NOTE

Simple Non-trivial Designs with an Arbitrary Automorphism Group

Ngo Dac Tuan

Département de Mathématiques, Université de Paris-Sud, Bâtiment 425, Orsay, Cedex 91405, France
E-mail: tuan.ngo-dac@polytechnique.org

Received February 2, 2002

We give a new recursive construction of simple non-trivial designs. Using this construction, we show that given a natural number \(t \) and a finite group \(G \), a simple non-trivial \(t \)-design admitting an automorphism group isomorphic to \(G \) exists. Further, we apply our construction to get a recursive construction of large sets. © 2002 Elsevier Science (USA)

1. INTRODUCTION

For positive integers \(t, v, k \) and \(\lambda \) satisfying \(k > t \) and \(v > k \), a \(t \)-design \(\mathcal{D} \) with parameters \((v, k, \lambda) \) is a set \(X \) of \(v \) points, together with a collection \(\mathcal{B} \) of subsets, called blocks, such that each block contains exactly \(k \) points and each \(t \)-tuple of points is contained in exactly \(\lambda \) blocks. A \(t - (v, k, \lambda) \) design is simple if repeated blocks are not allowed and is non-trivial if not all \(k \)-sets of points are blocks. In this paper, all the designs are supposed simple and non-trivial.

Let \(\mathcal{D} = (X, \mathcal{B}) \) be a \(t - (v, k, \lambda) \) design. It is well known that for all \(1 \leq i \leq t \), \(\mathcal{D} \) is also a \(i - (v, k, \lambda_{(i)}) \) design with \(\lambda_{(i)} = \lambda \binom{v-1}{t-i}/\binom{k-1}{t-i} \).

Let \(Y \) be a set of \(m \) points \((0 \leq m \leq t)\), we define

\[\mathcal{B}^Y = \{ B \mid Y \subseteq B \text{ and } Y \cap B = \emptyset \} , \]

\[\mathcal{B}_Y = \{ B \mid B \subseteq \mathcal{B} \text{ and } Y \cap B = \emptyset \} . \]

Then, \((X \setminus Y, \mathcal{B}^Y) \) is a \((t - m) - (v - m, k - m, \lambda) \) design called an \(m \)th derived design of \((X, \mathcal{B}) \) and \((X \setminus Y, \mathcal{B}_Y) \) is a \((t - m) - (v - m, k, \lambda \binom{v-t}{k-t+m}/\binom{v-t}{k-t}) \) design called an \(m \)th residual design of \((X, \mathcal{B}) \).
For a design $\mathcal{D} = (X, B)$, the automorphism group $Aut(\mathcal{D})$ consists of all permutations of X that leave B invariant. An automorphism group of \mathcal{D} is a subgroup of $Aut(\mathcal{D})$.

Although in 1987, Teirlinck [6, 7] showed the existence of t-designs for all $t \geq 2$, the construction of t-designs with large t is still a difficult and interesting problem. In order to construct a design, there are two well-known methods. A recursive construction is to construct a t-design from some t'-designs with $t \leq t'$, for example, [4, 8]. An extension construction is to construct a t-design from some t'-designs with $t > t'$, see for example [1, 2]. In Section 2, we give a new recursive construction of designs.

Theorem 1.1. Let j_0, j_1, \ldots, j_n and m be natural numbers such that $0 = j_0 < j_1 < \cdots < j_n = m + 1$. Suppose that there exist $(t + j_{l+1} - j_l - 1)/(v + j_{l+1} - j_l - 1, k + j_{l+1} - 1, \lambda^{(l)})$ designs such that for $l = 0, \ldots, m$,

$$
\lambda^{(j_l)} = \lambda^{(0)} \begin{pmatrix}
(v - t) \\
(k - t + j_l) \\
(v - t) \\
(k - t)
\end{pmatrix}.
$$

Then there exists a $t - (v + m, k + m, \lambda^{(0)}_{(t-m)})$ having S_m as an automorphism group.

In recent years, many new t-designs have been constructed with the help of DISCRETA, a program written by Betten et al. [3]. This program constructs t-designs having a given automorphism group. Hence, it is natural to ask the following question.

Problem. For which couples (t, G) where t is a natural number and G is a finite group, there exists a t-design having an automorphism group isomorphic to G.

The first result in this direction was due to Sebille [5]. He proved

Theorem 1.2 (Sebille [5]). For every pair (t, n) of natural numbers, there exists a simple non-trivial t-design with an automorphism group isomorphic to \mathbb{Z}_2^n.

In this paper, applying Theorem 1.1, we give an affirmative answer to the previous problem and so generalize the result of Sebille.
Theorem 1.3. Let t be a natural number and G be a finite group. Then there exists a simple non-trivial t-design with an automorphism group isomorphic to G.

An application of Theorem 1.1 to large sets will be discussed in Section 4.

2. RECURSIVE CONSTRUCTION

We recall the following theorem of Tran van Trung.

Theorem 2.1 (van Trung [8]). Let $(X, \mathcal{B}(j))$ be designs with parameters $t-(v, k^{(j)}, \lambda^{(j)})$ for $0 \leq j \leq m$ ($m \leq t$). Suppose that we have:

(i) $k^{(j)} = k^{(j-1)} + 1$ for all $1 \leq j \leq m$,

(ii) $\sum_{l=0}^{j} \binom{j}{l} \lambda_{(t-m+j)}^{(l)} = \lambda_{(t-m)}^{(0)}$ for all $0 \leq j \leq m$.

Then there exists a $t-(v+m, k^{(m)}, \lambda^{(0)}_{(t-m)})$ design admitting the symmetric group S_m as an automorphism group.

Proof of Theorem 1.1. Let l, j be two integers such that $0 \leq l < n$ and $j_l \leq j < j_{l+1}$. Now, we denote with \mathcal{D}_{l} the $(t + j_{l+1} - j_l - 1) - (v + j_{l+1} - j_l - 1, k + j_{l+1} - 1, \lambda^{(l)}_{(j_{l+1}-j_l-1)})$ design given in the hypothesis. We construct \mathcal{D}_{l}' as the $(j_{l+1} - j_l - 1)$th derived design of \mathcal{D}_{l} and then construct $(X, \mathcal{B}(j))$ the $(j - j_l)$th residual design of \mathcal{D}_{l}'. This is a $t-(v, k^{(j)}, \lambda^{(j)})$ design with

$$k^{(j)} = k + j,$$

$$\lambda^{(j)} = \binom{j}{l} = \frac{v - t}{k - t + j} = \frac{v - t}{k - t}.$$

To conclude, from Theorem 2.1, it is sufficient to verify that for all $0 \leq j \leq m$, we have

$$\sum_{l=0}^{j} \binom{j}{l} \lambda_{(t-m+j)}^{(l)} = \lambda_{(t-m)}^{(0)}.$$
Now we write
\[
\sum_{l=0}^{j} \binom{j}{l} \lambda^{(l)}_{(t-m+j)}
\]
\[
= \sum_{l=0}^{j} \binom{j}{l} \lambda^{(l)} \frac{(v - (t - m + j))}{(t - (t - m + j))} \frac{(k + l) - (t - m + j)}{t - (t - m + j)}
\]
\[
= \sum_{l=0}^{j} \binom{j}{l} \lambda^{(0)} \frac{(v - t)}{k - t} \frac{(k + l) - (t - m + j)}{t - (t - m + j)}
\]
\[
= \lambda^{(0)} \left(\frac{v - t}{k - t} \right)^{-1} \sum_{l=0}^{j} \binom{j}{l} \frac{(v - t + m - j)}{v - k - l}
\]
\[
= \lambda^{(0)} \left(\frac{v - t}{k - t} \right)^{-1} \left(\frac{v - t + m}{v - k} \right)
\]
\[
= \lambda^{(0)} \left(\frac{k - (t - m)}{t - (t - m)} \right)^{-1} \left(\frac{v - (t - m)}{t - (t - m)} \right)
\]
\[
= \lambda^{(0)}_{(t-m)}.
\]

Thus we obtain Theorem 1.1. \(\square\)

If we take \(m = 1\), \(j_0, j_1, j_2 = (0, 1, 2)\), then we get the recursive construction considered by van Leijenhorst [9].

Corollary 2.1. (van Leijenhorst [9]). Suppose that there exist a \(t - (v, k + 1, \lambda')\) design and a \(t - (v, k, \lambda)\) design such that \(\lambda' = \lambda \frac{v - k}{k - t + 1}\). Then there exists a \(t - (v + 1, k + 1, \lambda_{(t-1)})\) design.

If we take \(m = 2\), \(j_0, j_1, j_2 = (0, 1, 3)\), then we get the recursive construction considered by Sebille [5].

Corollary 2.2. (Sebille [5]). Suppose that there exist a \(t + 1 - (v + 1, k + 2, \lambda')\) design and a \(t - (v, k, \lambda)\) design such that \(\lambda' = \lambda \frac{v - k}{k - t + 1}\). Then there exists a \(t - (v + 2, k + 2, \lambda_{(t-2)})\) design.
3. APPLICATION TO DESIGNS

In this section, we prove Theorem 1.3.

Proof of Theorem 1.3. Teirlinck [6, 7] proved the existence of \(t \)-design for every \(t \geq 1 \). Therefore, for every pair \((t, m) \) of natural integers, there exists a \((t + m) - (v + m, k + m, \lambda) \) for some \(v, k \) and \(\lambda \). Applying Theorem 1.1 for \(j_0 = 0 \), \(j_1 = m + 1 \), we imply that there exists a simple non-trivial \(t - (v + m, k + m, \lambda(t)) \) design with an automorphism group isomorphic to \(S_m \). Since every finite group is a subgroup of a symmetric group \(S_m \) for some \(m \), we have Theorem 1.3.

Remark. It is well known that a \((t + m) - (v + m, k + m, \lambda) \) design is also a \(t - (v + m, k + m, \lambda(t)) \) design with the same parameters as above. However, this construction does not give any information on automorphism groups.

4. APPLICATION TO LARGE SETS

Recall that a large set \(LS[N](t, k, v) \) is a partition of the complete \(k \)-uniform hypergraph with \(v \) vertices into \(N \) designs with parameters \(t - (v, k, \lambda) \). A counting argument gives \(\lambda = \binom{v - t}{k - t} / N \).

Theorem 4.1. Let \(j_0, j_1, \ldots, j_n \), \(m \) and \(N \) be natural numbers such that \(0 = j_0 < j_1 < \cdots < j_n = m + 1 \). Suppose that there exist large sets \(LS[N] \) \((t + j_{i+1} - j_i - 1, k + j_{i+1} - 1, v + j_{i+1} - j_i - 1) \). Then \(LS[N](t, k + m, v + m) \) exists.

Proof. The previous discussion implies that each partition of \(LS[N] \) \((t + j_{i+1} - j_i - 1, k + j_{i+1} - 1, v + j_{i+1} - j_i - 1) \) is a \((t + j_{i+1} - j_i - 1) - (v + j_{i+1} - j_i - 1, k + j_{i+1} - 1), \lambda^{(j)}(t, m) \) design with

\[
\lambda^{(j)}(t) = \frac{1}{N} \binom{v - t}{k - t + j_i}.
\]

In particular, \(\lambda(t) = \lambda^{(0)}(v - t) / (v - t) \). Thus we obtain Theorem 4.1 by a proof similar to that of Theorem 1.1.

If we take \(m = 2 \), \((j_0, j_1, j_2) = (0, 1, 3) \), then we get a result of Sebille [5].

Theorem 4.2 (Sebille [5]). Suppose that there exist large sets \(LS[N] \) \((t + 1, k + 2, v + 1) \) and \(LS[N](t, k, v) \). Then \(LS[N](t, k + 2, v + 2) \) exists.
As remarked by Sebille [5], this construction gives rise to some new large sets, for example $LS[3](2, 5, 13)$, $LS[3](2, 6, 14)$, $LS[3](3, 7, 15)$, $LS[3](3, 6, 14)$, $LS[3](4, 7, 15)$ and $LS[7](2, 6, 18)$.

REFERENCES

3. A. Betten, R. Laue, and A. Wassermann, “DISCRETA, a program system for the construction of t-designs with a prescribed automorphism group,” University of Bayreuth, http://www.mathe2.uni-bayreuth.de/betten/DISCRETA/Index.html