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Abstract

Kress, R. and A. Zinn, On the numerical solution of the three-dimensional inverse obstacle scattering
problem, Journal of Computational and Applied Mathematics 42 (1992) 49-61.

The inverse problem under consideration is to determine the shape of an impenetrable sound-soft obstacle
from the knowledge of a time-harmonic incident plane acoustic wave and far-field or near-field measurements
of the scattered wave. We present a method for the approximate solution which avoids the solution of the
corresponding direct problem and stabilizes the ill-posed inverse problem by reformulating it as a nonlinear
optimization problem. The numerical implementation of the method is described and some three-dimensional
examples of reconstructions are given.

Keywords: Time-harmonic acoustic obstacle scattering, Helinholtz equation, inverse problem, optimization

method, numerical approximation.

1. The inverse scattering problem

The scattering of time-harmonic acoustic waves by an impenetrable sound-soft obstacle D,
that is, a bounded domain D c R? imbedded in a homogeneous isotropic medium, leads to an
exterior boundary value problem for the Helmholtz equation

Au+k*u=0, inR3\D, (1.1)
with positive wave number k and Dirichlet boundary condition
u=0, onaD. (1.2)

The total wave u =u' +u® is decomposed into the given incident plane wave ui(x) = eik4'*,
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where d is a unit vector giving the direction of propagation, and the unknown scattered wave u°®
which is required to satisfy the Sommerfeld radiation condition
ot 1
—ikut=of—}], r=|x| -, (1-3)
r r

uniformly in all directions £ =x/|x|. This radiation condition ensures the uniqueness for the
exterior boundary value problem and leads to an asymptotic behaviour of the form
ikxl

1
wiw) =S {ux(f)m(m)}, x| >, (1.4)

uniformly in all directions £ =x/| x|, where the function u,, defined on the unit sphere 2 in
R, is known as the far-field pattern or scattering amplitude of the scattered wave. A vanishing
far-field pattern u. = 0 on the unit sphere implies

lim lu(x)1% ds=0,

rexJxl=r
whence u®=0 follows by Reilich’s lemma (see [2]). That means, there is a one-to-one
correspondence between the scattered wave u® and its far-field pattern u,.

As in classical potential theory, for smooth boundaries, existence of a solution for the
exterior Dirichlet problem (1.1)-(1.3) can be based on boundary integral equations. For details
we refer to [2]. The continuous dependence of the solution on the boundary 3D can be shown
either by integral equation methods as in [1] or by weak solution techniques as in [15]. Since a

proof by the second possibility has not yet appeared in the literature, for convenience, we
include an cutline and state the following theorem.

Theorem 1.1. The mapping 9D — u,, is continuous from C' into L*(02).

Proof. Choose R large enough such that D is contained in the sphere 2 g Of radius R centered
at the orig'n and denote Dp:={x € R*\ D: | x| <R}. Introduce the Sobolev space H!(Dp) =
{r € H(Dg): v =0 on aD). Then, by Green’s theorem, we derive that the solution u to the
direct scattering problem saiisfies
ou

[ forad u-grad 5 — k2up) dx= [ —5 ds

_,DR{gr gr } fﬂ S0 (1.5)
for all v € H}(Dj) where v denotes the exterior unit normal.

By L: H V¥(Q.) > H'/*(Qp) we denote the Neumann to Dirichlet map for solutions w to

the Helmholtz equation in the exterior of 2, which satisfy the Sommerfeld radiation condition.
It transforms the normal derivative on the boundary into the boundary values

ow
L: r —w, on 2.
The properties of the operator L can be investigated by boundary integral equation methods

or, for the simple shape of the sphere, by expansion of w with respect to spherical wave
functions. From the expansion

W)= T L ahOkixYR(R), Ixl >R,

n=0m=-n
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where A" denotes the spherical Hankel function of order n and of the first kind and where
Y™, m= —n,...,n, denotes an orthonormal set of spherical harmonics of order n, it readily
follows that L maps

Z Z bm"Y™ into Lg= Z E y,bmYm,

n=0m=—-n n=0m=—n
where the coefficients v, are given by
hP(kR)
Yn = W’ n =0, 1,... .

Since 7y, # 0 for all n, the operator L clearly is bijective. From the power series expansion for
the spherical Hankel functions, for fixed k, we derive

R 140 1
= - — _ —>» 00,
Y n+1{ * (n)}’ noe

This implies that L is bounded and has a bounded inverse from H'/%(£2;) onto H™'/%(£2p).
After denoting the operator L in the limiting case k = 0 by L, in addition, from

i R
im = — .
k=0 1" n+1

which is valid uniformly for all n, and the above asymptotics for vy,, we can conclude that the
difference L — L, is compact from H~'/?(0p) into H'/*(£2g). Finally, since

1
—f Loggds—RE 3 — 1ot

n= Om——n

that is,
-/, Logz ds>cllglln-rap,

with some constant ¢ > 0, we observe that the operator —L, is strictly coercive.

From (1.5) now it can be deduced that for the solution to the scattering problem, u € H o(Dg)
and g =ou®/dv € H™1/%(),) satisfy the sesquilinear equation

gl'ad u- gl‘ad U = k /1 d - d - L - h d
f { U} X f gU S [ ( g u) S
= l 1 l
[ {"_U+uh} ds, ( .6)

for all v€ H}(Dg) and he H /(). The sesquilinear form S defined on HM(Dy) X
~1/2(,) by the left-hand side of (1.6) can be decomposed into S = S, + S, where

So(u, g; v, h)= fD grad u-grad 0 dx —f
R

D—uhtds— | Ly,ghd
QR{gU“}SLROg s

is strictly coercive, and where

S(u, g;v, h)= —szD ub dx—fﬂ (L —Ly)gh ds
R R
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is compact. Hence, by the Lax—Milgram theorem and the Riesz theory for compact operators,
the unique solvability of the direct scattering problem implies unique solvability of the
sesquilinear equation (1.6) and continuous dependence of the solution on the right-hand side.
In particular, the solution operator

ou®

A:ui'—>g=-§ (1.7)

is continuous from H'/3(£2) into H™'2(Qp).
Now we wish to study the dependence of the sesquilinear form S on the shape of the domain

D. For this we restrict ourselves to the case of domains which are starlike with respect to the
origin. Assume that aD is represented in the parametric form

x(0)=r(0)8, 0<Q,
with a positive function r € C*(2). We pick R =2-max{1, || 7 ||..}. Then the mapping

to, Rgt<o, 0€Q),

is a diffeomorphism from the exterior of the unit sphere onto R*\ D such that {y € R>:
1 < |yl <R} is mapped onto Dj. Denote by

¥(x)=(y,(x), y2(x), ¥5(x))

the inverse map expressed in Cartesian coordinates. Then we substitute to obtain

0, 1<t<R, 06,

3 du ov
a,—— —k’uv}J dy, 1.8
1<|yl<R{j,k=1 ]kan oy, ( )

where J denotes the Jacobian of the substitution and where the coefficients a; are given by
.= i dy; oy,

ik = —_—

® 5 oaxg ox;
As is easily seen, J and a; depend continuously on r in the C L_norm. Hence, from (1.8) we
deduce tha. after the transformation the sesquilinear S also depends continuously on r with
respect to the C'-norm. Therefore, a perturbation argument based on the Neumann series
shows that the operator A introduced through (1.7) satisfies an inequality of the form

] A, —A,+q Il < Cl(r) gl CcY(2);

for all sufficiently small g € C*(£2) with some constant C, depending on r. Hence it follows
that

f {erad u - grad v — k2uv} dx =
Dg

ou; ou;,

q
- <Cy(r)liglle
v W ilH oy A lallca,

and consegquently
" ux,r - um'r+q " Lz(ﬂ) < C3(r) ” q ” Cl(.ﬂ)’

with constants C, and C;. Now the proof is finished. O
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The inverse problem we are concerned with is, -given the far-field pattern u_ of the scattered
wave u* for one incoming plane wave u' with one single incident direction ¢ and one single
wave number k or possibly several incoming plane waves u' with different incident directions d
and wave numbers &, to determine the shape of the scatterer D. In addition to the reconstruc-
tion of D from far-field data we also want to consider the reconstruction from measurements
of the scattered wave u* on some closed surface I, ... containing D in its interior.

As opposed to the direct problem, both these inverse problems are ill-posed. The solution —
if it exists at all — does not depend continuously on the given far-field or near-ficld data in any
reasonable norm. Therefore the numerical solution requires the incorporation of some regular-
ization technique. In addition, the inverse scattering problem is nonlinear since the scattered
wave depends nonlinearly on the boundary surface.

Based on a result due to Schiffer, the question of uniqueness has been revisited in [6.7].
Given a priori information on the size of the obstacle, the far-field pattern of a finite number of
incident plane waves either with one fixed incident direction and different wave numbers or
with one fixed wave number and different incident directions uniquely determines D. Note that
due to analyticity, theoretically, it suffices to know the far-field pattern for a countable set of
observation directions x. It is still an open problem whether one incoming plane wave for one
single direction and one single wave number completely determines the scatterer.

By the uniqueness for the exterior Dirichlet problem, knowing u*® on the closed surface I,
implies knowing the far-field pattern u, of u®. Therefore the uniqueness results for the
reconstruction from far-field data immediately carry over to the case of near-field data.

In this paper we are interested in the approximate solution of the inverse problem for wave
numbers k in the resonance region, that is, the wave length is of the same magnitude as the
diameter of the unknown object. In this case linearizations by high-frequency asymptotics like
geometric and physical optics do not lead to valid approximations and it is necessary to treat
the full nonlinear problem.

2. A numerical algorithm for the inverse problem

An obvious concept for an approximate solution of the inverse scattering problem is to try
solving the ili-posed nonlinear operator equation

A(3D) =u,, 2.1)

by standard inversion methods. Here A4: X — L*(£2) stands for the forward operator mapping
the boundary 8D into the far-field pattern u,, of the scattered wave and X is a suitably chosen
subset of a suitable function space representing the boundary surfaces.

Newton-type methods for the approximate solution of (2.1) have been implemented in
[13,14,16,17]. The ill-posedness of the inverse scattering problem requires appropriate measures
to stabilize the Newton iteration, for example by a Tikhonov regularization or a singular-value
cut-off in each Newton step. ‘

The method of quasi solutions has been investigated in [1]. Here the inverse scattering
problem is replaced by minimizing the defect

I A(A) —U, Il L¥(02)» (2-2)
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over all admissible surfaces A in a suitable compact set U. A Tikhonov-type regularization of
the defect minimization (2.2) has been employed in [11]. Here the constraint for the admissible
subset U to be compact is replaced by minimizing a penalized defect functional of the form

1 A(A) = u,ll 2y +(A), (2.3)
with a suitable penalty term p.

A common feature of all the above methods is that they are of an iterative nature and
require the pumerical soiution of the direct scattering problem for different domains at each
iteration step. In addition, to date, numerical experiments with these methods have only been
performed in two dimensions. The method which we describe in the sequel and which was
proposed by Kirsch and Kress [8] does not need the solution of the direct problem at all. The
principal idea is to stabiliz. the inverse scattering problem by reformulating it as a nonlinear
optimization problem. Our method is closely related to an approach proposed by Colton and
Monk in a series of papers [3-5]. The Colton-Monk method so far is the only one by which
numerical reconstructions in the resonance region have been carried out in three dimensions
IS1 For a compariscn of both methods including numerical examples in two dimensions we
refer 1o [9]. The three-dimensional Colton—~Monk method has also been implemented and
tested in [i2).

Of course, the numerical solution of the optimization problem again relies on iteration
techniques. However, the actual performance of these iterations is less costly due to the simple
structure of the cost functional. The motivation of the Kirsch—Kress method is divided into two
parts: the first part deals with the ill-posedness and the second part with the nonlinearity of the
inverse scattering problem.

We choose an auxiliary closed surface I’ contained in the unknown scatterer D. The
knowledge of such an internal surface I requires weak a priori information about D. Without
loss of generality we may assume that I’ is chosen such that the Helmholtz equation
Au + k*u = 0 in the interior of I with homogeneous boundary condition ¥ =0 on I" admits
only the trivial solution « = 0. For example, we may choose I" to be a sphere of radius R such
that kR is not a zero of a spherical Bessel function. We try to represent the scattered field
u® = S¢ as an acoustic single-layer potential

ikjx—y|
(S8)(x) = [ = b(y) ds(y), (24)

with an unknown density ¢ € L*(I'). Since the far-field pattern of the single-layer potential is
described through the integral operator F: L2(I') — L*(2) defined by

(Fo)(£)= f‘r é(y) e *¥7 ds(y), £en, (2.5)
given the far-field pattern «,, we have to solve the integral equation of the first kind
Fé=u,, (2.6)

for the density ¢. The integral operator F has a smooth kernel and therefore (2.6) is severely
ill-posed. It can be shown that (2.6) has at most one solution and that it is solvable if and only if
u_, is the far-field of a scattered wave which can be analytically extended as a solution to the
Helmholtz equation across the boundary 8D into the exterior of I" with boundary data in the
Sobolev space H'(I") (see [10] for the two-dimensional case).
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Wc'a may apply the Til_(honov regularization technique (see [10]) for a stable numerical
Sf)lutlon of (2.6) and obtain an approximation Uapprox = S.pprox fOT the scattered field by the
single-layer potential (2.4). Then we seek the boundary of the scatterer D as the location of the

i s . . - . L
se;os of u'+u;,.,. in a minimum norm sense, i.e., we approximate 8D by minimizing the
efect

” ui + u:Dprox “LZ(A) (2'7)

over some suitable class U of admissible surfaces A. For example, we may choose U to be a
suitable subset of the set V of all starlike closed C?-surfaces A described by

x(0)=r(8)0, 02, reC(2), (2.8)

which is compact in C"* with some 0 < < 1. In addition, we assume the surfaces in U to
satisfy some a priori information

0<r(0)<r(0)<ry0), 02, (2.9)

with given functions r, and r,.

However, in general we do not have the existence of a solution to the integral equation (2.6).
Therefore, for a satisfactory reformulation of the inverse scattering problem by an optimization
problem we combine the Tikhonov regularization for (2.6) and the defect minimization (2.7)
into one cost functional. Given u' and u,, we minimize the sum

. 2
w(d, A; a, v) = Fo — uliz0 + all 22 + vllu' + S¢l LAy (2.10)

simultaneously over all ¢ € LX(I") and A € U. Here, a > 0 denotes the regularization parame-
ter for the Tikhonov regularization of (2.6) represented by the first two terms in (2.10) and
v > 0 denotes a coupling parameter which has to be chosen appropriately for the numerical
implementation. The following existence and convergence results were established in [8]. For a
proof — it partly relies on continuous dependence results similar to those of Theorem 1.1 —
we also refer to [10].

Theorem 2.1. The optimization formulation of the inverse scattering problem has a solution.
If u,, is the exact far-field pattern of a domain D with 9D € U, then for the cost functional there
holds convergence:
inf w(d, A a,y)—0, a—0,
delXN,AcU
and for any sequence (¢,, A,) of solutions with parameters a, -0, n — o, there exists a
convergent subsequence of (A,) and on each limit surface A the exact total field u' + u® vanishes.

Since we do not have uniqueness either for the inverse scattering problem or for the
optimization problem, in general, we cannot expect more than convergent subsequences. In
addition, due to the lack of a uniqueness result for one wave number and one incident plane
wave, we cannot assure that we always have convergence towards the boundary of _the unl_mown
scatterer. The latter insufficiency can be removed by using more incident waves uj, ..., i, with
different directions d, ..., d, with corresponding far-field patterns u.,, ..., Uq, with the total
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number n depending on the size of the a priori known surfaces A, and A,. Then we have to
minimize the sum

n - - i 2
Zl {" Fd’i Uy "2.3((2) + a” ¢i "-L:(r) + 7” u; + S¢i" LZ(A)}’ (2'11)
i=
over all ¢,,...,¢, LX) and all '€ U. Of course, we also can expect more accurate
reconstructions by using more than one incoming direction at the price of an increase in the
computational costs. These costs can be reduced by using appropriate linear combinations of
incident plane waves as suggested in [19].

In the case of near-field measurements i, on the surface I, the integral equation (2.6)
has to be replaced by

Fo=us_,., (2.12)
where the integral operator F: LA(I') = LX(T},,,) is given by
lk jx—=y|
(Fé)(x): -fl TH(y) ds(), ¥ € Fss. (2.13)

Correspondingly, for given u' and «5,,,, the optimization problem (2.10) has to be modified
into minimizing the sum
| b — as i+ @l 1y + y 1w + S 1 3ay, (2.14)

meas

simultaneously over all ¢ € L*(I") and A € U. Then the results of Theorem 2.1 carry over to
the near-field case.

So far we have assumed the far-field to be known for all observation directions Xx.
Theoretical and numerical extensions to the case where the far-field pattern is measured only
on part of the unit sphere, that is, to the limited-aperture problem, were considered in [19].

3. Numerical implementation and results

We proceed describing some details of the numerical implementation of the above method.
For the data we have to rely on synthetic far-field data obtained through the numerical solution
of the direct scattering problem. Here we wish to emphasize that for reliably testing the
performance of the approximation method for the inverse problem, it is crucial that the
synthetic data are delivered through a direct solver which has no connection to the inverse
solver under consideration, in order to avoid trivial inversion of finite-dimensional problems. In
our numerical examples the far-field data were obtained through the classical boundary integral
equations via the combined double- and single-layer approach (see [2]). For its numerical
solution we employed a Nystrom-type method using numerical quadratures based on approxi-
mations through spherical harmonics. This method is exponentially convergent for smooth
boundaries and has been recently developed in [18].

For the numerical method for the inverse problem, the evaluation of the cost functional
(2.10) or (2.14) including the integral operators S, F and F requires the numerical evaluation

of integrals with integrands over the smooth surfaces 2, I', I, and A. We approximate
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integrals over the unit sphere by the Gauss trapezoidal product rule. By —1 < L<t,< - <
t,, <1 we dencte the zeros of iie Legendre polynomial P, and by

2 .
;= 2> J T
(1 _tiz)[Pr;l(tj)]

the weights of the Gauss-Legendre quadrature rule for the interval [—1,1]. Then the Gauss
trapezoidal rule reads

1,....,m,

m 2m-—1

[fds=— T ¥ afx), (3.1)

j=1 k=0
where the knots x;, are given in spheric.' coordinates by

Xj, = (sin 6; cos ¢,, sin 6, sin ¢, , cos 0;)

forj=1,...,m and k=0,...,2m — 1 with 6, := arccos t; and ¢, =wk/m. Integrals over the
surfaces I', I' ... and A are transformed into integrals over £ through appropriate substitu-
tions.

For the numerical solution, of course, we also must discretize the optimization problem. This
is achieved through replacing L*(I') and U by finite-dimensional subspaces. Denote by Z, the
linear space of all spherical harmonics of order less than or equal to n. Let g: "' > 2 be
bijective and define X, c L%(I") by

X,={¢=Yoq:YeZ}
Further we denote by U, the set of all starlike surfaces described through (2.8) and (2.9) with
r € Z,. Then we replace (2.10) or (2.14), respectively, by the finite-dimensional problem where
we minimize over the finite-dimensional set X, X U, instead of L?*(I') X U. Denoting by u,

and p the infimum of the corresponding optimization problems, we can establish the following
convergence result.

Theorem 3.1. Denote by (¢,, A,) for n €N a solution to the finite-dimensional minimization
problem. Then there holds ., — p, n — o, and there exists a subsequence (d),,( iy Ang j,) which
converges to a solution of (2.10) or (2.14), respectively, as j — .

Proof. (We only give a sketch, for a detailed version see [20].) Let (¢*, A*) be a solution to
(2.10) or (2.14). Then, omitting the dependence on a and y, we have

p(d%, A%)=p <p, =pul(d, A,).
Due to the denseness of X, in L*(I') and of Z, in C*(£2) there exists ¢,f € X, r,¥ € Z, with
I — oy

[r*=rtlcrepy—0, n—c (3.3)

™0, n—o, (3.2)

It remains to show that for all n large enough, r,f can be chosen so that the corr.espondir.lg
surface A* € U,, i.e., the conditions (2.9) are fulfilled for r,*¥. We leave out the technical details

of the necessary modifications on r* such that (3.3) still holds.
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{a) {b)
Fig. 1. The peanut and its reconstruction (turned by 90°); (a) original; (b) reconstruction.

As a consequence of the convergence (3.2) and (3.3) with the aid of the triangle ine«: zality -~
can deduce that

Be <u(dy, A7) <p(d*, A¥) +o(1), n—o,

which proves ., =, n - «.
From the compactness of U and the boundedness of (¢,,), as in the proof of the convergence
result of Theorem 2.1, one can deduce the existence of convergent subsequences A, ;, >A €U

and ¢, ;,— ¢ € LX(I'), j — . Each accumulation point (¢, A) is a solution of (2.10) or (2.14),
respectively, since

(9%, A%) <p(d, A) <p(dyy Any) <m(9*, A*)+0(1), jox. O

The finite-dimensional minimization problem is a nonlinear least-squares problem with
2(n + 1)? unknowns. For its numerical solution we used a Levenberg—Marquardt algorithm as
one of the most efficient nonlinear least-squares routines. It does not allow the imposition of
constraints, but we found in practice that the constraints are unnecessary due to the increase in
the cost functional as A approaches I’ or tends to infinity or approaches I

meas*

{a) (b)
Fig. 2. The acorn and its reconstruction; (a) original; (b) reconstruction.
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(a) (b)
Fig. 3. The pinched ball and its reconsiruction; (a) original; (b) reconstruction.

Figures 1-3 show thiree examples of our numerical experiments. For these the measurement
surface I, is a sphere of radius R centered at the origin. In the figures this radius is chosen
to be R =3. The regularization parameter « and the coupling parameter y were selected by
trial and error. The actual numerical values were a = 10~2 and y = 1076 for the reconstruction
from far-field data and, due to the factor 1/R? in the first term of the cost functional,
a=10"8/R? and y=10"%/R? in the case of near-field data. For the internal surface I" we
chose ellipsoids with center at the origin and axes coinciding with the axes of the Cartesian
coordinates. As the starting surface A for the Levenberg-Marquardt algorithm we used an
ellipsoid parallel and with distance 0.2 from I', and as the starting density we chose ¢ = 0. The
average number of Levenberg—Marquardt steps was ten. In al! examples we worked with only
one incident plane wave with the wave number k& = 1. In tne figures the arrow marks the
direction of the incident wave. The parameter for the numerical quadrature is m = 12 and the
dimension of the approximating subspace is n = 6.

Figure 1 shows the reconstruction of a peanut given through its radial distance in terms of
the polar angle @ by

r(0) = 3(cos*0 + § sin’0
The internal ellipsoid has major axis 0.6, 0.6 and 1.2.
Figure 2 shows the reconstruction of an acorn given by
r(0) = 3(% +2cos 30)1"’2.
Here the internal ellipsoid is a sphere with radius 0.6.
Figure 3 shows the reconstruction cf a pinched ball given by
r(8, ¢) =(1.22+0.5 cos 2¢ (cos 26 — 1))1/2.

Its special feature is that it is rotationally nonsymmetric with respect to the x;-axis in contrast
to all other objects reconstructed before by Colton and Monk [5] and us. Furthermore it is
nonconvex. So clearly it is more difficult to reconstruct. Here the internal ellipsoid has major
axis 0.5, 1.3 and 1.

Besides these figures we wish to illustrate our results by a few numerical values. In Table 1
we have compared the reconstruction from near-field data with those from far-field data. The

)1/2
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Table 1
Numerical results for the peanut, the acorn and the pinched ball
Radius Peanut Acorn Pinched ball
of Tneas Final value Error Final value Error Final value Error
for p % for & % for u %
x 1.96-10°¢ 193 8.12-10°3 8.23 1.10-107¢ 6.24
10 1.96-10°% 1.83 8.35-1077 9.51 4.03-10°¢ 6.20
5 796-1078 127 3.72-10°° 10.55 1.66-10° 5.55
4 1.26-10~7 0.74 6.48- lO“j 10.17 2.63-1073 5.09
3 231-1077 0.85 1.67-1073 8.86 492-103 3.54
2 7.75-1077 1.15 257-107¢ 7.32 140-207* 2.10
Tablk: 2
Numerical results for the acorn with perturbed data
Noise €% Final value for n Error %
0 8.1158-107° 823
2 8.1219-10“f 8.12
4 8.1272-10°° 11.06
6 8.1302-107° 11.32
8 8.1342-1073 11.72
10 8.1387-107° 10.75

latter are incorporated in the table through R = . Our error is defined as || 7,50 —7* Il /1l 7* ||
where the L’-norm is taken, where r,,., represents the boundary for the numerical recon-
struction and where r* denotes the best approximation to the exact boundary r with respect to
Z,,. Our results indicate that despite the decrease in the degree of the ill-posedness, the quality
of the reconstruction is not much affected by going from far-field to near-field data.

Table 2 shows the influence of perturbed data on the reconstruction of the acorn. We have
added a random error to the far-field pattern by adding uniformly distributed random numbers
in the range [—e¢, €] to each far-field value. The results indicate that we have developed a
stable algorithm for the inverse obstacle scattering problem. i

We wish to mention that the accuracy is not much improved by using two incident plane
waves with different directions instead of only one wave. We have not implemented (2.11) with
more than two waves since the computational costs are too high. Computations with one wave
as a combination of several incident fields have been carried out, but up to now the
reconstructions have not improved as remarkably as expected.

The computations were carried out on a DECstation 3100. The typical CPU-time for one
reconstruction varied between 5 and 10 minutes.

References

(1] T.S. Angell, D. Colton and A. Kirsch, The three dimensional inverse scattering problem for acoustic waves, J.
Differential Equations 46 (1982) 46-58.



R. Kress, A. Zinn / Three-dimensional inverse obstacle scattering 61

[2] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory (Wiley, New York, 1983).

[3] D. Colton ar 1 P. Monk, A novel method for soiving the inverse scattering problem for time-harmonic acoustic
waves in tho racananca reoinn CIAA T Ann’ Ad~el, A: {109:\ 1n1!\ 1053.

waves I ing résgnance LIVEIVLL, DL Ve J. L. Matn.
[4] D. Colton and P. Monk, A novel method for solving the inversc scattering problem for time-harmoenic acoustic
waves in the resonance region II, SIAM J. Appl. Math. 46 (1986) 506-523.

IS1 D Caltan and D Manlk The numarical colutinn aof tha thraa dimancinnal invarco con O P St Iy Py -
0] . LOnOn anG 1. valiig, 208 NUIMICTICa: 50iUoN O i€ uiiCe GIMiChiSiona: inversc scatteri 15 pivwvicll (Ul

time-harmonic acoustic waves, SIAM J. Sci. Statist. Comput. 8 (1987) 278-291.

[6] D. Colton and B.D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering, IMA J. Appl.

Maelh 11 (1022) 282_9280
AVEGREIT. JA \LJTOJ)] LdI—&LIT.

[7] D.S. Jones, Note on a uniqueness theorem of Schiffer, Appl. Anal. 19 (1985) 181-188.

[8] A. Kirsch and R. Kress, An optimization method in inverse acoustic scattering, in: C.A. Brebbia et al., Eds.,

Pasissdoasy Elosaomte IV UVal 2 Eliyd Elowvy amd Dotomtinl Ammlinatinome (Queingnr Haidalhars 1007) 2_10
DOUNGATY LaCINERIS i, VOi. 3. 1liG 1:OW GRaG 1 Gleniia. Appalaiions \SpPringer, riClaciolrg, 176/ 5—10.

[9] A. Kirsch, R. Kress, P. Monk and A. Zinn, Two methods for solving the inverse acoustic scattering problem,
Inverse Problems 4 (1988) 749-770.

nmMoin w. T ivaomen Tas Naow Varl 1000)
[1U_| nN. \ICSS, Linear uucslut uquuuuuo \oyuus\a, INCW Y OIK, 17655,

[11] G. Kristensson and C.R. Vogel, Inverse problems for acoustic waves using the penalised likelihood method,
Inverse Problems  (1986) 461-479.

M1 T AAicial o o) An inverce mrohlam far tho theas dimamcian
L1&] L. lVllDl\-l auu Ir. L! ll, £A01 INVCTST o1 OICIT lUl LIV I CL UILHIICIIDIULL

al -
mixcd boundary conditions, in: G. Cohen et al., Eds., Mathematical and Numerical Aspects of Wave Propagauon
Phenomena (SIAM, Phlladelphla, PA, 1991) 497-508.

M2T B M RM....lL. Hh M Mae amd TN TN Wall Nawvtnnm Koatavraviah saathad amnliad ¢
{13] N\, vIUICn, L.JU. H. Tan and D.J.N. vy ai, INCWIONI—Nanioroviin mcuidta appiica

scattering for an exterior Helmholtz problem, Inverse Problems 4 (1988) 1117-1128.
[14] K. Onishi, Numerical methods for inverse scattering problems in two-dimensional scalar field, to appear.

ME1 N Divcnmanars NDetizant Clhams Nocioe E'llintin Cuctosmac (Carincar Naw Varl 1024)
LiJ] . riiuiiliCau, UpLinae uuuyc LIESLSTL Ju' LBPIC SYSErTS \OPIHIEVI, INUw T UIR, 170%).

[16] A. Roger, Newton Kantorovitch algorithm applied to an electromagnetic inverse problem, IEEE Trans.
Antennas and Propagation AP-29 (1981) 232-238.

nmnnngagr Wonas and VA Ohan An ~ffiniant nuamarina
Li7y O.L. vvang anag X.ivi. Unci, An ChniCicnt numcrica

Helmbholtz equation, to appear. )
[18] L. Wienert, Die numerische Approximation von Randintegraloperatoren fiir die Helmholtzgleichung im R3,

DIBBCI |.auuu, UIIIV GUI[IIIE‘#I], 1990
[19] A. Zinn, On an optimisation method for the full- and limited-aperture problem in inverse acoustic scattering for
a sound-soft obstacle, Inverse Problems 5 (1989) 239--253.

MmNl A Ziaon Ein Dokanct=nkticacuarfohran fiir ein inver
L&U)] M. Lol il NCKONSITUKUoNSVeIianicn 1ur Cini inver

gleichung, Dissertation, Univ. Goéttingen, 1990.

o

-

%

]
[}



