, by semicircles with centers at μ_j having the same radius δ_0 in the upper half-plane; similarly, let Γ_- be the corresponding contour for the positive numbers $\mu_j = \lambda_j^2$, $\alpha(-\lambda_j) = 0$, $\lambda_j > 0$, in the lower half-plane, where $j = 1, \ldots, k$. The radius δ_0 will be chosen such that two neighborhoods have no common points (see Fig. 1).

As easily seen from Fig. 1, we obtain
\[
\lim_{r \to \infty, \eta \to -\infty} \frac{1}{2\pi i} \int_{\partial P_{\nu, \eta}} R_\mu(L) \psi(x) \, d\mu
\]
\[
= \frac{1}{2\pi i} \int_{\Gamma_-} R_\mu(L) \psi(x) \, d\mu - \frac{1}{2\pi i} \int_{\Gamma_+} R_\mu(L) \psi(x) \, d\mu.
\]
Hence, taking (4.7) into account, (4.4) will be as follows:

$$\psi(x) = \sum_{j=1}^{m_j-1} \sum_{\nu=0}^{r_{j-1}} U_{\nu}(x, \mu)V_{m_j-1-\nu}(\psi, \mu)|_{\mu=\mu_j}$$

$$+ \frac{1}{2\pi i} \left\{ \int_{\Gamma_+} R_{\mu}(L) \psi(x) \, d\mu - \int_{\Gamma_-} R_{\mu}(L) \psi(x) \, d\mu \right\}. \quad (4.13)$$

Lemma 4.1. There is a number $C > 0$ such that, for every finite function $\psi \in L_2(\mathbb{R})$,

$$\int_0^\infty |e^{\pm}(\psi, -\sqrt{\mu})|^2 \, d\mu \leq C \int_{-\infty}^\infty |\psi(x)|^2 \, dx. \quad (4.14)$$

Proof. Since

$$e^{\pm}(\psi, -\sqrt{\mu}) = \int_{-\infty}^\infty e^{\pm}(x, -\sqrt{\mu}) \psi(x) \, dx,$$

using (2.2), we get

$$e^{\pm}(\psi, -\sqrt{\mu}) = \int_{-\infty}^\infty \left\{ e^{-i\sqrt{\mu}x} + \int_x^\infty K^+(x, t) e^{-i\sqrt{\mu}t} \, dt \right\} \psi(x) \, dx$$

$$+ \int_{-\infty}^\infty \int_x^\infty \psi(x) K^+(x, t) e^{-i\sqrt{\mu}t} \, dt \, dx.$$

Changing the order of integration, we obtain

$$e^{\pm}(\psi, -\sqrt{\mu}) = \int_{-\infty}^\infty \{ (I + K^+) \psi(t) \} e^{-i\sqrt{\mu}t} \, dt, \quad (4.15)$$

in which the operator I is the unit operator, and K^+ is the operator defined by

$$K^+ \psi(t) = \int_{-\infty}^t K^+(x, t) \psi(x) \, dx.$$

We know from [1] that under the condition (1.3)

$$|K^+(x, t)| \leq C \exp \left\{ -\frac{\epsilon}{2} \left(\sqrt{\frac{|x+t|}{2}} \right) \right\}. $$

Hence K^+ is a compact operator in $L_2(\mathbb{R})$. Thus $(I + K^+)$ is continuous and one-to-one on $L_2(\mathbb{R})$. Using Parseval’s equality for (4.15), we obtain (4.14) for $e^{\pm}(\psi, -\sqrt{\mu})$. The estimate for $e^{-}(\psi, -\sqrt{\mu})$ can be proved similarly.
By Lemma 4.1, for each function $\psi \in L_2(\mathbb{R})$ the limits

$$e^{\pm}(\psi, -\sqrt{\mu}) = \lim_{N \to \infty} \int_{-N}^{N} e^{\pm}(x, -\sqrt{\mu})\psi(x) \, dx$$ \hspace{1cm} (4.16)

exist in the sense of convergence in the mean square on the real axis. Since $\mathcal{D} = L_2(\mathbb{R})$, (4.14) may be extended onto $L_2(\mathbb{R})$, where $e^{\pm}(\psi, -\sqrt{\mu})$ must be understood in the sense of (4.16). We shall need a generalization of these estimates.

Lemma 4.2. If

$$\int_{-\infty}^{\infty} \left| (1 + |x|)^{\nu} \psi(x) \right|^2 \, dx < \infty
$$

then the functions $e^{\pm}(\psi, -\sqrt{\mu})$ have a derivative of order $(\nu - 1)$ which is absolutely continuous on every finite interval of the half-axis $\mu > 0$.

There exists a number C_{ν} such that

$$\int_{0}^{\infty} \left| \frac{d}{d\mu} \left(e^{\pm}(\psi, -\sqrt{\mu}) \right) \right|^2 \, d\mu \leq C_{\nu} \int_{-\infty}^{\infty} \left| (1 + |x|)^{\nu} \psi(x) \right|^2 \, dx.$$ \hspace{1cm} (4.17)

The proof is similar to that of Lemma 4.1.

To transform (4.4) into the spectral expansion of L, it is natural to transform formula (4.13) so that the integration contour shall become the positive half-axis $\mu \geq 0$. Since the spectral singularities of L are the squares of the real zeros of $\alpha(\lambda)$, then the integrals over the positive real axis are divergent in the norm of $L_2(\mathbb{R})$. Now we will investigate the convergence of these integrals in a norm weaker than the norm of $L_2(\mathbb{R})$. For this, we will use the technique of the regularization of divergent integrals. So we will define the following summability factors:

$$\Phi_{\mu} = \begin{cases}
\frac{(\mu - \mu_j)^n}{n!} ; & |\mu - \mu_j| < \delta, j = 1, \ldots, k \\
0 ; & |\mu - \mu_j| \geq \delta
\end{cases} \hspace{1cm} (4.18)$$

where $\delta > 0$ is a sufficiently small number such that the δ-neighborhoods of μ_j are distinct. Furthermore, for an arbitrary function $f(\mu)$ which is
differentiable often at the points \(\mu_{\ell+1}, \ldots, \mu_k \) we put

\[
\Phi(f(\mu)) = f(\mu) - \sum_{j=\ell+1}^{k} \sum_{n=0}^{m_j-1} \left(\frac{d}{d\mu} \right)^n f(\mu)|_{\mu=\mu_j} \Phi_{j\mu}(\mu). \quad (4.19)
\]

By (4.19) the points \(\mu_{\ell+1}, \ldots, \mu_k \) are roots of orders of at least \(m_{\ell+1}, \ldots, m_k \) for the function \(\Phi(f(\mu)) \). In the neighborhood of a spectral singularity or, what amounts to the same thing, a generalized eigenvalue (as Gasymov and Maksudov called it in [8]), we can write the resolvent in the generalized Laurent expansion (which means the function does not need to be analytic at the neighborhood of the generalized eigenvalue, but it has a derivative of each order at these points), in terms of a generalized eigenfunction and adjoint functions corresponding to the generalized eigenvalue \(\mu_j, j = \ell + 1, \ldots, k \) as we would for an ordinary singularity. Therefore, we can write the resolvent as follows. When \(\psi \in H_{(m_\ell + 1)},{ } \]

\[
R_\mu(L) \psi(x) = \sum_{j=\ell+1}^{k} \sum_{n=0}^{m_j-1} \sum_{p=0}^{n} U_p(x, \mu)V_n(\psi, \mu)|_{\mu=\mu_j} \int_{\gamma_j} \frac{\Phi_{j\mu}(\mu)}{(\mu - \mu_j)^{m_j}} d\mu \\
+ \frac{\Phi(R_1(x, \psi, \mu))}{\alpha(\sqrt{\mu})}, \quad (4.20)
\]

where

\[
R_1(x, \psi, \mu) := \int_{-\infty}^{\infty} (R_1(x, t, \mu)) \psi(t) dt
\]

and

\[
R_1(x, t, \mu) := \begin{cases}
 e^+(x, \sqrt{\mu})e^-(t, \sqrt{\mu}); & -\infty < t < x \\
 e^-(x, \sqrt{\mu})e^+(t, \sqrt{\mu}); & x \leq t < \infty,
\end{cases}
\]

the kernel of the resolvent is

\[
R(x, t; \mu) = \frac{1}{\alpha(\sqrt{\mu})} R_1(x, t; \mu).
\]

Furthermore, by (2.20), \(U_\ell(x, \mu) \) is a generalized eigenfunction; \(U_j(x, \mu), \ldots, U_{m_j - 1}(x, \mu) \) are associated functions of generalized eigenvalue \(\mu_j \); and \(V_\ell(\psi, \mu), \ldots, V_{m_j - 1}(\psi, \mu) \) are \(\psi \)-Fourier transformations of the generalized eigenfunction and associated functions of the operator \(L^\ast \) adjoint to \(L \), corresponding to the generalized eigenvalue \(\mu_j, j = \ell + 1, \ldots, k \). That is,
for $\psi \in H_{(m_{n+1})}$,
\[
(\psi, V_k), \quad k = 0, \ldots, m_j - 1, j = \ell + 1, \ldots, k,
\]
is defined because of (3.3).

Let us define
\[
\Lambda_j = (\mu_j - \delta, \mu_j + \delta), \quad j = \ell + 1, \ldots, k,
\]
\[
\Lambda_0 = R \setminus \bigcup_{j=\ell+1}^{k} \Lambda_j.
\]

γ_j^\pm are the semicircles, centered at μ_j, lying on Γ^\pm.

Integrating (4.20) over Γ_+ and Γ_-, we get
\[
\frac{1}{2\pi i} \int_{\Gamma_+} R_\mu(L) \psi(x) \, d\mu
\]
\[
= \frac{1}{2\pi i} \sum_{j=\ell+1}^{k} \left\{ \sum_{n=0}^{m_j} \sum_{p=0}^{n} U_p(x, \mu)V_n(\psi, \mu)\big|_{a=\mu_j} \int_{\gamma_j^+} \frac{\Phi_j(\mu)}{(\mu - \mu_j)^{m_j}} \, d\mu \right. \\
+ \int_{\gamma_j^+} \frac{\Phi(R_1(x, \psi, \mu))}{\alpha(\sqrt{\mu})} \, d\mu \right\}
\]
\[
+ \frac{1}{2\pi i} \int_{\Lambda_0} \frac{\Phi(R_1(x, \psi, \mu))}{\alpha(\sqrt{\mu})} \, d\mu
\]
\[
(4.21)
\]
\[
\frac{1}{2\pi i} \int_{\Gamma_-} R_\mu(L) \psi(x) \, d\mu
\]
\[
= \frac{1}{2\pi i} \sum_{j=\ell+1}^{k} \left\{ \sum_{n=0}^{m_j} \sum_{p=0}^{n} U_p(x, \mu)V_n(\psi, \mu)\big|_{a=\mu_j} \int_{\gamma_j^-} \frac{\Phi_j(\mu)}{(\mu - \mu_j)^{m_j}} \, d\mu \right. \\
+ \int_{\gamma_j^-} \frac{\Phi(R_1(x, \psi, -\mu))}{\alpha(-\sqrt{\mu})} \, d\mu \right\}
\]
\[
+ \frac{1}{2\pi i} \int_{\Lambda_0} \frac{\Phi(R_1(x, \psi, -\mu))}{\alpha(-\sqrt{\mu})} \, d\mu.
\]

Here $\Phi(R_1(x, \psi, \mu))/\alpha(\sqrt{\mu})\Phi(R_1(x, \psi, -\mu))/\alpha(-\sqrt{\mu})$ is analytic in $\text{Im}\, \lambda > 0$ ($\text{Im}\, \lambda < 0$) and has a derivative of each order on a real axis.
Subtracting (4.22) from (4.21), we obtain
\[
\frac{1}{2\pi i} \left\{ \int_{\Gamma} R_\mu(L) \psi(x) \, d\mu - \int_{\Gamma-} R_\mu(L) \psi(x) \, d\mu \right\}
\]
\[
= \frac{1}{2\pi i} \sum_{j=\ell+1}^{k} \sum_{n=0}^{m_j-1} \sum_{p=0}^{n} U_p(x, \mu) V_n(\psi, \mu) |_{\mu=\mu_j} \int_{\gamma_j} \frac{\Phi_j(\mu)}{(\mu - \mu_j)^{m_j}} \, d\mu
\]
\[
- \frac{1}{2\pi i} \sum_{j=\ell+1}^{k} \sum_{n=0}^{m_j-1} \sum_{p=0}^{n} U_p(x, \mu) V_n(\psi, \mu) |_{\mu=\mu_j} \int_{\gamma_j} \frac{\Phi_j(\mu)}{(\mu - \mu_j)^{m_j}} \, d\mu
\]
\[
+ \frac{1}{2\pi i} \int_0^{\infty} \left\{ \Phi(R_1(x, \psi, \mu)) - \Phi(R_1(x, \psi, -\mu)) \right\} \frac{1}{\alpha(\sqrt{\mu})} \, d\mu. \tag{4.23}
\]

Taking (4.9), (4.10), and (4.11) into account, (4.23) then will be
\[
\frac{1}{2\pi i} \left\{ \int_{\Gamma} R_\mu(L) \psi(x) \, d\mu - \int_{\Gamma-} R_\mu(L) \psi(x) \, d\mu \right\}
\]
\[
= \sum_{j=\ell+1}^{k} \sum_{n=0}^{m_j-1} \sum_{p=0}^{n} U_p(x, \mu) V_n(\psi, \mu) |_{\mu=\mu_j, \alpha_j}
\]
\[
+ \frac{1}{\pi} \int_0^{\infty} \frac{\sqrt{\mu}}{\alpha(\sqrt{\mu})} \frac{1}{\alpha(-\sqrt{\mu})} \Phi(e^+(x, \sqrt{\mu}) e^+(\psi, -\sqrt{\mu})
\]
\[
+ e^-(x, \sqrt{\mu}) e^-(\psi, -\sqrt{\mu}) \right\} \, d\mu, \tag{4.24}
\]
where
\[
\alpha_j := \begin{cases}
\frac{1}{2\pi i} \int_{\gamma_j} \frac{\Phi_j(\mu)}{(\mu - \mu_j)^{m_j}} \, d\mu, \\
\frac{1}{2\pi i} \int_{\gamma_j} \frac{\Phi_j(\mu)}{(\mu - \mu_j)^{m_j}} \, d\mu.
\end{cases}
\tag{4.25}
\]

Let us consider the operators \(\tau_1\) and \(\tau_2\) given by
\[
\tau_1 \psi(x) = \sum_{j=\ell+1}^{k} \sum_{n=0}^{m_j-1} \sum_{p=0}^{n} U_p(x, \mu) V_n(\psi, \mu) |_{\mu=\mu_j, \alpha_j}, \tag{4.26}
\]
where α_{j_n} is defined by (4.25) and

$$
\tau_2(\psi) = \frac{1}{\pi} \int_0^\infty \sqrt{\frac{\mu}{\alpha(\sqrt{\mu})}} \Phi\{e^+(x, \sqrt{\mu}) e^+(\psi, -\sqrt{\mu}) + e^-(x, \sqrt{\mu}) e^-(\psi, -\sqrt{\mu})\} \, d\mu. \quad (4.27)
$$

So, from (4.26) and (4.27) the right-hand side of (4.24) is $\tau_1(x) + \tau_2(x)$. Since $\psi \in H_{(m_0+1)}$, we can apply Φ, defined by (4.19), to $e^+(x, \sqrt{\mu}) e^+(\psi, -\sqrt{\mu}) + e^-(x, \sqrt{\mu}) e^-(\psi, -\sqrt{\mu})$.

Lemma 4.3. For each $\psi \in H_{(m_0+1)}$ there exist constants $C_1 > 0$ and $C_2 > 0$ such that

$$
\|\tau_1 \psi\|_{-(m_0+1)} \leq C_1 \|\psi\|_{-(m_0+1)} \quad (4.28)
$$

$$
\|\tau_2 \psi\|_{-(m_0+1)} \leq C_2 \|\psi\|_{-(m_0+1)} \quad (4.29)
$$

hold, where m_0 is defined by (3.4), and $\|\cdot\|_{\pm n}$ denote the norms of $H_{\pm n}$.

Proof. From (4.18) we get the absolute convergence of α_{j_n}. Using (3.3), (4.14), and (4.17), we obtain that $\tau_n(x)$ is continuous from H_{m_0} into H_{-m_0} or from $H_{+(m_0+1)}$ into $H_{-(m_0+1)}$. Therefore there exists a constant $C_1 > 0$ such that (4.28) holds. Now using the integral form of the remainder in the generalized Taylor expansion, we have

$$
\Phi\{e^+(x, \sqrt{\mu}) e^+(\psi, -\sqrt{\mu}) + e^-(x, \sqrt{\mu}) e^-(\psi, -\sqrt{\mu})\} =

\begin{cases}
\frac{1}{(m_j - 1)!} \int_0^\mu (\mu - \xi)^{m_j - 1} \left\{ e^+(x, \sqrt{\mu}) e^+(\psi, -\sqrt{\mu}) + e^-(x, \sqrt{\mu}) e^-(\psi, -\sqrt{\mu}) \right\} \, d\xi, \\
\mu \in \Lambda_0 \\
\times \left\{ \frac{\partial}{\partial \xi} \right\}^{m_j} \left[e^+(x, \sqrt{\mu}) e^+(\psi, -\sqrt{\mu}) + e^-(x, \sqrt{\mu}) e^-(\psi, -\sqrt{\mu}) \right] d\xi, \\
\mu \in \Lambda_j, \ j = \ell + 1, \ldots, k.
\end{cases}
$$

(4.30)
If we use the notations
\[
\tau_{\ell}^{j}(x) = \frac{1}{\pi} \int_{\Lambda_j} \frac{\sqrt{\mu}}{\alpha(\sqrt{\mu})\alpha(-\sqrt{\mu})} \Phi\{e^{+}(x, \sqrt{\mu})e^{+}(\psi, -\sqrt{\mu}) + e^{-}(x, \sqrt{\mu})e^{-}(\psi, -\sqrt{\mu})\} \, d\mu, \quad j = 0, \ell' + 1, \ldots, k,
\]
then from (4.30) we have
\[
\tau_2 = \tau_2^0 + \tau_2^{\ell+1} + \cdots + \tau_2^k. \tag{4.31}
\]
First we will prove the continuity of \(\tau_{\ell}^{j} , j = \ell' + 1, \ldots, k\), from \(H^{(m_j+1)}\) into \(H^{-(m_j+1)}\). It is trivial from (4.30) that
\[
\tau_{\ell}^{j}(x) = \frac{1}{\pi} \int_{\Lambda_j} \int_{\mu_j}^{\mu_j+\delta} \frac{(\lambda - \xi)^{m_j-1}\sqrt{\mu}}{\alpha(\sqrt{\mu})\alpha(-\sqrt{\mu})} \left\{ \frac{d}{d\xi} \right\} \left\{ e^{+}(x, \sqrt{\mu})e^{+}(\psi, -\sqrt{\mu}) + e^{-}(x, \sqrt{\mu})e^{-}(\psi, -\sqrt{\mu}) \right\} \, d\xi \, d\mu. \tag{4.32}
\]
Changing the order of integration, we get
\[
\tau_{\ell}^{j}(x) = \frac{1}{2\pi i(m_j - 1)!} \times \left\{ \int_{\mu_j}^{\mu_j+\delta} \frac{d}{d\xi} \int_{\mu_j}^{\mu_j+\delta} \left(\frac{d}{d\xi} \right)^{m_j} \left\{ e^{+}(x, \sqrt{\xi})e^{+}(\psi, -\sqrt{\xi}) + e^{-}(x, \sqrt{\xi})e^{-}(\psi, -\sqrt{\xi}) \right\} \frac{(\mu - \xi)^{m_j-1}\sqrt{\mu}}{\alpha(\sqrt{\mu})\alpha(-\sqrt{\mu})} \, d\mu \\
- \int_{\mu_j-\delta}^{\mu_j} \frac{d}{d\xi} \int_{\mu_j-\delta}^{\mu_j} \left(\frac{d}{d\xi} \right)^{m_j} \left\{ e^{+}(x, \sqrt{\xi})e^{+}(\psi, -\sqrt{\xi}) + e^{-}(x, \sqrt{\xi})e^{-}(\psi, -\sqrt{\xi}) \right\} \frac{(\mu - \xi)^{m_j-1}\sqrt{\mu}}{\alpha(\sqrt{\mu})\alpha(-\sqrt{\mu})} \, d\mu \right\}.
\]
Observing that
\[
\alpha(\sqrt{\mu})\alpha(\sqrt{\mu}) = (\mu - \mu_j)^{m_j}a_j(\mu),
\]
where \(a_j \) is holomorphic in a neighborhood of the point \(\mu_j \) and \(a_j(\mu_j) \neq 0 \) and that
\[
\int_{\xi}^{\mu_j + \delta} \left(\frac{\mu - \xi}{\alpha(\sqrt{\mu}) \alpha(-\sqrt{\mu})} \right)^{m_j-1} d\mu \\
\leq \int_{\xi}^{\mu_j + \delta} \left(\frac{d\mu}{\mu - \mu_j} \right) \leq M_j^{(1)}(\xi) \int_{\xi}^{\mu_j + \delta} \left(\frac{d\mu}{\mu - \mu_j} \right)
\]
\[
= M_j^{(1)}(\xi) \left[\ln(\mu - \mu_j) \right]_{\xi}^{\mu_j + \delta} \\
= M_j^{(1)}(\xi) \left[\ln(\delta) - \ln(\xi - \mu_j) \right], \quad \text{if } \xi > \mu_j, \quad (4.33)
\]
similarly,
\[
\int_{\mu_j - \delta}^{\xi} \left(\frac{\mu - \xi}{\alpha(\sqrt{\mu}) \alpha(-\sqrt{\mu})} \right)^{m_j-1} d\mu \\
\leq \int_{\mu_j - \delta}^{\xi} \left(\frac{d\mu}{\mu - \mu_j} \right) \leq M_j^{(2)}(\xi) \ln(\mu - \mu_j) \left[_{\mu_j - \delta}^{\xi} \right] \\
= M_j^{(2)}(\xi) \left[\ln(\mu - \mu_j) \right]_{\mu_j - \delta}^{\xi} \\
= M_j^{(2)}(\xi) \left[\ln(\mu_j - \mu_j) - \ln(\delta) \right], \quad \text{if } \xi < \mu_j, \quad (4.34)
\]
where
\[
M_j^{(1)}(\xi) = \max_{\mu \in [\xi, \mu_j + \delta]} \left| \frac{1}{a_j(\mu)} \right|, \quad M_j^{(2)}(\xi) = \max_{\mu \in [\mu_j - \delta, \xi]} \left| \frac{1}{a_j(\mu)} \right|.
\]
(4.33) and (4.34) show that \(\tau_j^k, j = 1, \ldots, k, \) are integral operators with kernels having logarithmic singularities. Equation (4.32) can be written as
\[
\tau_j^k \psi(x) = \int_{A_j} \sum_{k=0}^{m_j} b_{k,j}(x, \xi) \left(\frac{d}{d\xi} \right)^k \left(e^+(\psi, -\sqrt{\xi}) + e^-(\psi, -\sqrt{\xi}) \right) d\xi.
\]
If we define
\[
B_{kj} := \int_0^\infty \int_{A_j} \left| \frac{b_{k,j}(x, \xi)}{(1 + |x|)^{m_n+1}} \right|^2 d\xi dx,
\]
then \(B_{kj} < \infty \) by (3.3), (4.33), and (4.34).
Since
\[
\left\| \tau_2^j \psi(x) \right\|^2_{-(m_0 + 1)} \leq \sum_{k=0}^{m_j} B_k \int_{\lambda_j} \left(\frac{d}{d\xi} \right)^k \left(e^+ (\psi, \sqrt{-\xi}) + e^- (\psi, \sqrt{-\xi}) \right) d\xi
\]
holds, considering Lemma 4.1 and 4.2, we get
\[
\left\| \tau_2^j \psi \right\|_{-(m_0 + 1)} \leq C_j \left\| \psi \right\|_{m_0} \leq C_j \left\| \psi \right\|_{(m_0 + 1)}, \quad j = \ell + 1, \ldots, k, \quad (4.35)
\]
where \(C_j > 0 \) are constants.

Now we consider the operator \(\tau_2^0 \) defined by
\[
\tau_2^0 \psi(x) = \frac{1}{2\pi i} \int_0^{\infty} \frac{\chi_0(\mu)\sqrt{\mu}}{\alpha(\sqrt{\mu})\alpha(-\sqrt{\mu})} \times \left(e^+ (x, \sqrt{\mu}) e^+ (\psi, \sqrt{\mu}) + e^- (x, \sqrt{\mu}) e^- (\psi, -\sqrt{\mu}) \right) d\mu,
\]
where \(\chi_0 \) is the characteristic function of the interval. From (4.36), similar to the proof of Lemma 4.1, we obtain
\[
\int_{-\infty}^{\infty} \left\| \tau_2^0 \psi(x) \right\|^2 dx \leq C_0 \int_{-\infty}^{\infty} \left\| \psi(x) \right\|^2 dx,
\]
where \(C_0 \) is a constant. Since
\[
H_{(m_0 + 1)} \subsetneq L_2(\mathbb{R}) \subsetneq H_{-(m_0 + 1)}
\]
holds, we get
\[
\left\| \tau_2^0 \psi \right\|_{-(m_0 + 1)} \leq C_0 \left\| \psi \right\|_{(m_0 + 1)}, \quad (4.37)
\]
Theorem 4.4. Under the condition (1.3), the spectral expansion

\[\psi(x) = \sum_{j=1}^{m_j-1} \sum_{l=0}^{m_j-1} U_l(x, \mu)V_{m_j-1-l}(\psi, \mu)|_{\mu=\mu_j} \]

\[+ \frac{1}{2\pi i} \int_0^\infty \sqrt{\mu} \alpha(\sqrt{\mu}) \frac{e^+(x, \sqrt{\mu}) e^+(\psi, -\sqrt{\mu})}{\Phi(x, \sqrt{\mu})} + \sqrt{\mu} \alpha(-\sqrt{\mu}) \frac{e^-(x, \sqrt{\mu}) e^-(\psi, -\sqrt{\mu})}{\Phi(x, \sqrt{\mu})} \, d\mu \]

\[+ \sum_{j=\ell+1}^{k} \sum_{n=0}^{m_j-1} \sum_{p=0}^{\ell} U_n(x, \mu)V_n(\psi, \mu)|_{\mu=\mu_j} \alpha_{j\alpha_j} \]

(4.38)

of \(L \) in terms of the principal functions holds for any \(\psi \in H_{(m_0,1)} \), and the integrals in (4.38) converge in the norm of \(H^{-2(m_0+1)} \), where \(\Phi \) and \(\alpha_{j\alpha_j} \) are defined by (4.19) and (4.25), respectively.

Proof. Using (4.13), (4.24), and (4.25), we obtain (4.38). The convergence of the integrals in the norm of \(H^{-2(m_0+1)} \) has been given in Lemma 4.3.

Acknowledgment

The author thanks Professor E. Bairamov for his helpful suggestions during the preparation of this work.

References