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This paper focuses on two underlying questions for symbolic computations in projective geometry: 
I How should a projective geometric property be written analytically? A first order formula in the 

language of fields which expresses a "projective geometric property" is translated, by an algorithm, 
into a restricted class of formulas in the analytic geometric language of brackets (or invariants). This 
special form corresponds to statements in synthetic projective geometry and the algorithm is a basic 
step towards translation back into synthetic geometry. 

II How are theorems of analytic geometry proven? Axioms for the theorems of analytic projective 
geometry are given in the invariant language. Identities derived form Hilbert's Nullstellensatz then 
play a central role in the proof. From a proof of an open theorem about "geometric properties", 
over all fields, or over ordered fields, an algorithm derives Nullstellensatz identities - giving maximal 
algebraic simplicity, and maximal information in the proof. 

The results support the proposal that computational analytic projective geometry should be carried out 
directly with identities in the invariant language. 

1. I n t r o d u c t i o n .  

In  t radi t ionM "analyt ic  projective geometry" ,  we write the  points with homogeneous  
coordinates over a field and prove theorems with polynomial  (maybe  rat ional)  equat ions  
in these coordinates.  

W h y  was this language chosen? Firs t  order synthetic geometr ic  propert ies  can b e  trans- 
la ted  into algebraic formulas in this language of fields. Recall  that  the basic synthe t ic  
project ive  geometr ic  s ta tements  are traditionally expressed by  synthetic construct ions  
which use the  operat ions of join and intersect for points,  lines etc., and conclude with a 
special incidence of the defined points, lines etc.. The  classical coordinatlzat ion theo rem 
of project ive geometry  (see, for example, Baer (1956)) guarantees tha t ,  if Desargues '  
T h e o r e m  and Pappus '  Theo rem hold in the geometry, then the  points,  lines, planes etc. 
can be assigned coordinates in a field. The  synthetic s ta tements  immedia te ly  t r ans la t e  
into f irst-order algebraic formulas over commutat ive  fields, bui l t  on equat ions of polyno-  
mial  te rms in the coordinates.  Finally, all geometric theorems expressed in this l anguage  
can, in principle, be  proven in the  theory of fields. 

However, working with these translated formula  creates several  basic problems.  
a) Not all algebraic formulas in this language for fields express "geometric p roper t i es"  (see 

Sections 3, 4 and 5 for examples).  An algebraic formula in the coordinates represents  
a "geometr ic  p roper ty"  only if i t 's  t ru th  is "invariant" for  the underlying geomet r i c  
t ransformat ions  of the space. 
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b) Certain algebraic and computer algorithms in the theory of fields generate algebraic 
side conditions which axe not, in any obvious way "geometric" (Kutzler (1988)). 

c) Even if the property is "geometric", it is a difficult task, not covered by current algo- 
rithms, to translate the algebraic formulas into synthetic geometric conditions. 

d) The  algebraic methods of proof leave few traces of "geometric reasoning" - with the re- 
sult that  simple geometric results may have only complex algebraic proofs. Conversely, 
simple algebraic proofs may have no reasonable synthetic derivation. 
Drawing on modern  developments of classical invaxiant theory, and our experiences 

working in applied projective geometry, we address the first three problems. We propose 
a more  appropriate language for computational work on analytic projective geometry: 
the coordinate free language of brackets (determinants of n vectors), and its extensions 
as Cayley ~gebra  (see Doubilet e~ al. (1974), White (1991)). We explicitly select a class 
of these formulas as "the language of analytic projective geometry". We summarize some 
arguments for this choice. 

a) All the selected formulas express "geometric properties" (see Sections 3-6). 
b) All "synthetic geometric properties" translate into the selected class (see, for example, 

White 0991)). 
c) All the selected formulas translate, after multiplication by simple non-degeneracy con- 

ditions, into synthetic geometric conditions (Sturmfels & Whiteley (1991)). 
d) Every "geometric property" expressed by a general formula using polynomial equations 

with integer coefficients translates, algorithmically, into the selected class (Sections 3- 
6). 

e) All theorems about these properties can be proven within this invaxiant language and 
some mild extensions (Sections 7-10). The proofs use standard algebraic methods, and 
classical syzygies of invaxiant theory. Any side conditions generated are automatically 
"geometric". 

f) The methods of proof remain suitable to automatic theorem proving. The alge- 
braic methods emphasize the role of Nullstellensatz identities (Sections 7-10), with 
the straightening algorithm of invaxiant theory as an added computational tool. 

g) Current applications of projective geometry to areas such as the rigidity of frame- 
works, the realizability of configurations and multivariate splines yield a rich va- 
riety of properties, proofs and unsolved problems expressed in this language (see, 
for example, Crapo & Whiteley (1982), White & Whiteley (1983),(1987), Whiteley 
(1982),(1983),(1984),(1987a),(1989), (1991)). Such applications have raised the need 
for appropriate computer programs for work in these invariant languages, and for 
computer  programs for the translation back into synthetic geometry. 

Other papers in this volume address points b and c. Along the way, we present some new 
results on Hilbert's Nullstellensatz and its place in all proofs over algebraically closed 
fields and real closed fields. 

What  do we mean by a "geometric property" and "invariance for geometric transfor- 
mations"? Klein's Erlaager program for geometry defined a "geometric property" as a 
property whose t ru th  is "invariant" under some group of "geometric transformations" 
(Klein (1939), Weyl (1946)). In the hands of generations of algebraists, this examination 
was transformed into two algebraic tasks. The first task was: 

Given a group of transformations on a vector space, find a finite set of algebraic 
generators for the  set of all polynomials in the elements of the field which axe relative 
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invariants: for all transformations T: 

p (T(a l ) , . . .  ,T(am)) ----- g(T)p(al,.., ,am) for all a l , . . .  ,am 

for a scalar function g(T). 
For example, the First ~kmdaraental Theorem of Invar4ant Theory shows that all rela- 
tive invariants for the general linear group (the non-singular linear transformations) are 
homogeneous polynomials in the bracket, or determinant of n vectors (see, for example, 
Weyl (1946), Dieudonn4 ~ Cavrell (1970), Rota & Sturms (1988)). In this case, the 
function g(T) is (get[T]) k, for polynomials of degree k in the brackets. 

The second task became: 
Find a finite set of generators for all identities in the relative invariants. 

For example, the Second ~ndamen ta l  Theorem of Invariant Theory shows that the 
classic Grassmanu-Pl~icker syzygies generate the identities for polynomials in the brackets 
(see Weyl (1946), Dieudonn~ ~ Carrell (1970), and Section 7). This is also translated 
into the straightening algorithm, which gives standard forms for the invariants (Doubilet 
et (1974), Sturmfels White (1 89), WWte (1988)) 

Because we wish to study actual analytic geometry, we reformulated this program as 
follows (Whiteley (1973),(1977),(1978),(1979)): 

Select a set of algebraic models (e.g. non-zero vectors of dimension n over the com- 
plex numbers) and a category of transformations either within a particular model, 
or between these models (e.g. non-slngular linear transformations). A first-order 
formula F in the corresponding algebraic language (e.g. the language of rings) ex- 
presses a geometric property for this geometry if the truth of the formula in a model 
is unchanged by applying these transformations to any free variables in the formula. 

With this definition of a geometric property, the initial problem is: 
Give a precise language for analytic geometry such that all first order formulas 
in this language express geometric properties (are invariant under the appropriate 
morphisms) and an algorithm which translates any invaziant formula in the broader 
algebraic language into an equivalent to a formula in this restricted language. 

In Part I we discuss algorithms for translating invariant formulas under four basic set- 
tings for "projective transformations on the vector spaces of homogeneous coordinates: 
i non-singular linear transformations on the underlying vector space(s) of homogeneous 

coordinates (Section 3); 
ii homogeneous multiplication of the vector coordinates of a point (section 4); 

iii automorphisms of the underlying field (Section 5); 
iv formulas for ordered fields with inequalities (Section 6). 
A "projective property" for complex analytic geometry is defined as a property invari- 
ant under the first three three types of transformations, and is shown to correspond, in 
general, to a totally homogeneous formula in the language of brackets. A "projective 
property" for real analytic geometry is defined as a property invariant in all four set- 
tings, and is shown to correspond, in general, to a totally homogeneous, even formula in 
the language of brackets. These results, refining and extending the results in Whiteley 
(1973),(1978), form a geometric context for much of the work presented in this volume. 

Given a language for geometric invariants, the second problem is becomes: 
Give axioms and rules in the invariant language to prove all formulas in the invariant 
language which are true in the models of the geometric category. 
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In Part  II presents the necessary axioms and rules for theorems true over all fields, or 
fields of a fixed characteristic. These axioms are based on the "syzygies" of classical 
invariant theory and on the theory of integral domains (Section 7) and ordered integral 
domains (Section 10). 

For open theorems over the theory of fields, Hilbert's Nullstellensatz plays a funda- 
mental role. In Sections 7-10 we investigate the role of such Nullstellensatz identities for 
proofs. Using a Gentzen style system of logical rules which derives theorems through 
a proof tree, we demonstrate a metatheorem that  any first order proof of such an ope~ 
theorem leads, algorithmically, to a corresponding conjunction of identities which yields 
the entire algebraic proof of the theorem. The metatheorem can be paraphrased: 

Unlike money, Nullstellensatz identities do grow on trees! 
The results of Sections 8-9 present a constructive approach to Hilbert's Nullstellensatz 

for algebraically closed fields - and emphasize the central role of such identities, which 
reappear in current work on automated geometric theorem proving. This approach was 
developed in Whiteley (1971), but was previously unpublished. Such identities, even 
for the invariant language, can be easily checked by existing computer algorithms. The 
conclusion is that any automated theorem prover should output these identities, whenever 
they exist (see Example 8.7). 

In Section 10, we present new analogues of these results for projective geometry over 
the reals (i.e. ordered fields and real-closed fields). The results include a constructive 
technique for growing real Nullstellensatz identities on proof trees of open theorems. 

For other geometries, such as Euclidean geometry, similar questions can be raised 
about the choice of language. For congruences on points in Euclidean space, it appears 
that  "distance" forms the basic invariant (see, for example, Havel (1991)). While we 
have not seen the details worked out, it is anticipated that all the methods use here will 
extend to the other geometries. 

In summary, we propose that symbolic calculations for projective geometry should 
be carried out directly in this invariant language, and its extensions. While we present 
algorithms for translating projective properties from the language of coordinates over a 
field into this language, some portions have high complexity, and therefore cannot be 
reasonably implemented. It is better to remain inside this language and not struggle to 
to recover the invariants, after the fact. The algebraic proofs should be carried out within 
the invariant language, using identities which axe open to synthetic interpretation. Why 
not develop symbolic programs which will be used by actual geometers? 

P A R T  I Geometric  Properties  in Algebraic Formulas .  

2. A Language for Analytic  Project ive  Geometry.  

Throughout  this paper we will work with first-order formulas in an algebraic language 
for fields and  integral domains. In particular, we work with coordinates of vectors over 
a field. This language begins with: 

variables {x 1,.. �9 , x , ,  y l , . . .  , yu , . . .  } for elements of the field, 
constants 0 and I in the field, and operations ~-, - ,  x. 

Combinations of these variables, constants and operations produce polynomial t e rms  s, 

t, . . . .  The a t o m i c  formulas of the language are polynomial equations among these terms: 
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s = t. These equations form the basis for our  algebraic language which we abbrevia te  as 
LALGn. 

We have omit ted  division, since any equation with non-zero divisors can be  simplified 
to an equivalent polynomial  equation. Notice also that  the terms of the language are 
polynomials in the variables, wi th  coefficients :t:l, 0. Of course we use 2 as the shor thand  
for (1 + 1)~ etc., leading to polynomials with integer coefficients. 

These atomic equations ave combined by the propositional operations: -- (negation of 
a formula),  V (or, placed between two formulas), & (and, placed between two formulas); 
as well as the quantifier operations: (3x) (there exists) and (Vx) (for all). The  formula 
F =~ G is t rea ted  as a shor thand for the formula (- ,F)  V G, and the formula  F 4=~ G is 
defined as ( ( - -F)  V G)&((-,G) V F). 

This restriction to  a firs~ order language excludes s ta tements  such as: " there  exists a 
non-algebraic number";  "there exists a polynomial such tha t  . . .  ". Such second order 
s ta tements  would require ei ther quantifiers for higher order objects (such as general 
polynomials,  sequences etc.), or an iraCinite number of the simpler polynomial  equations.  

We recall a s tandard form for any quantifier free, or open, formula in a first order 
language. We can distribute -, over 8r and V, and distribute V over 8z: 

- (F~G)  ~ ( - F  V -V)  and -,(F V G) ~ (-,F~-,G) 
F V (G&H) ~ (F V G)&(F V H). 

After repeated  applications of these rules, an open formula assumes an equivalent con- 
junc~ive normal form: 

(~F1 v . . .  v ~Fm v G1 v . . .  v g.)&...  &(-..,Fp v . . .  v --,.F~ v G~ v . . .  v G~) 

and  any formula in LALG~ can be put  in the form: 

(A # o v . . .  V/m -r 0 V g, = 0 V . . .  Vg, = 0)~. . . ,~( /p # 0 V . . . V g ,  =0) .  

As a convenient short hand, we sometimes write repeated conjunctions as Ai Fi, and 
repeated  disjunctions as Vl Fi. 

We can also place any quantified formula into an equivalent prene~ form: 

( w ,  ... ~,,,)(3~1... y,,,)... (w, . . . .  ~,)(3y, . . .  ~ , ) M .  

where M is an open formula. We pull all quantifiers to the f ront  of the formula, changing 
the  name of the quantified variable if it appears as a free variable or as a quantified 
variable in another  part  of the formula. For this translation we use the simple rules: 

-(Vx)F ~ (3x)-F; 

( (W)F)~V ~ (W)(F~G) 
((W)F) V V ~ (W)(F V G) 

((3~)F) V G ** (3x)(F v a)  

-,(3~)F ~ (W)-,F; 
provided x does not  occur in G; 

provided x does not  occur in G; 

provided x does not  occur in G; 

provided x does not  occur in G. 
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As we men t ioned  in the int roduct ion,  we are in teres ted in the proper t ies  and  theorems 
0 

of t he  pro jec t ive  geomet ry  of points. For this purpose,  we use a language built  on the 
n-bracket  [vl . . .  vn] ( thought  of as the determinant  of an n • n ma t r ix  with the vectors 
v l , . . .  , vn  as the  columns).  

W e  work with a two sorted language for vectors of dimension n and  for field elements. 
The  variables of this language will be a set { v l , v 2 , . . .  , u l ,  u s , . . .  } of sort vector. The 
cons tants  will be  0, i of sort  field. The  basic opera t ion  on variables of sort vector is the 
bracket operator [ . . .  ] which takes n terms of sort  vector and produces  a te rm of sort 
field. T h e  remaining operat ions  are the usual algebraic operat ions for terms of sort field: 
+ , - ,  • Thus  the  general  terms of sort field are polynomials in the  basic monomials 
[vl . . .  vn],  [ u k + l . . .  u t r  with integer coefficients. Once more  the atomic formulas 
are po lynomia l  equat ions between terms of sort  field: s = t. These  formula% combined 
by the  s t anda rd  first order  logical operations,  are our basic language for n-dimensional 
analyt ic  geomet ry  s  

3.  I n v a r i a n t s  for L i n e a r  T r a n s f o r m a t | o n s .  

In the introduction~ a geometry  was specified by a set of models  and geometric mor- 
phisms among these models.  In projective geometry,  points are wr i t ten  with homo- 
geneous coordinates ,  so a point in projective d-space is recorded by a (d + 1)-tuple 
( x z , . . .  ,Xd, xd+l) ,  and the zero vector  does not  represent a point.  Therefore~ the final 
models  in our geometr ic  categories will be vector  spaces of a set dimension n = d + 1 
over a field, with the zero vector deleted. 

We will work wi th  several types of t ransformat ions  through the  next  three  sections. 
We begin  with the  non-singular  linear t ransformat ions  within the models as morphisms. 

EXAMPLE 3.1. Consider  the  category with a single model: the  vector  space of dimension 
3 over  the real numbers ,  minus the  zero vector - the model  for the real project ive plane. 

An  a tomic  formula  is a polynomial  equat ion involving variables for  the coordinates: 

p ( V l l ,  V12, V13, . . . , Vrnl  ' Vrn2 ~ Vrn3 ) m_ O. 

This  equa t ion  is invariang for  the non-singular l inear t ransformat ions  if, for each T, and 
each selection {al ,  �9 �9 �9 , am} of non-zero real vectors fox" the variable vectors {v l ,  �9 �9 , vm}: 

p ( ( T ( a l ) ) l ,  (T(aa) )2 ,  (T(a l ) )3 ,  �9 �9 , (T (am ) ) l ,  (T(am))2,  (T(am))a )  = 0 

if a nd  on ly  if p ( a l l , a n ,  a13, . . .  ,am1, am2, area) = 0. 

For  example  [uvw] = 0 is an invariant equation,  where [uvw] is in terpre ted  as the 
d e t e r m i n a n t  of a 3 • 3 matr ix .  Writ ing de t (T)  for the (non-zero) de te rminant  of a matrix 
for the  non-s ingular  l inear t ransformat ion  T, we have, for all vectors a, b, c: 

[T(a)T(b)T(c)]  = 0 +-+ det(T)[abc] = 0 +-+ [abc] = 0. 

Similarly fo r  a p r o d u c t  of k of brackets (a monomial of degree k in the brackets): 

[T(al)T(a2)T(aa)]... [T(cl)T(c2)T(c3)] = det(T)k[ala2aa]... [cle2ca] = 0 

if and  only  if [ a l a 2 a s ] [ b l b 2 b 3 ]  . . .  [CLC2C3] = 0. 
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A homogeneous bracket polynomial is any sum of monomials, all of degree k in the  
brackets. The reader can check that  any homogeneous bracket polynornial equat ion 
p = 0 is also i n v ~ a n t .  

On the other hand,  a simple equation without brackets, such as vl - ul  = O, is not  
invariaat under the linear transformations. (Try vectors wi th  different second coordi- 
nates, and apply a transformation with T(vl,v2, va) = (Vl + v2,?)2,vs).) However, a 
more complex equation of the form: 

(vx - u l )  = + ( v 2 -  u2) ~ + (v3 - u3)~ = 0 

which is equivalent, over the reals, to the conjunction: 

( v l  - u l  = 0 ) & ( v ~  - . u 2  = 0 ) & ( v 3  - u 3  = 0 )  

is invariant for the linear transformations on the reals, and has no brackets. 

From this example, we see tha t  any first order formula which is built from homogeneous 
bracket equations will be invariant for the non-singular linear transformations. In spite 
of the apparently bad equations given above, the converse is true. 

Since all our chosen transformations take the zero vector to the zero vector, and its 
inclusion does not effect the invariance, we will, for convenience throughout  Par~ I, 
consider the full vector spaces as our models. 

THEOREM 3.2. Whiteley (1973) A ~qrst-order formu/a F in LALGn is invarian~ for the 
category of vector spaces of dimension n over ~elds, with non-singular lh2ear transs 
tions as ~he morphisms, if  and only i f  there is a formula G in the language of n-brackets 
LANGE, ,  with each equation homogeneous in ~he brackets, such ~hat F equivalen~ to G 
over each field. 

Proof. The transformations are isomorphisms of the models which leave each homoge- 
neous bracket polynomial equation invariant. Clearly, the formula G and any equivalent 
formula F are invariant. 

Conversely~ assume tha t  F is invariant. We will give an algorithm to create the  for- 
mula G. We choose a set of n new vector variables, e l , e 2 , . . .  ,en.  Each variable zi ,  
representing the i t h  coordinate of a vector x~ is replaced by: 

[ e l . . .  e i - l x e i + l  �9 . �9 e , ]  

[ e l . . . e i - x e i e i + x . . . e n ] "  

Applied to all variables of F , including variables which are bound by quantifiers, this 
creates a formula Gl(x, y , . . .  , el ,  e2 , . . .  , e , ) .  We then multiply each equation by the 
smallest power of [ e l e2 . . .  en], clearing the fractions in this equation. This creates a 
formula G " ( x , y , . . .  , el ,  e2 , . . .  , e , )  in LANGEn, with each equation homogeneous in 
the brackets. We claim that  F ( ~ I , . . .  , x ~ , y l , . . .  ,y,~,. . .  ) is equivalent, over any  vector 
space, to the formula 

G ( x , y , . . . ) =  (Vel ,e2 , . . .  , e r r ) ( ( [ e l . . . en ]  ~--0)V v n ( x , y , . . .  , e a , e 2 , . . .  , e , ) )  

(i) Assume that  F ( a l , . . .  ,an, b l , . . . ,  b , , . . . )  is true for a particular choice of coordi- 
nates for the vectors a, b, . . . .  For any choice of [el . . .  e , ]  # 0, the equations: 

= ( I r e2  . . . . . .  en] [el . . .  e i - , ve i+ l  . . .  en] [e l : :  :.e.n-lv]'~ 
T(v)  

~ ; : : ? e n U  ' ' " '  [ e l . . . en ]  ' ' " '  [el...en] ] \ 
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define a unique non-singular  lineax transformation,  with det(T) = [el . . .  en] - (n -O  # 0. 
Since F is invari.ant, 

F ( T ( a ) a , . . .  , (T(a)n,  T(b)a ,  �9 .. , T(b)n ,  �9 �9 �9 ) 

is also true.  If a variable is inside a universal quantifier, then  (Vvi)H is equivalent to 
( V T ( v ) 0 H  , since T is an isomorphism in each model. Similarly, for a variable inside 
an exis tent ia l  quantifier,  ( 3u l )H  is equivalent to (3T(w)i)H,  siuce we can choose w = 
T - I ( u ) .  This  chain of equivalences shows that  G'(x ,  y , . . . ,  e l , . . .  , en) is also true. The 
mult ipl icat ion of the atomic equations by powers of [ e l . . .  en] also preserves the t ru th  of 
the s ta tement .  Since this equivalence holds for all [e~. . .  e , ]  # 0, we find that  G(x,  y , . . .  ) 
is also true.  

(ii) Conversely, assume that  G(a, b , . . .  ) is true. We choose the vectors el  = (1, 0 , . . .  , 0), 
. . . ,  en = (0 , . . .  ,0 ,1) .  This makes [ e l . . . e n ]  = 1, and makes [ e l . . . e i _ l x . . . e , ]  = x i .  
Therefore, 

G H(a ,b  . . . .  , e l , e 2 , . . .  , err) = F(a l , . . .  ,an,bl . . . .  , bn,.. .  ) 

and F ( a l , . . .  , a n , b l , . . .  ,bn , . . . )  is also true, as required. 

REMARK 3.3. This  proof offers an algorithm: for any invariant formula F:  

(1) replace xi by  [ - 1 . . . e . l  ; 

(2) mul t ip ly  by  [ e l . . .  en] k tO clear fractions; 
( 3 )  ,~da (Ve~ ,  e ~ , . . . ,  e ,O  ( [e~  . . .  e , l  = o v . . .  ). 

This gives the equivalent formula with an invariaaat appearance. If applied to a non- 
invariant (variant?)  formula F ,  the  algorithm produces an invariant formula G which 
implies F ,  bu t  is not  equivalent to F .  

The  algori thm introduces new variables with an addit ional  quantifier. This is in- 
evitable. As we saw in Example 3.1, the formula 

( v ~  - u l  = O ) & ( v :  - u2  = O ) & ( v 3  - u 3  = O) 

is invariant  for l inear transformations.  The simplest equivalent expression with brackets 
is: 

(Vel, e2) ([ele2v] - [ele2u] ---- 0). 

For some formulas,  this introduct ion of the new variables is unnecessary. The ~traight- 
eniug algorithm of invaxiaat theory can be applied to any polynomial  in the brackets 
to place it in "staaadard form" (see Sturmfels &; White  (1989), Whi te  (1988)). If ap- 
plied wi th  the  vector variables el ,  e 2 , . . .  , en at the  beginning of the linear order for the 
s t ra ightening,  this algori thm will pull a maximal  number  of factors [el . . .  en] to  the front 
of all monomials.  Any such common factor  can be discarded, and if all occurrences of 
these variables disappear,  we also discard (Vel, e 2 , . . . ,  en) and ([el . . .  en] = 0)V. This 
is a classical me thod  of turning any relatively invariant polynomial for the group of 
linear t ransformat ions  into a bracket polynomial in the same variables (Rota  & Sturm- 
fels (1988)). This s traightening algorithm adds enormously to the complexity, although 
removing the  variables may  simplify further stages of analysis. 
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REMARK 3.4. tf the original formula has no quantii~ers (or has only universal quantifiers 
in prenex form) then  there is another, more elegant algorithm to make it homogeneous. 
Each polynomial te rm t in F is the sum ~ i  tl of terms ti which are homogeneous polyno- 
mials of degree i. If we replace each equation t = 0 in F by the  conjunction of equations: 
t l  = 0&:... ~ tk  = 0, (using all nonzero homogeneous pieces of t), we create a homoge- 
neous formula F ' .  Whiteley (1978) shows that  F '  is equivalent to F ,  provided tha t  F is 
an open formula and  the models have infinite fields. 

4. I n v a r i a n t s  for  H o m o g e n e o u s  M u l t i p l i c a t i o n .  

EXAMPLE 4.1. In projective geometry, v and ,kv, A ~ 0, represent the same point (we 
use homogeneous coordinates). Thus, for projective geometry, we need homogeneous 
multipliers which multiply a vector with name v j  by a non-zero scalar A i. This is not a 
morphism of the vectors in the model, per se, or of the formulas in the language. This is a 
t ransformation between two valuations: a~signments of vectors in a model to variables in  
the language. For example, the valuation ( a l , . . .  , a j , . . .  ) assigns each vector variable v j  
the vector value a j  over the reals. For any set of non-zero real numbers (A1,. . .  , Aj~... ) 
we have a homogeneous multiplication which takes the valuation ( a l , . . .  , a j , . . .  ) to the  
valuation ( ~ 1 a l , . . .  , A i a i , . . . ) .  (Technically we are now working with a category of 
valuations, not of models.) 

A single bracket [uvw] -- 0 remains invariant for homogeneous multiplication, as does 
a bracket polynomial equation which is homogeneous in each of the vector variables. 
However, an equation such as [ele2v] -- [ele2u] = 0 is not invariant for these transfor- 
mations - and therefore does not express a projective geometric property of the points. 
(That  two points x = (xl ,  x2, x3) and y = (Yl, Y2, Y3) coincide in the projective plane is 
expressed by the formula (Ve)[xye] = 0). 

The formula: (3w)([ele2v] - [we2e3]  = 0)is  invariant under  the homogeneous multi- 
pliers, but it is not, as written~ homogeneous in the variables v ~h~d w. Since it is a valid 
theorem for every vector space, it is equivalent to the homogeneous equation 0 = 0. 

We have a partial result for invariants of homogeneous multiplication. 

THEOREM 4.2. Whiteley (1978) An open t]rst-order formula F in L A L G ,  is invariant 
/'or the category of homogeneous multiplication on valuations into vector spaces of di- 
mension n over fields (or over a single infinite field), i f  and only i f  F is equivalent to a 
formula F I in LALGn witfi each equation homogeneous in each of ~he vectors. 

REMARK 4.3 We obtain F t by a simple algorithm. Each equation 

g(x11, . . .  , x ln , x21 , . . .  , x 2 , , . .  . , s i n , . . .  ,Xmn) = 0 

is replaced by a conjunction of equations: 

. - ,  = 0 ) ,  

i 

where each gi is homogeneous in each of the vectors. This creates the required formula 
F ' .  See Whiteley (1978) for the verification. 

COROLLARY 4.4. Whiteley (1978) An open first-order formula F in LALGn is invadant 
for ~he category of valuations into vector spaces of dimension n over fields (or over 
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a single infinite field), with morphisms: homogeneous multiplication of variables and 
linear transformations within ~he models i f  and only i f  F is equivalen~ to a formula G in 
L A N G E n  with each equafion homogeneous in each of ~he vectors. 

For formulas with quantifiers, we recall a less complete result and a conjecture. For 
the theory of an algebraically closed field, we have the technique of quantifier elimination 
(Kreisel • Krivine (1967), Chapter 4, Robinson (1965)). 

THEOREM 4.5. Every 1]rs~ order formu/a F in LALGn is equivalent, in ~he ~heory of all 
algebraicalIy dosed fields, to a quantifier free formula G in L A L G , .  

COrtOLLAttY 4.6. A formula F in LALGn is invariant for the category of  valuafions 
info a vector space of dimension n over an algebraically closed field, with morphisms: 
homogeneous multiplication and linear ~ra~sformations wifhin ~he model, i f  and only if 
ghere is a formula G in L A N G E , ,  wi~h each equation homogeneous in each of the vectors 
such ~ha~ F is equivalenf to G in every mode/wifh  an infinite l~eld. 

The algorithm used in Theorem 4.2 is very simple, with low complexity. On the 
other hand, the algorithm for quantifier elimination is very complex, and is not currently 
implemented for general formulas. Is would be desirable to avoid this approach entirely. 
This is another reason to begin, and remain inside the invariant language. 

5. I n v a r | a n e e  for all P r o j e c t i v e  A u t o m o r p h i s m s .  

In synthetic projective geometry, all hhe "geometric properties" are preserved by gen- 
eral projective au~omorphisms: any map which takes points to points, lines to lines, 
planes to planes, etc., and preserves all incidences of such objects. 

EXAMPLE 5.1. In the projective geometry of the complex plane, the conjugacy map: 
(a + b~/~'~) ~ (a - bv/ZT), applied ~o all coordinates of points, induces a projective 
automorphism. This suggests a new map to be added to our category of "geometric 
maps". 

Consider the formula: 

[ u x w ] [ v y w ]  - v [nywl[vyw] = 0. 

This totally homogeneous equation in the brackets is invariant under linear transforma- 
tions and homogeneous multiplication. It is not, however, invariant under the conjugacy 
map. Thus it does not represent a projective geometric property. Of course the broader 
formula: 

([uxw][vyw] + "v~[uyw] [vyw]  = O) 

V([uxw] [vyw] - ~/-ZT[uyw] [vyw] = 0) 

is invariant for the conjugacy map and does represent a geometric proper~y. 

We get a basic understanding of projective collineations from the First Fundamental 
Theorem of Projective Geometry (Baer (1952), p.44), which we paraphrase as follows: 

For a projective space of dimension > 3 every projective transformation is induced 
by a semilinear transformation (a composition of a linear transformation and a field 
automorphism). 

To complete our examination of projective geometric properties, we need to consider 
which formulas as invariant for automorphisms of the fields. Since the integers are fixed 
by all fields automorphisms, we have an obvious result. 
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TItEOKEM 5.2. An open s ira LALGn is invarJant for the category of vector spaces 
of dimension n, with the zero vector removed, and comp osltions of ~he non-singular linear 
transformations, the field automorphlsms, and homogeneous multiplications i f  and only 
i f  there is a formula G in LANGEn, homogeneous in all vector variables, such that G is 
equivalent to F for every model with an ini]nite i~eld. 

P~EMARK 5.3. If we wish other field elements as coefficients, such as V~, or v/C'f, wemust  
add these as additional constants. We may extend our language to include constants for 
elements of a field K, creating the languages LALGn(K) and LALGEn(K). The results 
of sections 3 and 4 extend immediately to these languages. There remains an unresolved 
problem for field automorphisms and formulas in LALG,(K) .  

Consider the category of the complex numbers, with field automorphisms as the mor- 
phisms. Clearly any formula written using only rational coefficients will be invariant, 
since the rationals form the fixed field under such morphisms. We conjecture that the 
converse is true. 

CONJECTURE 5.4. A fJ.rs~ order formula F in LALG.(K) /s /nvar/ant for the au~omor- 
phisms if and only if it JS equivalent in this ~laeory ~o a formula G in LALGn, 

For formulas larger than a single polynomial equation (Whiteley 1978)~ we know of no 
proof that all invariant formulas for field automorphisms car, be rewritten with integer 
coefficients. 

All synthetic constructions can be written with the rational numbers (see Sturmfels ~z 
Whiteley (1991)) - and it would be nice to prove that these synthetic geometric formulas 
coincide with the invariant formulas for the category of all projective transformations. | 

R.EMARK 5.4. We have concentrated on the geometry of points. General geometry works 
with points, lines, planes etc.. Similar results hold for any algebraic language which 
includes coordinates for these objects. There axe no major changes except the inclusion 
of simple additional invariants such as (Px) = 0 for P l x l  -I-P2x2 q-P3x3 = 0, to represent 
the statement "the point x lies on the line P"  (Whiteley (1978)). | 

6. Invar lance  for Orde red  Fie lds .  

To model geometry over the reals, we should include "separate" as a geometric concept 
(e.g. "u, v separate x, y").  This concept is represented by am order relation on the field. 
For example, "u, v separate x, y" becomes: "the cross ratio of u, v and x, y is negative" 
o r  

[u w]b, yw] 
<0 .  [uyw][vxw] 

We therefore switch from the theory of fields, and algebraically closed fields, to the 
theory ordered fields, and real closed fields (Tarski (1951), Conins 0975), Dickmann 
(1983), Bochnak et al. (1987)). We extend the algebraic languages to include the atomic 
formulas of the form s < t~ where s and t are terms of sort field. With these added 
formulas, the language LALGn becomes LRAL Gn and the bracket language LANGE,  
becomes I, RA N GE,. 

A formula G in LRANGEn is homo#eneous if each atomic equation and each atomic 
inequafity is homogeneous in the brackets. A homogeneous formula. G in LRANGEn is 
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ever, if each atomic inequality is of even degree in the brackets. Our continued restric- 
tion to first order formulas excludes statements like: "the field is archimediaa" or "the 
geometry is continuous". 

To characterize "real geometric properties", we wa~t to characterize the invariant 
formulas of the extended language for the three classes of geometric transformations in 
sections 3, 4 and 5. 

EXAMPLE 6.1. Consider the vector space of dimension 3 over the reals (the real projective 
plane). For the category of non-singular linear transformations over ordered fields, the 
homogeneous even formula [uvy][wxy ] < [uxy][wvy] is invariant. However the formula 
[uvw] < 0 is not invariant (try det[T] = -1) ,  since it is not even. The formula ([uvw] < 
0) V ([uvw] > 0), or equivalently [uvw] # 0, is invariant under linear transformations, 
as is [uvw] 4 + [uvx] 2 > 0. Finally [uvw] 4 - [uvx] 2 > 0 is not invariant. | 

THEOREM 6.2. A formula F(ml , . . .  , z n , y l , . . .  , Y n , . . . )  in LRALGn is invariant [0r 
non-s/ngu/ar linear transformations of ordered fields i f  and only i f  there is a formula 
G ( x , y , . . .  ) / n  LRANGEn,  with the same free var/aMes, plus at most n new, universMly 
quantL~ed vector variables and with only homogeneous equMities and homogeneous even 
inequaZgies, such that F equivalent to G in each vector space over an ordered t~eld. 

Proof. It is clear that  a formula G in LRANGEn, with homogeneous equalities and 
homogeneous even inequalities, is invariant for non-singular linear transformations, as is 
any equivalent formula F. 

Conversely, assume that  F is invariant for non-singular linear trarlsformations over one 
(or all) ordered fields. As in Theorem 3.3 we apply the replacement: 

[ e l . . . e i - l x e i + l . . .  e,] 
xi en] 

to all variables of F ,  including variables which are bound by quantifiers, creating a for- 
mula G'(x,  y , . . .  , el ,  e l , . . .  , e ,) .  We multiply each inequality by the smallest even power 
of [el, e2 , . . .  , enl which clears the fractions. This transfers a formula 

F ( z l , . . .  , x , , y l , . . .  , y~ , . . . )  

in LALG~ into a formula G"(x, y , . . .  , el, e l , . . .  , en) in LANGE~ which is homogeneous 
and even. Finally we define the formula G by: 

O ( x , y , . . . )  = ( V e i , . . . , e n ) ( ( [ e l . . . e ~ ]  -- 0) V O " ( x , y , . . . , e i , . . . , e n ) ) .  

The proof tha t  F is equivalent to G over each model runs as in Theorem 3.2, noting that 
an inequality is invariant under multiplication by an even power of a non-zero number. | 

EXAMPLE 6.3. Which formulas are invariant for homogeneous multiplication of the vec- 
tors? Clearly [uvw][xyz] < O, and [uxwl[vyw] < [uyw][vxw] are not invariant for 
mult ipl icat ion of x by -1 .  However [uyw][vxw][uxw][vyw] < 0 (the cross ratio of 
u, v, x, y is less than  zero) and [uyw][vxw][uxw] [vyw] < ([uyw][vxw 1)2 (the cross ratio 
of u, v and x,  y is less than 1) are invariant for all homogeneous multiplications. 

CONJECTURE 6.4. An open formula F ( z l , . . .  , an, Y l , . . .  , Y , , . . .  ) in L R A L G ,  is invari- 
ant for homogeneous multiplications and for non-singular linear transformations over reM 
closed t~elds i f  and only if there is a formula G(x, y , . . .  ) in LRANGE,~, with the same 
free variables, plus at mos~ n new, universally quantified vector variables and wi~h all 
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a t o m i c  equal i t ies  h o m o g e n e o u s  in each vector and  all inequal i t i es  h o m o g e n e o u s  o f  e v e n  
degree  in each vector, such ~ha~ F equivaJen~ ~o a formula  G in each vec to r  space  over  a 

real-closed field. 

Suggested proof. Clearly these G are invariant for homogeneous multiplication over all 
ordered fields. 

Conversely, assume that F ( x l , . . .  , xn ,y l , . . .  , y , , . . . )  is invariazlt for homogeneous 
multiplication of the vector x. Informally, this means that: 

F ( x l , . . .  , x , , y l , . . .  ,V , , . . . )  ~ ( W ) F ( t x ~ , . . . , t x n , y l , . . .  , y , , . . . ) .  

Over a real closed field, there is a constructive process of quantifier elimination (see, for 
example, Kreisel ~ Krivine (1967), Collins (1975)). If this is applied to 

( V t ) F (  t x l ,  . . . , t z , ,  y l ,  . . . , y 

this creates an equivalent open formula G( x l , . .  . , xn ,  y l , . .  �9 , y ~ , . . .  ). We cla im that this 
algorithm actually decomposes each inequality into inequalities which are homogeneous, 
of even degree, in the entries for x = ( x l , . . .  , xn ) .  This formula is equivMent to F over 
any real-closed field. 

If this claim is verified, repeated application os this process will prove the conjecture 
over any real-closed field. | 

In Whiteley (1979), we suggested that a geometric property is combina tor ia l  only if 
it is invariant under extensions of the models by field extensions. Informally, we claim 
that completion of a "combinatorial" construction is not changed by adding more points 
to the lines. Therefore such combinatorial properties are invariant under homogeneous 
multiplication in the extension. With this condition, Conjecture 6.4 could characterize 
combinatorial projective properties for other ordered fields. 

If the conjecture is verified, we will still be left with a brutal algorithm. This is another 
argument for beginning and remaining, inside the class of invariant formulas for all the 
calculations. 

What happens with constants for non-rational field elements? 

EXAMPLE 6.5. The rational numbers, the real numbers and other arch/median ordered 
fields admit only the trivial automorphism. If we add constants for other elements of the 
fields - we may now have invaziance under field automorphisms. Thus a formula such as: 
[uxw][vyw] = x/r2[uyw][vxw] is invariant for all projective transformations over fields 
extending the algebraic real numbers. 

No single synthetic construction, or single identity in our basic language, trax~sla~es to 
this equation. However, two projective constructions do translate to: 

([uxw] [vyw]) 2 --- 2([~yw] [xvw]) 2 & ([uxw] [vyw])([uyw] [vxw]) > O. 

Together, these are equivalent to the original equation. With similar difficulty, we can 
transform any equation or inequality with real algebraic coefficients into equations mad 
inequalities in our language. Thus we have, in principle, covered all properties expressed 
by polynomials with algebraic coefficients. 

Polynomials with transcendental coefficients, such as ~r will require second-order state- 
ments (conjunctions of an infinite number of inequalities defining the corresponding cut 
in the rationals) for translation into our language. Note that  the translation for numbers 
like V~ depends on the order in the rationals, and did not exist over unordered fields 
such as the complex numbers. | 
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Finally we note that  the results of Sturmfels • Whiteley (1991) can be extended 
to show that  synthetic constructions in a real geometry of the reals correspond to the 
totally homogeneous even formuias in LRANGEr,. This really is an adequate language 
for representing synthetic projective geometry. 

To summarize Par t  I, we propose that  totally homogeneous formulas in LANGEn, or 
totally homogeneous even formulas in LRANGEn, should be used to express all projective 
geometric properties for analytic geometry. These axe the languages which should be built 
into "automated geometry theorem provers". The evidence for this proposal includes: 

a) All formulas of this type are invaxiant for the appropriate projective geometric trans- 
formations. 

b) All projective properties represented by open formulas in the usual language for ana- 
lytic geometry,, without order, can be translated by a simple algorithm into an equiv- 
alent totally homogeneous formula in the brackets. 

c) It is conjectured that  all projective properties represented by open formulas in the 
usual language for real analytic geometry can be translated into an equivalent totally 
homogeneous formula in the brackets. 

d) These formulas correspond directly to anMytic translations of synthetic properties. 
e) All formulas in these languages can, in principle, be translated into synthetic geometric 

properties. 
In conclusion, we do not claim that our invaxiant language, as given, is the optimum lan- 
guage for translation from synthetic geometry. In practice, such translation is carried out 
with the Cayley algebra, or similax variants of Grassman's algebra (see White (1991) for 
examples). In this richer algebraic extension language, all totally homogeneous formulas 
axe invariant for projective transformations. In part  II we will make a small move in this 
direction, by including vector addition and multiplication of a vector by a scalar. (This 
extension is necessary to prove some quantified theorems.) For practical, automated the- 
orem proving, we will also need implemented programs to translate synthetic statements 
into Cayley algebra and for the expansion from Cayley algebra into the brackets. 

P A R T  II.  T h e o r e m s  and  Proof s .  

7. P r o o f s  for O p e n  T h e o r e m s  over  A l g e b r a i c a l l y  C lo sed  F ie lds .  

Having chosen an algebraic language for analytic projective geometry, we would like 
to carry out proofs for such properties within the language. Thus our goal is to prove a~l 
theorems in LANGEn which axe homogeneous in all vector variables using axioms, using 
first order logic and intermediate formulas in this language. 

For any vector space of dimension n over fields, the classical Grassmann-Plfieker syzy- 
gies become the essential axioms for the bracket operation: 

[yy . . . . . .  ] = 0 

[YlY2... YlYi+l. . .  Yn] = -[FLY2 ... Yi+lYl.. .  yn] 

[x lx2 . , .  x n ] y l y 2 . . .  Yn] ----- ~ [ x l x 2 . . . x i - l y l x i + l . . .  xn][xiy2. . ,  y,~]. 
i 

(The first axiom is implied by the second, if we assume 2 ~ 0.) We also add the usual 
axioms for equality, and for integral domains. 
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For all field terms s, t, u (polynomials with integer coefficients): 

t = t  s = t = ~ t = s  

s = t & t = u  =~ s = u  s = t & : s ' = t '  ==~ s + s ' = t + t '  

s = t =~ --a = --t s = t&s' = t' =~ s . s' = t . t' 

s + ( t + u )  = ( s + ~ ) + u  t + ~ = s + t  

~ + ( - - ~ ) = 0  ~ + 0 = ~  

t .  1 = t  s . ( t  +u)  = s . t  + s . u  

s ( - t ) = - s t  s . t = O  ~ s = O V t = O  

1r 

We call this collection of axioms for open theorems of vector spaces AXOVn. 
Together with the usual axioms for propositional logic (see below), these give proofs 

in LANGEn for all open invariant theorems which hold over all all fields. A simple proof 
is given in Whiteley (1977). 

We saw in Section 2 that any open formula M in our languages can be placed in 
conjunctive normal form: 

#ov. . .v fk  #ovgl =ov...vg  

Equivalently, every such formula can be written: 

(fl  = O & . . . & f k  =0=~g~  = 0 V . . . V g , ~  = 0 )  & . . . i :  ( . . . f m = O = ~ g r = O . . . ) .  

For algebraically closed fields, Hilbert's Nullstellensatz translates each of these implica- 
+,ions into an algebraic identity. 

T~IEOREM 7.1. Hilbert's Nullstellensatz A [ormula of ~he form: 

f l  = 0&f2 = 0&. . .&fk  = 0 ~ gl = 0 v . . .  Vgm = 0 

where fi and gi are polynomials with integer coet~cients, is ~rue over an algebraica1iy 
closed field i f  and only i f  there are polynomials ai, with coet~cients in the integers, an 
integer k ~ 0 in tt~e field, and integers n i such that: 

Eo, ,=klI(g') 
i j 

as poIynomials. 
]g v ' r  / n j  \ 

We call ~ i  aifi = l l j[gi  ) a Nullstellen~atz identity, N(F) ,  for the implication F. If 
there are no gi, the theorem is written 

fl  = 0&f2 = 0&. . .&fk  = 0 ~ 1 = 0, 

and the Nullstellensatz identity has the form ~ i  aifi = k. 
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In general it is a simple task to check such an identity: expand the two sides, as 
polynomials in the variables, and compare coefficients on both sides. Within our language 
of brackets, this direct expansion is replaced by the straightening algorithm of classical 
invariant theory (Sturrnfels ~ White (1989), White (1988)). 

It is also a simple task to recover the original implication from the Nullstellensatz 
identity: 

/1-0~/2=0a. . .~fk=0 ~ Ea,0=lI(g  ?) 
i j 

f l - - - - 0 & f p = 0 & . . . & f k = 0  =~ g a = 0 V . . . V g , , = 0  

Thus a Nullstellensatz identity N ( F )  gives an algebraic proof of the formula F.  For an F 
in the language of brackets, it is a simple exercise to check that  the polynomials ai can also 
be found in this language (see Corollary 8.4). If the gi and the f i  are homogeneous in any 
variable - or all variables, the polynomials ai can be found with the same homogeneity. 
(Since YIj (g~J) is homogeneous, select the corresponding homogeneous part of ~ i  aifl.) 

Since every field has an algebraically closed extension, we note that an open theorem 
is true (provable) over an algebraically closed field if and only if it is true over all fields 
of the same characteristic. Thus Hilbert's Nullstellensatz can be paraphrased: 

A logical proof guarantees an algebraic proof. 
This algebraic proof is by far the simplest type to check, by hand or by computer. 

EXAMPLE 7.2. Consider the problem of coordinatizing a matroid of rank n over the 
complex numbers. Such a configuration has certain n-tuples independent, and other 
n-tuples dependent. Thus a set of coordinates must satisfy a first order formula: 

( 3 ~  . . .  Xk) ( [ x ~ . . .  x~] = 0e~ . . .  &Ix . . . .  ~ ]  # 0 & . . .  ) .  

A proof of non-coordinatizability over the complex numbers (or over any extension of 
the rationals) is therefore a theorem of the form: 

(3x~ . . .  xk)~( [x~  . . .  x . ]  = 0e~. . .  &Ix . . . .  ~ ]  # 0e~. . .  ) 

or (VX1 ...Xk)([Xa...Xn] # 0 V . . . [ x j . . . X m ]  ~ 0V[xs . , . x t ]  = 0 V . . . ) .  

This universal theorem is equivalent to a single Nullstellensatz identity: 

a[x l  . . .  x~] + . . .  + c [x j . . ,  x ~ ]  = I x , . . .  x , F  . . .  [xa . . .  x~F.  

In their studies of coordinatizing matroids, Bokowski and Sturmfels have called such 
a Nullstellensatz identity the "final polynomial" of a proof of non-coordinafizability 
(Stur~els (1991)). | 

For a general open formula, the conjunction: 

(f~ = O & . . . ~ f m  = 0 = = > g l = 0 V . . . V g n = 0 )  S z . . . ~ ( . . . f ~  = O=:> g~ = O . . .  ) 

is equivalent to a conjunction of Nullstellensatz identities. Thus the Ntfllstellensatz 
identities form a preferred presentation of any open theorem. 

Is it more difficult to find a Nullstellensatz identity than to find another first order 
proof of the same theorem? Our experience with such proofs, over twenty years, and 
some logical results we give below, have convinced us that a Nullstellensatz identity can 
be found, in a simple algorithmic way, from any first order proof of such a theorem. This 
observation was found independently by Scarpellini (1969) and Whiteley (1971) using 
two distinct approaches. It can be stated as a metatheorem. 
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META-TItEOREM 7.3. A / i r s t  order proof of a formula of the  form 

f l  = 0 k  f2 = 0 & . . . & f k  = 0  ~ 91 = 0 & . . . k g , ~  = 0 

from axioms for a t~eld of fixed characteristic, gives an algorithmic construction for a 
corresponding Nu_llstellensatz identity: 

E alfi = k ~-~(g~J). 
i j 

A tirst order proof  of a formula of the form 

f l  = o k  f2 = o k .  . .&/~  = o  ~ gl = o k .  . .&g,~ = o  

from axioms for all fields, gives an algorithmic construction for a corresponding Nullstel- 
lensatz identity: 

i i 

In the next  section, we outline the algorithm for a part icular  set of rules for first order  
logic. This approach is, logically weaker than the results of Seidenberg (1956) which 
derive the Nullstellensatz f rom the statement of the theorem - without  inputt ing t h e  
proof. However it represents a practical approach to existing proofs of theorems.  Our  
fundamental  point is that  an "automated theorem prover" can, and should, ou tpu t  the  
Nullstellensatz identities. 

8. F r o m  a P r o o f  to  a N u l l s t e l l e n s a t z  I d e n t i t y .  

We now examine proofs using a system of "natural  rules" for logical proofs - a Gentzen 
style system (see, for example, Feferman (1968), Takeuti (1975)). The pieces of this  
system are wr i t ten  as sequents composed of formulas: F 1 , . . .  ,Fro D GI~ . . .  , G , .  If 
m or n = 0, there are no formulas in this part ,  and we write 0 in the corresponding 
spot. The  sequent F 1 , . . .  ,F,~ D G1 , . . .  , Gn is equivalent, in any model, to the formula 
F l & . . . k F m  =~ G1 V . . .  V Gn. In this system~ a proof or  derivation D is a tree of 
formulas, with axioms at the top, and the final theorem at the bot tom.  

The reader can check that  all of our axioms from Section 7 can be  rewrit ten as atomic 
sequents - with single equations as the Fi and the Gj (see the proof of Theorem 8.2). 
The  only logical axioms axe: 

s = ~  D s = t  

and our desired theorem can also be written as a sequent: 

f l = O , . . . , f m = O  D gl = O , . . . , g n = O .  

There are four sets of logical rules in this system. 

The  proposit ional  rules ( M and N will be sets of formulas): 

1. M D N , F  2. M , F  D N 

M , - ~ F  D N M D N, -~F 
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3. M , F  D N M , G  D N 

M ,  F V G D N  

5. M ~ F  D N o r M ,  G D N 

M , F & G  D N 

The  quantifier rules: 

73 M,F(w) D N 

o N 

9.$ M , F ( t )  D N 

M, N 

4. M D N , F  or M D N , G  

. 

M D N, F V  G 

M D IV, F M D N , G .  

M D N , F & G  

8.:~ M D N , F ( t )  

M D /V,(3~)F 

10t M D N,F(w) 
M o N,(Vx)F 

t x is the same sort of variable as w, and w is not free in M or N; 
:~ x is the same sort a~ ~. 

The  structural  rules 

11. 

13.  M I 

The  cut rule: 

M D N 12. M D N 

M , E  D N M D N , E  

D Nl M ~ = M  and N I n N ,  as sets of formulas. 

M D N  

14. M , E  D N M I D NI, E. 

M, M t D N, N I 

It is well known that  these rules, wi~h the logicul axioms F D F, for any atomic formula, 
give all first order theorems (see Feferman (1968), Takeuti (1975)). It is also a classical 
result t ha t  for logical theorems, the cut rule can be eliminated. 

With our  added axioms, we still want to minimize the occurrences of the "cut" rule, 
so that  t he  entire proof consists of formulas which are "pieces" of the final sequent, and 
does not involve hidden, more complex pieces. This is particularly easy for theories such 
as AXOV~, which are atomic theories: theories for which all axioms are sequents with 
atomic formulas. 

THEOREM 8.1. Whiteley (1971) Given a proof  tree D of a sequent M D N from an 
atomic theory Ax, there is a proof  tree D* of the sequent M D N from Ax with all cuts 
restricted to atomic formulas. 

The proof  in Whiteley (1971) is a straightforward extension of the proofs of Feferman 
(1967) or Takeuti (1975) for cut reduction of the theory of equality. It will not be repeated 
here. 

It  is impor tant  to emphasize is that  this cut reduction is a constructive algorithm 
transferring one proof tree to another proof tree with all cuts at the top, involving 
atomic formulas which arise in axioms. It is also important to realize that  any first 
order proof  can, in principle, be translated into this Gentzen system, and then pulled 
into cut reduced form. We will show that such a cut reduced proof leads naturally to a 
Nullstellensatz identity for the theorem. 
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THEOREM 8.2. There  is a constructive algorithm which taJr any derivation D of an 
atomic sequent 

f z = 0 , . . . , f m = 0  D g l = O , . . . , g n = O  

from the theory of  integral domains to a Nullstellensatz identity with integer polynomieds 
ai: E i  aif i  = l-lj(g~ A ). 
Proof.  There  is a construct ive algorithm form any derivat ion D to a cut r educed  deriva- 
t ion D*. We proceed by induction down the tree of such a cut reduced proof. 

The  axioms for equality, integral  domains, etc., all give immediate  Nulls te l lensatz  
identities. For example:  

N ( t  = t) : 

N ( s  = t  D t = s )  : 

N ( s  = t , t  = u D s = u) : 

N ( s  = t , s '  = t '  D s + s' = t + t ' )  : 

N ( s  = t , s '  = t '  D s ~ s '  = t  @t ' )  : 

N(1 = o ~ 0) :  

(t  - t )  = 0 

(t  - ~)  = - ( ,  - t )  

( s  - t )  + ( t  - ~ )  = (~ - = )  

(~ - t )  + (~' - t ' )  = (~ + ~' - ( t  + t ' ) )  

~'(~ - t )  + t (~ '  - e )  = (~ ~ ~' - t m e )  

1 = 1 .  

The  logical axioms,  s = t D s = t, also yield an immedia te  identity. This  covers the  
top leaves of the derivat ion tree. 

A cut reduced proof  for an atomic sequent will include only a tomic sequents  at all  
stages of a derivat ion - with no occurrences of quantifiers, or  of &, V or -~. Th i s  means  
tha t  there  axe no occurrences of the proposit ional rules (rules 1-6) or  the quantif ier  rules 
(rules 7-10). 

We now assume tha t  the initial stages of the cut reduced proof have been conver ted  
into Nullstellensatz identities, and show how to work through the s t ructural  rules a n d  
applicat ions of cut to single equations. 

11. F1, . . .  ,Fm D Gx, . . .  ,Gp 

F1 , . . .  ,F,~,Fo D G1, . . .  ,Gp 

12. F 1 , . . . , F m  D G a , . . . , G p  

FI ~ �9 �9 * ,Fill 

13. M l D N' 

M D N  

D G 1 , . . .  ,Gp, G0 

i=m j=p 

E o,s, = H g? 
i=l j : l  

i=rn j=p 
ni 

i=1 j----i 

i=rn j=p 
nj 

E ai f i  = H gJ 
i=1 #=1 

i=ra j=p 

E g o a i f i  = g o H g ~  j 
i=1 j = l  

M ~ = M and N '  = N, as sets of formulas.  

If this rule collapses occurrences of an equation, we s imply combine coefficients a n d  
powers. If the  rule adds occurrences of an equation, we add zero coefficients or mul t ip ly  
by  first powers of the  term. 
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This leaves the cut rule: 

14. F I , . . .  , F m , E  D GI , . . .  ,Gp Fm+~, . . .  ,Fn D Gv+I,. . .  ,Gq, E 

FI , . . .  ,Fm, Fm+I,. . .  ,Fn D G1,. . .  ,Gv, Gv+I,.. .  ,Gq 

with the following Nullstellensatz identities for the top pieces: 

~=-, ~=v i=,, [ J=q , , . \  

} 2  <,,s, + o.,  = H g, } 2  <,,s, = ,"" �9 
i=l j=l /=rn+l 

We solve the first equation for ae e, and multiply the second equation by aene . 

= H 4 '  -  o,f, }2 <,".<,.,. " e ' J '  = ( a c e )  n :  g j  �9 

/=1 i=l imrn-bl \ /=p+l  

We now substitute for ace in the modified second equation to obtain the required Null- 
stellensatz identity, with a complex multiplier S formed from the pieces of the first 
equation: 

This completes the induction. 

+ ~ ,  a : ' a i f ,  = gj gj . 
i=m+l V = I  \ j = p + l  

REMARK 8.3. As mentioned above, this result is weaker than the results of Seidenberg 
(1956) which derive the Nullstellensatz from the statement of the theorem, without a 
proof as input. Our approach will extend to real-closed fields (see Section 10), while the 
constructive approach of Seidenberg has not been extended. In practical terms, we have 
found tha t  the derivation of a Nullstellensatz identity from our proofs was an simple 
task. 

In terms of symbolic computation, the metatheorem suggests that  a little extra book- 
keeping in any computer proof will give these Nullstellens~tz identities - and more infor- 
mation than  any other proof.- The conclusion is that the computer algorithm to prove 
of an open theorem about vector spaces should output a conjunction of Nullstellensatz 
identities. To do less with an algorithm is to throw away information. | 

How does this principle apply to proofs in the invariant language? 

COROLLARY 8.4. Given a derivation D of a sequent 

f~ = O, f2 = 0 , . . .  ,.fk = 0 D g~ = 0 , . . .  ,gin = 0 

in L A N G E .  from AXOV. ,  there is a corresponding Nufls~ellensatz identity: 

Z "d' = ~(g? ) 
i j 
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with a/1 terms in LANGE, .  

Proof. The special axioms for brackets axe equations (identities) thus they  have imme- 
diate Nullstellensatz identities. For example: 

N ( [ y l y 2 . . . y l y i + l . . . y n ]  = --[YiY2. . .YI+aYl.--Yn]) :  

[YlY2 �9 �9 �9 y ly i+l  �9 �9 �9 Yn] + [YlY2 �9 �9 Yi+lY/. .  �9 Yn] = 0. 

In the cut reduced proof, all formulas are subformulas of the  final theorem, so all t e rms  
in any cut reduced proof are in the language LANGEn. The rest of the proof  applies 
without  change, producing homogeneous terms ai in the language of brackets. | 

EXAMPLE 8.5. Consider the  exaxnple of the Fano plane (Figure 1), which exists only  
over fields of characteristic 2. Since this is a plane configuration, we use 3-brackets. We 
assume that  [xbc] = 0, [ayc] = 0, [abz] = 0, [apx] = 0, [pzc] = 0, [pze] = 0, axid 
[xyz] = 0. We also assume that all other brackets axe non-zero (no other triples axe 
collinear). 

b 

a r 

Figure 1. The Fano plane. 

By a direct check with the identities for the brackets, we have the following identity. 
(As a convention, we underline all terms which are assumed =0:) 

2[axc] [abp] [pb c] [ayp][zb c] lap c] = lab c] [pb c] lap c] [abp] [ayz] [xb c] 

- [axc] [yb c] [pbc][ap c] [abp] [abz] + lab c][abp][ybc] [pbc] [aze] [apx] 

4-[abc][pbc][azc][axc][abp][ybp]  + [abc][pbc][azc][axc][abp][ybp]  

+ [aby] [pbe][aby][axc][abp] [pzc] - [abc] 2 [pb c][apc][abp] [xyz]. 

Since we assumed that [axc] ~ 0, [abp] ~ 0, [pbe] ~ 0, [apy] ~ 0, [zbc] ~ 0, [ape] ~ 0, 
the configuration can be eoordinatized only if 2 = 0. | 

REMARK 8.6. If we work with a particular characteristic, then we would add the  corre- 
sponding axioms. These also give initial Nullstellensatz identities: 

# 0 ) :  = lV(m = 0 ) :  0 = m .  
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While these non-zero numbers will accumulate on the right hand side, the net product 
will be a non-zero integer in the appropriate chaxacteristic, as required. Our algorithm 
consumers a Nullstellensatz identity for any of these theories. | 

To emphasize the role of identities in proofs, we have cheated. We quietly continued 
with full vector spaces rather than models of projective geometry to vector spaces. 

EXAMPLE 8.7. In projective geometry, a variable for a point cannot be the zero vector. 
Thus the formula: 

[ e l . . . en ]  = 0 V [ye2. . .en] # 0 V . . .  V [ e l . . .  en-lY] # 0 

or [ y e 2 . . . e , ~ ] = 0 , . . .  , [ e l . . . e , _ x y ] = 0  D [ e l . . . e , ] = 0  

is a theorem for the projective models, ii 

We will add this as an axiom. However, this axiom does not have a NullsteUensatz 
identity! The axiom is false for x = 0 and any Nullstellensatz identity would be true for 
x---~0. 

THEOREM 8.8. An  open theorem for all models  of projective space of dimension n is 
equivalen~ to a conjunction of Nullsteflensatz identities i f  and only i f  it is also true when 
the zero vector is subs t i tu ted  for some or all variables. 

In the  introduction to his book The Calculus of Extension (a variant of the invari- 
azlt language), Forder (1960) summarized his experiences with identities for geometric 
theorems: 

In the method of this book, we use equations involving the geometric entities 
themselves, such as points, lines, circles, or quadrics, and not their coordinates; to 
prove a geometric theorem is to prove such an equation, and as in most cases the 
equation turns out to be an identity, we have an automatic method for proving 
geometric theorems. 

We hope our results have extracted the essential content of this observation by a prac- 
ticing geometer. 

9. Q u a n t i f i e d  T h e o r e m s  and  t h e i r  P roofs .  

If we add quantifiers, we have an additional gap in our language. 

EXAMPLE 9.1. Consider the simple result, true in projective spaces over all fields: 
A line through two distinct points contains a third point. 

This translates, in the brackets for the projective plane, to a statement: 

(3ea)([xyel] # 0 D (3z)([xzel] # 0~z[zyel] # 0~[xyz] = 0)). 

Assume [xyel] # 0. Therefore, since [yyel] = 0: 

[xye l ]+[yye l ]#0  or [ (x@y)yel]#0.  

Similarly: Ix(x @ y)el] # 0, Thus 

[xyel] # 0 D [(x @ y)ye~] # 0&[x(x@y)el] # 0. 
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Since [xy(x @ y)] = 0, this proves that : 

[xyel] # 0 D ([x(x + y)el] # 0&[(x + y)yel] ~& 0&Ixy(x @ y)] = 0). 

Using quantifier rules, we have: 

(3e,)([xyel] ~ 0 D (3z)([xze~] ~ 0&[zyel] ~ 0&[xyz} = 0)). i 

As this example clearly indicates, we need to add a new operation vector addition 
u @ v. In fact we need to add a second operation: scalar multiplication s * u , which 
produces a vector term. These operations satisfy two axioms with the bracket operation: 

It + t' . . . . . .  ] = It . . . . . .  ] +  It' . . . . . .  ] 
[2 �9 t . . . . . .  ] = sit  . . . . . .  ]. 

We want the variables to represent points (non-zero vectors)~ while these sums may be 
zero. We therefore switch to a three sorted language - with variables of sort points, with 
terms of sort vector, created by @ and *, and terms of sort field created by [. . .  ] applied 
to n vectors or points, and by polynomials in these brackets and the constants. With 
polynomial equations for terms of sort field, this forms the extended language LANGEEn. 

Since the variables are to represent points, we have the axiom 

[ e l . . . e , ]  ----- 0 V [ye2.. .  en] # 0 V. . .  V [ e l . . . e n - l y ]  # 0. 

For the projective space of dimension (n - 1), we assume: 

(3el , . . .  ,en)([e~.. .  en] # 0). 

Since we have terms of sort vector, and variables of sort point, we must modify our rules 
for quantifiers: 

8'.~ M n N ,  [ t e ~ . . . e , ]  # O ~ F ( t )  9'.~ M,  [ t ~ . . . e , ]  # 0 ~ F ( t )  n N 

34" D N , (3x )F  M,(Vx)F(x) D N 

:~ t is of sort vector, while x is of sort point. 
With these axioms and modified rules, we call the theory AXPGn. 

Notice that we can use the added axioms to push any open formula in LANGEEn back 
into LANGEn, and apply the results from Sections 7 and 8. For more general theorems 
we have the following result. 

THEOREM 9.2. Whiteley (1977) A s F in LANGEE,  has a proof in AXPGn if 
and only if F is ~rue for the models of all non-zero vectors in vector spaces of  dimension 
?2. 

Implicitly, this logical result guarantees that any automated symbolic computations 
for the invariant language can a/1 be carried out within our invariant bracket language 
LANGEE,.  The theorems are totally homogeneous, and the axioms could be reduced 
to totally homogeneous pieces. However the stages of the proof for Example 9.1 were 
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no t  homogeneous in the variables x or y.  (If x is multiplied by a scalar ~ 1, the 
point  z --- x G y moves along the line, and all of these moving points have the desired 
proper ty . )  The  proofs lie in the invariant language but  no t  inside the special subclass of 
to ta l ly  homogeneous formulas. 

We offer a simple example which emphasizes the role of the Nullstellensatz identities 
in  proofs of even general theorems. 

]~XAMPLE 9.3. Consider the following simple geometric theorem. 
If a b  and bc are two non-skew lines in 3-space, and the line de  intersects both ab and 
cd, t hen  ei ther  d and e are coplanax with a, b, and c, or the point of intersection b 
l~es on de. 

We t rans la te  the theorem into brackets. The  s ta tement  tha t  line de  intersects ab is 
wr i t t en  [abde] = 0. Similarly for bc and de we have the assumption [ b c d e ] =  0. The 
conclusion tha t  d and  e are coplanar with a b e  is writ ten as [abcd] = 0~[abce]  ----- 0. The 
a l ternat ive  t h a t  b is on line d e  is wri t ten (Vx)([debx] = 0). Thus the entire theorem 
t rans la tes  as: 

[abde] = 0, [ b c d e ] =  0 . . .  ([abcd] = 0&[abce] = 0), (Vx)[debx] -- 0. 

The  p roof  comes in the following four stages: 

I F rom the axioms of rings and the syzygies for the brackets~ we have two Nullstellensatz 
identi t ies:  

([abed] [debx] = [abde][bedx]  + [abxd] [debc]) 

([bcde][debx] -- [abde][bcex]-b  [abxe][bcde]).  

I I  Integral domain  subst i tut ions produce two sequents: 

[abde] = 0, [bcde] = 0 D [abcd] = 0, [debx] = 0 

[abde] = 0, [bcde] = 0 D [abce] = 0, [debx] = 0. 

I I I  By rule 5, we obta in  the midsequent (a variant of the Herbrand formula): 

( [abde]  = 0, [bcde] = 0 D ([abcd] = 0) & ([abce] ---- 0), [debx] = 0). 

IV By quantifier rule 10, we obtain the theorem: 

[abde] -- 0, [bede] = 0 D ([abed] = 0&[abce] -- 0), (Vx)[debx] = 0. | 

10. P r o o f s  over  O r d e r e d  F i e ld s .  

Clearly, the usual  syzygies f rom Section 7, added to axioms for ordered integral do- 
mains ,  will prove all open theorems in the invariant language which are true over all 
ordered  fields. Similarly, the extensions and the  axioms of Section 9 can be  added to the 
axioms for ordered integral domains or for real closed fields to prove all theorems within 
ou r  languages. 

W h a t  about  a special form for open theorems? As before, we can restrict the proof 
of  a to ta l ly  homogeneous formula to work within this class of projective formulas, etc.. 
Basic differences in the pa t te rn  of a proof do arise from two sources: the  presence of 
inequalities, and  the modified form of the real Nullstellensatz. We begin wi th  the second 
issue. 
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THEOREM i0.i. Krivine (1964) A formula of the form: 

fl = 0&f2 = 0&... &/k = 0 ~ gx = 0&... &gin = 0, 

iS true over a real closed i~eld if and only if there are poJynom/laJs ai, bk, with integer 
coe1~cients, and positive infegers n and m such that: 

F_, a,S, = m H(g ) + E(b ) 

EXAMPLE 10.2. A simple example illustrates this difference between algebraically dosed 
fields and real closed fields. 

x2+y2+l=0 =~ I=0 

is true over the real numbers, but false over the complex numbers. Clearly there is 
no Nullstellensatz identity in the sense of Section 8: a(x 2 + y2 + I) = 1 is impossible. 
However, 

(z2 + y2 + 1) = I ~ + (z 2 + y2) 

is a correct decomposition. There is a basic technique over ordered fields, called the 
squares principal, which states: 

E ( a l )  2 = 0 :=~ al = 0 k . . .  barn = 0 

Applied to our example, this principle gives an immediate deduction: 

x2+y2+l=0 :=~ I=0 

or x 2 + y2 + 1 • 0 | 

For formulas with equalitie s and their nege~tions (no inequalities), the real Nullstellen- 
satz guarantees tha t  this squares principle is the only principle we need to add to the 
axioms of fields of characteristic zero to prove all open theorems. More generally, a field 
of characteristic zero can be ordered if and only if this squares principle holds. Such 
fields are called formally real (see, for example, van der Waerden (1953)). 

For formally real fields, we take the axioms of integral domains of characteristic zero, 
plus a simplified squares principle: 

(~1) ~ + . . .  + (~m) ~ = 0 ~ ~ = 0. 

With these axioms, and the Gentzen style system of Section 8, we have a constructive 
metatheorem for the real Nullstellensatz: 

THEOREM 10.3. Given a derivation D o f a  theorem: 

fx =O, f u = O , . . . , f k = O  D g~ = O , . . . , g , ~ = O ,  

from the axioms for formMly tea/~qelds, there is a constructive Mgori~hm which reads, 
from this derivation, a reed Nullstellensatz identity: 

F_, = [ I (g j )  + 
i j k 
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wi~h the ai, b~ polynomials with/nteger coetllcients, and t, w positive integers. 

Proof. Each of the axioms for integral domains gives a real Nullstellensatz identities: 
I~N(S),  with no b~. (Simply square the identities N(S)  used for Hilbert's NullsteUensatz.) 
The squares principle gives the simple identity: 

2~4-((81) 2 ~-...-~- (sin) 2 _. 0 [) s l  ---- 0): (81) 2 -~-...(sm) 2 ~- (81) 2-l- . . . (8m) 2 

Once more this derivation caa be cut reduced, so that only rules 11-14 are used, and 
all sequents are atomic. Again the only challenging rule is the cut rule: 

14. F I , . . .  , F m , E  D GI , . . .  ,Gp Fm+a,.. .  ,Fn D Gp+I,. . .  ,Gq, E 

F 1 , . . . , F m , F m + I , . . .  ,Fn :D G 1 , . . . , G p ,  G p + I , . . . , G q  

with the following real Nullstellensatz identities for the top pieces: 

i=m j=n  ~ 2u k=r 

i=p j=q ~ 2w k=s 

i=m-I-1 \j.-~n~-i k-----r+1 

We solve the first equation for a~e, a~d take to the power 2w. 

a e e )  w _.~ gj + 
k~l i=1 

k=l h----1 i=1 

4vw [ j=q 
We multiply by the term t I |VIi=n+ 1 gi) , and substitute from equation 2: \ - -  

4vw--2w 

2w 

2w gJ alfi - (bk) 2 
a~ \j=n+l i 1 = 

j=q ~ 2(2vw) k=z+y i=p 

\ j=l  / k=l i=1 

This simplifies to a real Nullstellensatz identity for the bottom sequent. Induction on 
the entire proof tree leads to the desired identity for the final sequent. | 

PKOBLEM 10.3. Does this logical "metatheorem" apply to other typical proofs of such 
an open theorem? That  is, does any "natural" computer proof of such a formula generate 
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an explicit construction of a real Nullstellensatz identity, from which the theorem results 
by simple substitutions? It is clearly desirable that the algorithm should output the real 
Nullstellensatz identities for the theorem 

EXAMPLE 10.4. An explicit case of this problem is presented by Sturm sequences (van 
der Waerden (1953), 220-222). Assume that a univariate polynomial p(z), and its deriva- 
tive p ' ( x )  are relatively prime. First establish a finite sequence of polynomials: 

f0(x) = p(x); f l (x)  =pt(X); . . .  ;fi-2(~) = q i ( x ) f i - l ( X )  -- f i (x ) ; . . .  

with degree f i  <: degree fi-1,  using the Euclidean algorithm. Next create two sequences 
of signs: 

and 

S(co) : . . .  ,sign(highest power in f i ( x ) ) , . . .  

S(-oo)  : . . .  , sign(highest power in f i ( - x ) ) ,  . . . .  

From these sequences, we have two numbers: 

w(oo) = ~sign changes in S(oo); and w(-oo) = ~sign changes in S(--oo). 

Sturm's theorem says that the number of real roots of p(x )  is w(-oo) - w(oa). In 
particular, if w(-cx~) = w(cx~) there no real roots. This guarantees that: 

a(x )p (x )  = ~[qi (x)]  2 + 1 
i 

for some polynomials a aad qi. 
How does this sequence (or the proof that the theorem holds) generate these polynomi- 

als? Since Sturm sequences are used in computer algorithms for real algebraic geometry, 
this is a practical example for symbolic computation. | 

For ordered fields, with <, there are forms of a Positivstellensatz (see, for example, 
Bochnak et al. (1987)), which can be used to give a standard form for open theorems. We 
note that any open formula in LRALGn can be written in the many different conjunctive 
normal forms: 

o r  

o r  

> o)v V(,, o)v V(,J = o)) 
i j 

It remains a subject for further research to select an optimal form, with a corresponding 
Positivstellensatz which grows on proof trees. 
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For a general  survey  of construct ive  approaches  to these problems see (Lombaxdi 
(1990)) .  

In  conclusion,  app rop r i a t e  identi t ies are available to express a lmost  all of the theo- 
rems .  These  ident i t ies  car ry  more  informat ion  t han  any o the r  p roof  of the  corresponding 
t h e o r e m .  The  ident i t ies  are easily derived f rom typical  first order  proofs - and should be 
t h e  o u t p u t  of f u t u r e  symbolic  c o m p u t e r  a lgor i thms for analy t ic  pro jec t ive  geometry. 
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