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Abstract 

Kress, R. and A. Zinn, On the numerical solution of the three-dimensional inverse obstacle scattering 
problem, Journal of Computational and Applied Mathematics 42 (1992) 49-61. 

The inverse problem under consideration is to determine the shape of an impenetrable sound-soft obstacle 
from the knowledge of a time-harmonic incident plane acoustic wave and far-field or near-field measurements 
of the scattered wave. We present a method for the approximate solution which avoids the solution of the 
corresponding direct problem and stabilizes the ill-posed inverse problem by reformulating it as a nonlinear 
optimization problem. The numerical implementation of the method is described and some three-dimensional 
examples of reconstructions are given. 
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method, numerical approximation. 
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1. The inverse scattering problem 

The scattering of time-harmonic acoustic waves by an impenetrable sound-soft obstacle D, 
that is, a bounded domain D c R3 imbedded in a homogeneous isotropic medium, leads to an 
exterior boundary value problem for the Helmholtz equation 

Au + k2u = 0, in R3\& (1 1) . 

with positive wave number k and Dirichlet boundary condition 

u=O, on aD. (1 2) . 

The total wave u = ui + us is decomposed into the given incident plane wave u’(x) = eikd’x, 
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where n is a unit vector giving the direction of propagation, and the unknown scattered wave us 
which is required to satisfy the Sommerfeld radiation condition 

an” 1 
-- 
ar 

iku”=o - ( 1 , r=lXl +a, 
r 

(13) . 

~~fo~y in all directions 2 =x/ I x 1. This radiation condition ensures the uniqueness for the 
exterior boundary value problem and leads to an asymptotic behaviour of the form 

uniformly in all directions 2 = x/ 1 x I, where the function cc,, defined on the unit sphere 0 in 
jz is known as the far-field pattern or scattering amplitude of the scattered wave. A vanishing 

far-field pattern II, = 0 on the unit sphere implies 

whence tl’ = 0 follows by Reilich’s lemma fsee 121). That means, there is a one-to-one 
correspondence between the scattered wave us and its far-field pattern u,. 

As in classical potential theory, for smooth boundaries, existence of a solution for the 
exterior Dirichlet problem (L&(1.3) can be based on boundary integral equations. For details 
we refer to 121. The continuous dependence of the solution on the boundary aD can be shown 
either by integral equation methods as in [l] or by weak solution techniques as in 1151. Since a 
proof by the second possibility has not yet appeared in the literature, for convenience, we 
include an outline and state the following theorem. 

&auf. Choose R large enough such that D_ is contained in the sphere Sz, of radius R centered 
at the orig:Tn and denote D, := {x E R3\D: I x I <R). I n ro t d 
(c E H’IL&): 

uce the Sobolev space fi&DR) := 
L’ = 0 on W). Then, by Green’s theorem, we derive that the solution u to the 

direct scattering problem satisfies 

iD (grad u-grad E-k2uZs) dx=j -E ds, 
R n,av (15) . 

fur all c E @(i>,> where Y denotes the exterior unit normal. 
By .I. : *W=- ‘ql&! ‘-+ W2(i2,) we denote the Neumann to Dirichlet map for solutions w to 

the ~elmholtz equation in the exterior of OR which satisfy the Sommerfeld radiation condition. 
It transforms the normal derivative on the boundary into the boundary values 

dw 
L:~++w, on 0,. 

The properties of the operator L can be investigated by bou~da~ integral equation methods 
or, for the simple shape of the sphere. by expansion of w with respect to spherical wave 
functions. From the expansion 

P R 
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where h’,‘) denotes the spherical Hankel function of order n and of the first kind and where 
Ynm, rr2 = --It,..., n, denotes an orthonormal set of spherical harmonics of order n, it readily 
follows that L maps 

n=O m= -n n=O m= -n 

where the coefficients ‘y, are given by 

h’,“( kR) 
YIl := kh’,‘)‘(kR) ) n =09 19**- l 

Since ‘yn f 0 for all n, the operator L clearly is bijective. From the power series expansion for 
the spherical Hankel functions, for fixed k, we derive 

Yn = --$Jl+O(~)), n-=. 

This implies that L is bounded and has a bounded inverse from H112(&) onto H-‘/2(flR). 
After denoting the operator L in the limiting case k = 0 by L,, in addition, from 

R 
limo Ye = - n+l 9 

-+ 

which is valid uniformly for all n, and the above asymptotics for ‘yn, we can conclude that the 
difference L - L, is compact from H-1/2( L!,) into H1/2(LQ. Finally, since 

1 
- 

/ 
L,gjjds=R i 2 ---&b;12, 

RR n=O m= -n 

that is, 

with some constant c > 0, we observe that the operator -Lo is strictly coercive. 
From (1.5) now it can be deduced that for the solution to the scattering problem, u E Hi( DR) 

and g = W/av E H-1,‘2(0R) satisfy the sesquilinear equation 

/( grad u - grad Z - 
DR 

k2ui7) dx-/- gZ ds-1 (Lg-u)h ds 
fJR J2R 

Ii ad 
= -U +u’h ds, 

‘& au I 
(1.6) 

for all v E fi& DR) and h E H-‘/2(R,). The sesquilinear form S defined on I?:( DR) X 
H- ‘i2( L!,) by the left-hand side of (1.6) can be decomposed into S = S, + S,, where 

S,(u, g; v, h) := / grad u - grad E dx - / (gE - uh) ds - / Log& ds 
DR OR RR 

is strictly coercive, and where 

S,(u, g; v, h) := -k’/ uil dx- 
/ 

(L - L,)gh ds 
DR RR 
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is compact. Hence, by the Lax-Milgram theorem and the Riesz theory for compact operators, 
the unique solvability of the direct scattering problem implies unique solvability of the 
sesquilinear equation (1.6) and continuous dependence of the solution on the right-hand side. 
In particular, the solution operator 

A: ui *g 
W =- 
b 

(1 7) . 

is contmuous from H “WR) into H- */*(OR). 
ow we wish to study the dependence of the sesquilinear form S on the shape of the domain 

3. Fur this we restrict ourselves to the case of domains which are starlike with respect to the 
origin. Assume that X3 is represented in the parametric form 

x(e) = r(e)e, e E In, 
with a positive function r E C”U2). We pick R = 2 l max{l, II r II m). Then the mapping 

be, R,<t<m, em, 
is a diffeomorphism from the exterior of the unit sphere onto R3\D such that {y E R3: 
I< 1 y I <R} is mapped onto DR. Denote by 

Y(X) = (Yl(X), Y&)9 Y3W) 

the inverse map expressed in Cartesian coordinates. Then we substitute to obtain 

jI grad u-grad C- 
DR 

au ac 

---k*uE 
ajk ay ay 

I is 

where J denotes the Jacobian of the substitution and where the coefficients ajk are given by 

As is easily seen, J and ajk depend continuously on r in the C’-norm. Hence, from (1.8) we 
deduce thaL after the transformation the sesquilinear S also depends continuously on r with 
respect to the Cl-norm. Therefore, a perturbation argument based on the Neumann series 
shows that the operator A introduced through (1.7) satisfies an inequality of the form 

II A, -Ar+q II G C,(r) II 4 II C'(R), 

for all sufficiently small 4 E C*(a) with some constant C, depending on r. Hence it follows 
that 

II au; auf+g 
--P 

av I/ au I ~-14n,) 
G q r) II 4 II C’(R), 

and consequently 

II 4c r . - k,r+q II L2<f2, G C,(r) II 4 II c’(n)9 
with constants C2 and C,. Now the proof is finished. CI 
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The itwerse problem we are concerned with is, -given the far-field pattern u, of the scattered 
wave us for one incoming plane wave ui with one single incident direction d and one single 
wave number k or possibly several incoming plane waves ui with different incident directions d 
and wave numbers k, to determine the shape of the scatterer I). In audition to the reconstruc- 
tion of I) from far-field data we also want to consider the reconstruction from measurements 
of the scattered wave us on some closed surface rmeas containing D in its interior. 

As opposed to the direct problem, both these inverse problems are ill-posed. The solution - 
if it exists at all - does not depend continuously on the given far-field or near-field data in any 
reasonable norm. Therefore the numerical solution requires the incorporation of some regular- 
ization technique. In addition, the inverse scattering problem is nonlinear since the scattered 
wave depends nonlinearly on the boundary surface. 

Based on a result due to Schiffer, the question of uniqueness has been revisited in [6.7]. 
Given a priori information on the size of the obstacle, the far-field pattern of a finite number of 
incident plane waves either with one fixed incident direction and different wave numbers or 
with one fixed wave number and different incident directions uniquely determines D. Note that 
due to analytici~, theoretically, it suffices to know the far-field pattern for a countable set of 
observation directions x^. It is still an open problem whether one incoming plane wave for one 
single direction and one single wave number completely determines the scatterer. 

By the uniqueness for the exterior Dirichlet problem, knowing us on the closed surface rmeas 
implies knowing the far-field pattern u, of us. Therefore the uniqueness results for the 
reconstruction from far-field data immediately carry over to the case of near-field data. 

In this paper we are interested in the approximate solution of the inverse problem for wave 
numbers k in the resonance region, that is, the wave length is of the same magnitude as the 
diameter of the unknown object. In this case linearizations by high-frequency asymptotics like 
geometric and physical optics do not lead to valid approximations and it is necessary to treat 
the full nonlinear problem. 

2. a numerical afgwithm for the inverse problem 

An obvious concept for an approximate solution of the inverse scattering problem is to try 
solving the ill-posed nonlinear operator equation 

A(m) = u,, 

by standard inversion methods. Here A : X -+ L*CL!) stands for the forward operator mapping 
the boundary aD into the far-field pattern u, of the scattered wave and X is a suitably chosen 
subset of a suitable function space representing the boundary surfaces. 

Newton-type methods for the approximate solution of (2.1) have been implemented in 
[13,14,16,17]. The ill-posedness of the inverse scattering problem requires appropriate measures 
to stabilize the Newton iteration, for example by a Tikhonov regularization or a singular-value 
cut-off in each Newton step. 

The method of quasi solutions has been investigated in [l]. Here the inverse scattering 

problem is replaced by minimizing the defect 

II A(A) - u, II L2(f2), (2 2) . 
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ower afl a~~~~b~e surfaces :I in a suitable ~om~act set U. A T~onov-me re~u~a~~ation of 
the defect minimizatioi~ C2.2) has been employed in [I l]. Here the constraint for the admissible 
subset lb to be compact is replaced by minimizing a penalized defect functional of the form 

(2 3) . 
with a suitable penalty term p. 

A common feature of all the above methods is that they are of an iterative nature and 
require the numerical solution of the direct scattering problem for different domains at each 
itera~ou step. In addition to date, numerical expe~ments with these methods have only been 
petioxtned in two dimensions. The method which we describe in the sequel and which was 
proposed by Kirsch and Kress [8] does not need the solution of the direct problem at all. The 
principal idea is to stabiliz, the inverse scattering problem by reformulating it as a noniinear 
op~ation problem. Our method is closely related to an approach proposed by Colton and 
Monk in a series of papers [3-53. The Colton-Monk method so far is the only one by which 
numerical reconstructions in the resonance region have been carried out in three dimensions 
f-F]- For a comparison of both methods including numerical examples in two dimensions we 
refer to [9]. The three-Dimensions Colton-Monk method has also been implemented and 
tested in [i2]. 

Of course, the numerical solution of the optimization problem again relies on iteration 
techniques. However, the actual: performance of these iterations is less costly due to the simple 
structure of the cost actions. The motivation of the Kirsch-Kress method is divided into two 
parts: the first part deals with the ill-FDsedness and the second part with the nonlineari~ of the 
inverse scattering problem. 

We choose an auxiliary closed surface r contained in the unknown scatterer D. The 
knowledge of such an internal surface I-’ requires weak a priori info~ation about I?. Without 
loss of generality we may assume that I’ is chosen such that the Helmholtz equation 
4u + key = 0 in the interior of r with homogeneous boundary condition zc = 0 on r admits 
only the trivial solution u = 0. For example, we may choose r to be a sphere of radius R such 
that wit is not a zero of a spherical Bessel unction. We try to represent the scattered field 
US = S& as an acoustic single-layer potential 

(W)(x) := /,p:*ll;; 4(v) ds(v), (2 4) . 

with an unknown density # E L*(r). Since the far-field pattern of the single-layer potential is 
described through the integral operator F : L*(r) --j L*(a) defined by 

(2 5) l 

given the far-field pattern u,, we have to solve the integral equation of the first kind 

F&=&Y (2 6) . 

for the density cf). The integral operator F has a smooth kernel and therefore (2.6) is severely 
ill-posed. It can be shown that (2.6) has at most one solution and that it is solvable if and only if 
u, is the far-field of a scattered wave which can be analytically extended as a solution to the 
Helmholtz equation across the boundary %I into the exterior of r with boundary data in the 
Sobolev space H’(T) (see [lOI for the do-dimensional case). 
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We may apply the Tikhonov regularization technique (see [lo]) for a stable numerical 
solution of (2.6) and obtain an approximation uS,,._~ = S@approx for the scattered field by the 
single-layer potential (2.4). Then we seek the boundary of the scatterer D as the !ocation of the 
zeros of u i + u&prox 

defect 
in a minimum norm sense, i.e., we approximate aD by minimizing the 

(2 7) . 
over some suitable class U of admissible surfaces A. For example, we may choose U to be a 
suitable subset of the set I/ of all starlike closed C2-surfaces A described by 

x(e) := r(t?)e, 8 E 0, r E c’(n), (2 8) * 
which is compact in Cl*@ with some 0 < p c 1. In addition, we assume the surfaces in U to 
satisfy some a priori information 

(2 9) . 
with given functions rl and r2. 

However, in general we do not have the existence of a solution to the integral equation (2.6). 
Therefore, for a satisfactory reformulation of the inverse scattering problem by an optimization 
problem we combine the Tikhonov regularization for (2.6) and the defect minimization (2.7) 
into one cost functional. Given ui and u,, we minimize the sum 

(2.10) 

simultaneously over all 4 E L2(r) and A E U. Here, Q! > 0 denotes the regularization parame- 
ter for the Tikhonov regularization of (2.6) represented by the first two terms in (2.10) and 
y > 0 denotes a coupling parameter which has to be chosen appropriately for the numerical 
implementation. The following existence and convergence results were established in [S]. For a 
proof - it partly relies on continuous dependence results similar to those of Theorem 1.1 - 
we also refer to [lo]. 

Theorem 2.1. The optimization formulation of the inverse scattering problem has a solution. 
If u, is the exact far-field pattern of a domain D with aD E U, then for the cost functional there 

holds conuergence : 

~ELZf;~AEuPkb’ 4 a9 Y) -+09 Q -+ 07 

and for any sequence (&, A,) of solutions with parameters cy, + 0, n 4 00, there exists a 
convergent subsequence of (A,) and on each limit surface A the exact total field ui + us Llanishes. 

Since we do not have uniqueness either for the inverse scattering problem or for the 
optimization problem, in general, we cannot expect more than convergent subsequences. In 
addition, due to the lack of a uniqueness result for one wave number and one incident plane 
wave, we cannot assure that we always have convergence towards the boundary of the unknown 
scatterer. The latter insufficiency can be removed by using more incident waves u!, . . . , ~4: with 
different directions d 1, . . . , d, with corresponding far-field patterns u,,~, , . . , u,,, with the total 
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number n depending on the size of the a priori known surfaces A, and AZ. Then we 14;~ to 
minimize the sum 

(2.11) 
j=1 ’ - I 

over all &,..., & E L?(r) and all r E W. Of course, we also can expect more accurate 
reconstructions by using more than one incoming direction at the price of an increase in the 
computational costs. These costs can be reduced by using appropriate linear combinations of 
incident plane waves as suggested in [19]. 

In the case of near-field measurements I&.~ on the surface rmeas the integral equation (2.6) 
has to be replaced by 

where the integral operator F : L’(r) --, L’(T,,,) is given by 

(2.12) 

(2.13) 

Correspondingly, for given ui and u;~,, the optimization problem (2.10) has to be modified 
into minimizing the sum 

(2.14) 

simultaneously over all 4 E L’(r) and A E U. Then the results of Theorem 2.1 carry over to 
the near-field case. 

So far we have assumed the far-field to be known for all observation directions x^. 
Theoretical and numerical extensions to the case where the far-field pattern is measured only 
on part of the unit sphere, that is, to the limited-aperture problem, were considered in [19]. 

3. Numerical implementation and results 

We proceed describing some details of the numerical implementation of the above method. 
For the data we have to rely on synthetic far-field data obtained through the numerical solution 
of the direct scattering problem. Here we wish to emphasize that for reliably testing the 
performance of the approximation method for the inverse problem, it is crucial that the 
synthetic data are delivered through a direct so!ver which has no connection to the inverse 
solver under consideration, in order to avoid trivial inversion of finite-dimensional problems. In 
our numerical examples the far-field data were obtained through the classical boundary integral 
equations via the combined double- and single-layer approach (see [2]). For its numerical 
solution we employed a Nystrijm-type method using numerical quadratures based on approxi- 
mations through spherical harmonics. This method is exponentially convergent for smooth 
boundaries and has been recently developed in [18]. 

For the numerical method for the inverse problem, the evaluation of the cost functional 
(2.10) or (2.14) including the integral operators S, F and F requires the numerical evaluation 
of integrals with integrands over the smooth surfaces L?, r, &,,__ and A. We approximate 
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integrals over the unit sphere by the Gauss trapezoidal product rule. By - 1 < I, < t, < l - - < 

t, < 1 we denote the zeros of ilIe Legendre polynomial P,,, and by 

2 

aj’= t1 _ tf)[pi(tj)12 3 
j = L-,m, 

the weights of the Gauss-Legendre quadrature rule for the interval [ - l,l]. Then the Gauss 
trapezoidal rule reads 

(3 1) . 

where the knots Xjk are given in sphericC coordinates by 

Xik ‘= (sin 0j COS 4k, sin @j sin +k, COS ej) 

for j = 1,. . . , m and k = 0,. . . , 
surfaces r, rmeas 

2m - 1 with 0j := arccos tj and +k = Tk,/m. Integrals over the 
and A are transformed into integrals over fi through appropriate substitu- 

tions. 
For the numerical solution, of course, we also must discretize the optimization problem. This 

is achieved through replacing L2(r) and U by finite-dimensional subspaces. Denote by 2, the 
linear space of all spherical harmonics of order less than or equal to ~1. Let q : r + L? be 
bijective and define X, c L2(r) by 

x,, := (4 = Yoq: YEZJ. 

Further we denote by q, the set of all starlike surfaces described through (2.8) and (2.9) with 
Y E Z,,. Then we replace (2.10) or (2.14), respectively, by the finite-dimensional problem where 
we minimize over the finite-dimensional set X, x U, instead of L2(r) X U. Denoting by pn 
and p the infimum of the corresponding optimization problems, we can establish the following 
convergence result. 

Theorem 3.1. Denote by (&, A,) f or n E N a solution to the finite-dimensional minimization 
problem. Then there holds pLn + p, n + 00, and there exists a subsequence (4n(j)y A,(j)) which 
converges to a solution of (2.10) or (2.141, respectively, as j + 00. 

Proof. (We only give a sketch, for a detailed version see [20].) Let (+*, A*) be a solution to 
(2.10) or (2.14). Th en, omitting the dependence on a! and y, we have 

IL@P*, A*) =P GP,, =P(+,, A,,). 

Due to the denseness of X,, in L2(I’) and of Z,, in C2(J2) there exists &,* E X,,, rz E 2, with 

II 4” - 67 IIPU-, + 07 n -+ O”7 (3 2) . 

II r* - r,: Ijcl.p(n) + 0, n -+ 00. (3 3) . 

It remains to show that for all n large enough, r,: can be chosen so that the corresponding 
surface AZ E U,,, i.e., the conditions (2.9) are fulfilled for r, . * ‘We leave out the technical details 
of the necessary modifications on rn* such that (3.3) still holds. 
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(a, lb) 
Fig. I. The peanut and its reconstruction (turned by 90”); (a) original; (b) reconstruction. 

As a consequence of the convergence (3.2) and (3.3) with the aid of the triangle ine:;k;ality -A e 
can deduce that 

which proves p,, + CL, n + a~. 

From the compactness of U and the boundedness of (#,I, as in the proof of the convergence 
result of Theorem 2.1, one can- deduce the existence of convergent subsequences A,(j) + A E U 

and +n(j) + C) E L*(r), j + ax Each accumulation point (4, A) is a solution of (2.10) or (2.141, 
respectively, since 

The finite-dimensional minimization problem is a nonlinear least-squares problem with 
2(n + l)* unknowns. For its numerical solution we used a Levenberg-Marquardt algorithm as 
one of the most efficient nonlinear least-squares routines. It does not allow the imposition of 
constraints, but we found in practice that the constraints are unnecessary due to the increase in 
the cost functional as A approaches r or tends to infinity or approaches &_. 

(4 b) 
Fig. 2. The acorn and its reconstruction; (a) original; (b) reconstruction. 



R. Kress, A. Zinn / Three-dimensional inverse obstacle scattering 59 

(4 lb) 
Fig. 3. The pinched ball and its reconstruction; (a) original; (b) reconstruction. 

Figures l-3 show three examples of our numerical experiments. For these the measurement 
surface rmeas is a sphere of radius R centered at the origin. In the figures this radius is chosen 
to be R = 3. The regularization parameter cy and the coupling parameter y were selected by 
trial and error. The actual numerical values were a! = 10m8 and y = 10s6 for the reconstruction 
from far-field data and, due to the factor l/R2 in the first term of the cost functional, 
a! = lo-‘/R2 and y = 10s6/R2 in the case of near-field data. For the internal surface r we 
cllose ellipsoids with center at the origin and axes coinciding with the axes of the Cartesian 
coordinates. As the starting surface A for the Levenberg-Marquardt algorithm we used an 
ellipsoid parallel and with distance 0.2 from r, and as the starting density we chose 4 = 0. The 
average number of Levenberg-Marquardt steps was ten. In all examples we worked with only 
one incident plane wave with the wave number k = 1. In tne figures the arrow marks the 
direction of the incident wave. The parameter for the numerical quadrature is m = 12 and the 
dimension of the approximating subspace is y1= 6. 

Figure 1 shows the reconstruction of a peanut given through its radial distance in terms of 
the polar angle 8 by 

t-(e) = 3 (cos20 + f sin28)1’2. 

The internal ellipsoid has major axis 0.6, 0.6 and 1.2. 
Figure 2 shows the reconstruction of an acorn given by 

r(e) = $(T + 2 cos 3e)? 

Here the 
Figure 

internal ellipsoid is a sphere with radius 0.6. 
3 shows the reconstruction of a pinched ball given by 

r(e, 4) = (1.22 + 0.5 cos 24 (COS 28 - if’*. 

Its special feature is that it is rotationally nonsymmetric with respect to the x,-axis in contrast 
to all other objects reconstructed before by Colton and Monk [5] and us. Furthermore it is 
nonconvex. So clearly it is more dif5cult to reconstruct. Here the internal ellipsoid has major 
axis 0.5, 1.3 and 1. 

Besides these figures we wish to illustrate our results by a few numerical values. In Table 1 
we have compared the reconstruction from near-field data with those from far-field data. The 



Table 1 
Numerical results for the peanut, the acorn and the pinched ball 

Peanut 

Final value 
for p 

1.96. lW6 
I-96= lo-” 
7.96* lo-” 
1.26* lo-’ 
2.31 l lo-’ 
7.75 l lo-’ 

Error 
% 

1.93 
1.83 
1.27 
0.74 
0.85 
1.15 

Acorn 

Final value 
fGi$ 

8.12~ lo-’ 
8.350 IV7 
3.72*10+’ 
6.48. 1O-6 
1.67* lo-” 
2.57~ 1O-4 

Error 
5% 

8.23 
9.51 

10.55 
10.17 
8.86 
7.32 

Pinched ball 

Final value 
for fl 

1.10. 1o-4 
4.03*10+ 
1.66*10-5 
2.63* lO-5 
4.92~10-~ 
1.40* ?o-4 

Error 
% 

6.24 
6.20 
5.55 
5.09 
3.54 
2.10 

kmerical results for the acorn with perturbed data 

Noise E% Final value for h Error % 

0 8.1158- lO+ 8.23 
2 8.1219. 1O-5 8.12 
4 8.1272. IO-” 11.06 
6 8.1302-l0-5 11.32 
8 8.1342.lo-’ 11.72 

10 8.1387. lo-’ 10.75 

latter are incorporated in the table through R = 0~. Our error is defined as 11 rapproX - r * 11 /II r * II 
where the L’-norm is taken, where rapproX represents the bounda~ for the numerical recon- 
struction and where r * denotes the best approximation to the exact boundary r with respect to 
ZR. Our results indicate that despite the decrease in the degree of the ill-posedness, the quality 
of the reconstruction is not much affected by going from far-field to near-field data. 

Table 2 shows the in~uence of perturbed data on the reconst~ction of the acorn. We have 
added a random error to the far-field pattern by adding uniformly distributed random numbers 
in the range C-E, E] to each far-field value. The results indicate that we have developed a 
stable algorithm for the inverse obstacle scattering problem. 

We wish to mention that the accuracy is not much ~prove~ by using two incident plane 
waves with different directions instead of only one wave. We have not implemented (2.11) with 
more than two waves since the computational costs are too high. computations with one wave 
as a combination of several incident fields have been carried out, but up to now the 
recons~ctions have not improved as remarkably as expected. 

The computations were carried out on a DElCstation 3100. The typical CPU-time for one 
reconst~ction varied between 5 and 10 minutes. 
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