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a b s t r a c t

Manymodels of darkmatter scatteringwith baryonsmay be treated either as a simple contact interaction
or as the exchange of a light mediator particle. We study an alternative, in which a continuum of light
mediator states may be exchanged. This could arise, for instance, from coupling to a sector which is
approximately conformal at the relevantmomentum transfer scale. In the non-relativistic effective theory
of dark matter–baryon scattering, which is useful for parametrizing direct detection signals, the effect of
such continuummediators is to multiply the amplitude by a function of the momentum transfer q, which
in the simplest case is just a power law. We develop the basic framework and study two examples: the
case where the mediator is a scalar operator coupling to the Higgs portal (which turns out to be highly
constrained) and the case of an antisymmetric tensor operator Oµν that mixes with the hypercharge field
strength and couples to dark matter tensor currents, which has an interesting viable parameter space.
We describe the effect of such mediators on the cross sections and recoil energy spectra that could be
observed in direct detection.

© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Most of the matter in our universe, by mass, is dark matter,
but beyond the fact that it interacts gravitationally, the nature of
dark matter remains elusive. As experiments dig further into the
parameter space of classic theories of dark matter and continue
to find null results, it is important that we think as broadly as
possible about what dark matter might be and how we might
detect it. In this paper, we will suggest a novel form of interaction
between dark matter and baryons and explore the extent to which
it modifies the signals experiments searching for dark matter
might observe.

In recent years, a much wider variety of possible dark matter
models and phenomenology has begun to be explored. Non-
relativistic effective theories have systematized the exploration of
possible operators characterizing dark matter–baryon scattering
in direct detection experiments [1–13], drawing on older work
outside the dark matter context [14]. The basic operator approach
can be modified in various ways, for instance through considering
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dark matter particles inelastically scattering to or from excited
states [15–17], dark matter particles with form factors [18,19],
dark matter that scatters through 2 → 3 processes [20,21],
scattering of dark matter off two nucleons at once [22–24], or (a
more radical modification) detection not of dark matter itself but
of relativistic DM annihilation products [25]. Theories containing a
large ensemble of (possibly unstable) darkmatter states have been
considered [26–29], as have theories in which only a small fraction
of darkmatter enjoys a richer set of interactions [30–33]. All of this
theoretical exploration has helped to broaden our sense of what
realistic theories of dark matter can be, pointing the way to new
signatures that can be tested experimentally.

Our goal in this paper is to explore yet another modification
of the standard picture of how dark matter interacts with other
particles. Specifically, we will study dark matter interactions that
are mediated by generic operators of arbitrary scaling dimension
(consistent with unitarity bounds), which can be thought of as the
exchange of a continuum of light states. Schematically, we would
like to think about Lagrangians of the form

L = χ̄Γ χOmed + ψ̄ΓψOmed, (1)

where χ̄Γ χ stands in for any dark matter bilinear operator and
ψ̄Γψ for a Standard Model bilinear and Omed is some ‘‘mediating
operator’’. The precise technical meaning of the statement that a
continuum of states is exchanged is that the momentum-space
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two-point function ⟨Omed(q)Omed(−q)⟩has a branch cut extending
down tomomenta well below the thresholdmomentum exchange
giving rise to a signal in the experiment, |q| ≪ qexp (and
furthermore that the spectralweight is spread out along the branch
cut rather than being concentrated near a single narrow peak).
Cases where Omed is a single light or heavy particle are well-
studied, but the general case where it represents the exchange
of a continuum of light states has received little attention.
Such couplings to a continuum of states have appeared in the
phenomenological literature in various guises, e.g. in the RS2
setup [34] or the literature on ‘‘unparticles’’ [35,36], but (perhaps
surprisingly) has been mostly absent from explorations of how
dark matter can interact with the Standard Model.

Let us mention here some related work in the literature. The
possibility that direct detection could proceed through a contin-
uum of states which would modify the effective nonrelativistic
potential V (r) was briefly discussed in Section 2.2 of [1], but not
developed at length. An unusual velocity dependence of dark mat-
ter annihilation from the Sommerfeld effect due to exchange of a
continuum of states was explored in [37]; related work neglecting
the Sommerfeld effect appeared in [38]. Finally, a related scenario
involving a Randall–Sundrum realization of a tower of light medi-
ators was studied in [39–43].

The outline of this paper is as follows. In Section 2 we describe
our setup in detail. In particular, we briefly review the CFT
formalism that we use in our calculations and describe possible
ways to model a mass gap. We show that the direct detection rates
are almost not affected by our assumptions about the modeling
of the mass gap. We also briefly address basic cosmological
concerns related to our scenario. In Section 3 we study continuum
mediators coupling to the SM Higgs portal [44–48]. It is a simple
illustration of the general idea, but we find that there is not a
viable parameter space for the sort of direct detection signalwe are
interested in. In Section 4 we analyze the DM direct detection and
collider constraints in the case when the DM–nucleus interaction
is mediated via an antisymmetric tensor operator which couples
to the SM via the hypercharge portal [49,50]. This case realizes
interesting continuum-mediated phenomenology in a parameter
space compatible with various constraints. Finally in the last
section we conclude. Some technical details are relegated to the
Appendix.

2. The scenario: mass scales and kinematics

2.1. The basic picture

The majority of models of dark matter–baryon scattering
considered so far take one of two forms:

Light particle mediator:

= Jχ (p, p − q)
1
q2

JSM(k, k + q). (2)

Pointlike interaction:

= Jχ (p, p − q)JSM(k, k + q). (3)

In position space, these correspond to potentials V (r) ∝ 1/r and
V (r) ∝ δ(3)(r⃗), respectively. (These are point-particle idealizations
and should be appropriately convolved with the nuclear form
factor and, if it exists, dark matter form factor.) We could also
consider the case of a massive mediator with mass m ∼ q, which
would correspond to a Yukawa potential interpolating between
these two extremes. In this paper, we consider a different scenario,
in which we exchange a continuum of light modes. One way to
think of this is as the result of coupling to states of multiple light
particles:

Continuummediator:

= Jχ (p, p − q)


1
q2

α
JSM(k, k + q). (4)

Here the scale-invariant factor of (1/q2)α is a stand-in for more
general possible behavior of the intermediate continuum. In the
simplest case, we could consider just a loop of two light, non-
interacting particles. More generally, the continuum could consist
of multiple particles that are themselves interacting, as suggested
by the shaded region in the figure. These interactions could give
the operator Omed an anomalous dimension, and in the strong-
interaction limit could render any simple particle interpretation
unreliable.

The examples that we have written above involve a very
important factorization property, which will apply to all of
the models that we consider. Namely, the amplitude for dark
matter–baryon scattering is a product of three factors:

• A Standard Model current or ‘‘portal’’. At the microscopic level,
this may involve quarks or gluons. In a realistic direct detection
calculation, the coupling is to nuclei, and so this piece of the
amplitude in general involves a nuclear form factor describing
the way that protons and neutrons are distributed within the
nucleus. Such form factors are conveniently calculated with the
code of [4].

• A dark matter current. Generally this is taken to be simpler
than the StandardModel current, since darkmatter is treated as
an elementary particle. However, more generally, dark matter
itself could have a form factor (see e.g. [18,51–53]).

• The propagation of the mediator. In the case of a contact
interaction, this factor is simply 1. For a massless particle, it
is 1/q2, corresponding to a long-range force. For this paper,
we will take it to be of the form 1/(q2)α (motivated by scale
invariance) or more generally 1/(q2 − m2)α (which, as we will
discuss below, is a crude but useful toy model for a mass gap).

Importantly, the propagation of the continuum mediator that we
consider will always simply have the effect of rescaling well-
understood calculations in the literature by simple functions of
q2. It never requires any new nuclear form factors, for instance.
Furthermore, the darkmatter and StandardModel currentsmay be
in nontrivial representations of the Lorentz group, but the effect of
the mediator will always resemble rescaling the result of a contact
interaction by a Lorentz scalar function of q2. In the case where
the mediator has spin and its propagator may involve complicated
tensor structures, this is not entirely obvious. We work out the
details for an antisymmetric tensor mediator that mixes with the
electromagnetic field strength in the Appendix, showing that the
amplitude is a simple product of known amplitudes for electric or
magnetic dipole moments and a power law in −q2 for a general
scale-invariant mediator.

2.2. A cosmological concern

The simplest realization of continuum exchange is to couple
dark matter and the Standard Model to an operator in an
infrared-conformal sector [34,35]. However, this is potentially
cosmologically dangerous, because a conformal sector behaves
as dark radiation and is subject to cosmological bounds due to
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its effect on the expansion rate of the universe [54]. These are
usually quoted as constraints on the number of ‘‘effective neutrino
species’’, Neff, from BBN (1Neff < 1.44 at 95% confidence [55])
and the CMB (Neff = 3.15 ± 0.23 from Planck combined with
other data [56]). If dark matter couples to dark radiation, these
constraints can change in various ways depending on the form of
the coupling [57–60], but they remain quite stringent. The safest
way to avoid these bounds is if our continuum of particles does
not extend all the way down to zero mass and develops a mass
gap; if the particles become nonrelativistic before BBN, they are no
longer dark radiation from the viewpoint of cosmological bounds.
For instance, our approximately conformal sector could confine at
a scale of at least a few MeV. This mass means that during BBN,
the continuum of modes behaves as dark matter rather than dark
radiation. We can also arrange that, after acquiring a mass, the
continuum states simply decay before BBN, dumping their energy
into the Standard Model plasma. For instance, if they couple to the
Standard Model through dimension-six operators suppressed by a
scaleΛ, they can have a lifetime

τ ∼
Λ4

m5
∼ 7 × 10−7 sec


Λ

100 GeV

4 
10 MeV

m

5

, (5)

easily decaying before BBN (although stable on collider timescales).
More refined estimates can be done for the particular models we
discuss. In the particular case of the hypercharge portal, we will
discuss such estimates further in Section 4.2. It is also possible that
deviations from thermal equilibrium just before BBN could assist in
circumventing the dark radiation bounds even if there is no mass
gap (or the mass gap is much smaller than the BBN scale) [61].

2.3. The direct detection scale meets the BBN scale

Direct detection experiments search for nuclear recoil events.
If a nucleus of mass mN recoils with kinetic energy ER, the
momentum transfer is q =

√
2mNER and the incoming darkmatter

velocity must have been at least vmin =
q
2µ where µ is the dark

matter–nucleus reduced mass. A typical dark matter velocity in
the galactic halo is v̄ = 220 km/s, which (taking µ = 100 GeV
for reference) can impart at most a momentum transfer of q ≈

147 MeV. A low-threshold nuclear recoil might be taken as, for
instance, ER = 2 keV for a silicon nucleus of mass ≈ 26 GeV [62],
corresponding to about a 10 MeV momentum transfer. Thus, the
range ofmomentum transfers that are relevant for direct detection
might be roughly construed as
10 MeV . q . 400 MeV, (6)
with the typical momentum transfer of interest in the middle
of this range and the exact details depending on the particular
experiment. LUX, for instance, studies nuclear recoils in xenon
between about 3 and 25 keV [63], corresponding to 27 MeV . q .
78 MeV.

From these estimates we see that, if the continuum of modes
mediating scattering acquires a mass gap m ≈ 10 MeV in
order to avoid dark radiation bounds during BBN, this mass
will be a subdominant correction to the two-point function
⟨Omed(q)Omed(−q)⟩ at the values of q that are most relevant for
direct detection. The ‘‘mass-gap’’ solution to the BBN bound suffers
from a coincidence problem: we have no explanation for why
the gap should fall in the relatively small interval between the
temperatures relevant for BBN and the momenta relevant for
direct detection. (Particular models may offer solutions, but no
general solution is apparent.) But if we assume that TBBN . m .
qexp, we have interesting direct detection phenomenology while
dodging the cosmological bound. If we prefer to avoid accidental
coincidences of mass scales, we can always pursue the more
elaborate nonthermal cosmologies alluded to above to allow for
much smaller m.
2.4. The conformal limit

Now that we have argued that we can at least approximately
neglect masses over the range of momenta relevant for direct
detection experiments, let us introduce the formalism we will use
throughout most of the paper, which assumes the conformal field
theory limit. To outline the basic formalism and the assumptions
we rely on, we will discuss one of the simplest cases we can
consider. Namely, Omed is a scalar operator of dimension d,
coupling to the Standard Model through the Higgs portal [44,45]
and to a Dirac fermion dark matter particle χ through a scalar
bilinear:

L =
ch
Λd−2

HĎHO +
c0
Λd−1

Oχ̄χ. (7)

(We nowdrop the subscript ‘‘med’’ for convenience.) The first term
ismarginal if d = 2; we could imagine generating a scalar operator
with d ≈ 2 in various ways, including as a fermion bilinear ψ̄ψ
near the edge of the conformal window in a QCD-like theory [64].
For most of the discussion in this paper, the only information that
we need about the operator O is its two-point function, to which
we assign a simple expression in position space. For future use, we
also quote the result for an antisymmetric tensor operator:

⟨O(x)O(0)⟩ =
cO

4π2 |x|2d
, (8)

Oµν(x)Oλσ (0)

=

cO

4π2 |x|2d
Iλ
[µ(x)I

σ
ν](x),

where Iµν(x) = gµν − 2
xµxν
x2

. (9)

Unitarity requires d ≥ 1 for the scalar case and d ≥ 2 for the an-
tisymmetric tensor. In momentum space the two-point functions
acquire extra prefactors:

⟨O(−q)O(q)⟩ ≡


d4x eiq·x ⟨O(x)O(0)⟩

=
0(2 − d)
4d−10(d)

cO(−q2)d−2, (10)


Oµν(q)Oλσ (−q)


= −

0(3 − d)
4d−10(d + 1)

cO


−q2

d−2

×


g [λ
µ gσ ]

ν −
2
q2

q[µq[λgσ ]

ν]


. (11)

In both these expressions cO is a normalization constant and we
will further take it to be 1 to simplify the calculations. We work
in a mostly-minus metric so that the branch cut arises at physi-
cal timelike momentum q2 > 0. Because we will mostly use the
momentum-space expression, one might wonder why we do not
assign it the simple coefficient cO and shift the unpleasant Gamma
functions into the less-used position space answer. The reason is
that we would like smooth behavior of answers near integer di-
mension: if d ≈ n + ϵ, then

(−q2)n−2+ϵ
≈ (−q2)n−2 

1 + ϵ log(−q2)+ · · ·

, (12)

in which it turns out that the leading term is removed by contact
terms and the log(−q2) piece is physical. In fact, the log(−q2) fac-
tor is, for integer dimension operators, the source of the branch cut
corresponding to a continuum of physical states. It appears that it
would vanish in the ϵ → 0 limit, but this is compensated by a 1

ϵ
from a pole in the prefactor 0(2 − d), which we therefore want
to keep. (Further discussion of such subtleties may be found in
Ref. [36].)

The next subtlety to discuss is the meaning of the scale Λ. We
could imagine that this is a true cutoff: local field theory begins at
the scale Λ, at which point operators already exist with unusual
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scaling dimensions, and we are simply given the Lagrangian. But,
especially since the values of Λ that we can probe will not be
far beyond the TeV scale, it seems more likely that the physics
is established at some higher energy scale, possibly in terms of
weakly-coupled elementary fields, and RG running toward strong
coupling leads to the development of large anomalous dimensions
and CFT-like behavior. In this caseΛmay be a combination of other
underlying mass scales.

We will not dwell at length on UV completions in this paper,
but let us elaborate on this point. Say that the operator O has a
nontrivial scaling dimension, perhaps d = 2 + ϵ. Then we might
parametrize its coupling to the Standard Model as 1

Λϵ
hĎhO. This

is an unusual expression, and especially if Λ is a relatively low
scale (say, 10 TeV), we should expect that there is dynamics lurking
behind it. Perhaps, for example, at some energyΛ0 this originated
in a dimension-5 interaction of weakly-coupled fields, 1

Λ0
hĎhψ̄ψ ,

and then some other interactions at strong coupling drove the
operator ψ̄ψ to have a nontrivial scaling dimension. If these
interactions became important at a scaleM ≪ Λ0, then we should
match ψ̄ψ → M1−ϵO, and we infer that the effective scale Λ
suppressing the operator at low energies isΛ = Λ0(Λ0/M)

1−ϵ
ϵ ≫

Λ0. Meanwhile, depending on the UV completion, perhaps there
were also contact interactions directly linking the Higgs to dark
matter at the scale Λ0. The fact that Λ ≫ Λ0 thus raises two
concerns:

• If M ≪ Λ0 ≪ Λ, then we either have to make Λ quite
large (suppressing our signals) or squeeze a lot of dynamics
into energies near the weak scale (possibly giving rise to new
constraints).

• If other baryon–dark matter interactions are suppressed byΛ0
rather thanΛ, theymay give larger effects than thosemediated
by O.

These concerns suggest to us that we should focus on cases where
O is an operator of lowdimension. IfO mediates a long-range force,
which is to say, if the effective amplitude for scattering mediated
byO is proportional to a negative power of−q2, then the powers of
(Λ0/Λ) that tend to suppress the effects of O-mediated exchange
may be overcome by powers of the large ratio Λ2/(−q2) ≫ 1.
Precisely because direct detection operates at low momentum
transfer, the effects that we are studying may be observable.

Given any effective continuum-mediated model, it would be
interesting to follow this logic through more carefully in concrete
UV completions. For now, however, we simply take away the
general lesson that continuum-mediated scattering is most likely
to be observable when the amplitude involves negative powers
of −q2, and is potentially subdominant (though this is UV-
dependent) to contact interactions when this is not the case.

2.5. Implications of the mass gap

For a free field, the change from massless to massive is
straightforward: we replace the propagator i/q2 with i/(q2 −

m2). (For higher spin fields there are also modifications to the
tensor structure in the numerator.) But for generic operators,
there is no universal prescription for how the mass gap appears
in the two-point function. The spectral function will be zero
below the threshold mass m, and nonzero above it, asymptoting
to the gapless answer; but the near-threshold behavior could be
quite complicated. For confining gauge theories, for instance, we
have no analytic tools to compute the precise spectral function.
Nonetheless, it is useful to have some simple examples to make
more quantitative statements about to what extent a ∼10 MeV
mass gap can alter simple scale-invariant predictions for direct
detection rates. For direct detection, we are interested in spacelike
values q2 < 0, because q is a momentum transfer; this helps to
protect our answers from extreme sensitivity to the near threshold
behavior, since the threshold and any associated peaks in the
spectral function are at q2 > 0.

Let us explore how sensitive the answer is to different models
of the mass gap. The simplest conceivable toy model is to replace
(−q2)α → (m2

− q2)α [65]. Other toy models can come from
loops ofmassive particles or from confining gauge theories or extra
dimensions. For simplicity and concreteness, let us focus on the
case of dimension 2 scalar operators, for which the CFT two-point
function is (up to normalization) simply log(−q2). The simple toy
model, then, would replace this with log(m2

− q2). One way to
obtain a dimension 2 scalar is as a product of two free scalars; in
this case the spectral function arises from a loop integral. If we
give the free scalar a mass m0, we introduce a branch cut for the
two-particle operator at the threshold m = 2m0, and find that
Π(q2) ∝

 1
0 dx log(−x(1−x)q2+

1
4m

2)+2. (We shift the result by
two so the asymptotics matches log(−q2) at −q2 → ∞.) A third
toy model motivated by the RS2 interpretation of the conformal
two-point function is to imagine inserting an infrared brane or
‘‘hardwall’’ to produce amass gap, as in RS1 [66], or approximately
in confining gauge theory at large ’t Hooft coupling (see e.g. [67]).
We can then compute

Π(q2) =

J0(

q2/q20) log(q

2/q20)− πY0(


q2/q20)

J0(

q2/q20)

. (13)

If x1 ≈ 2.404 is the first root of J0(x), thenwe choose q20 = m2/x21 to
obtain a mass threshold m. For this model the spectral function is
a sum over poles, as in a large-N gauge theory. In a finite-N theory
all of these poles acquire a width; we can approximate this effect
on the spectral function by studying the large-N answer slightly
away from the real axis, effectively smearing out the narrow states:
ρ∆(s) =

1
2i (Π(s+ i∆)−Π(s− i∆)) [68,69]. An alternative large-N

model, perhaps more representative of real QCD (or other theories
with small UV ’t Hooft coupling), is the digamma function [69–71]:
Π(q2) = ψ(−q2 + m2), which has its first pole at m2 and
asymptotes to log(−q2) for large negative q2.

These four toymodels are illustrated in Fig. 1. The right-hand
panel shows the smeared spectral function, which varies from a
step function (in the simple log(−q2 + m2) ansatz) to a smooth
curve that turns on (the loop of massive scalars) to wildly bumpy
curves characteristic of confining large-N theories with many
narrow resonances. Despite these dramatically different spectral
functions, the behavior for spacelike momentum, as shown in the
left-hand plot, is qualitatively similar in every case. In particular,
the corrections to the asymptotic conformal answer when −q2 ≫

m2 are very small. This gives us confidence that the behavior of
the direct detection cross section can be approximated with the
simplest toy ansatz, q2 → q2 − m2, even without a detailed
model for the origin of the mass gap. Such an ansatz will certainly
lead to the correct qualitative physics, and will be quantitatively
reasonable unless we probe too close to

q2 ≈ m2.
Although we have only given examples for the special case

d = 2, we expect that similar results would be obtained for other
dimensions. (Hard and soft wall extra dimensional theories can
produce results for arbitrary operator dimension by varying the
bulk mass; generalizing the loop ansatz in a well-motivated way
appears more difficult.)

3. Higgs portal

First, let us briefly analyze the higgs portal for the continuum-
mediated Dirac fermion DM. Because it involves a scalar operator,
this case is formally the simplest. Although we will immediately
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Fig. 1. Four toy models for a mass gap in the two-point function of a dimension-2 scalar operator. In every case, Π(q2) → log(−q2) in the spacelike region q2 ≪ 0. The
four models are similar at spacelike momentum (left) but differ greatly for timelike momentum (right). Solid blue: the simple replacement log(−q2 + m2). Dashed orange:
the result for a loop of free massive scalars. Dotted green: the Randall–Sundrum or ‘‘hard-wall’’ ansatz, characteristic of confinement at large ’t Hooft coupling. Dot-dashed
red: the digamma function, a toy model of QCD-like confinement. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
see this portal is excluded by the current data, at least within
the standard cosmology, some of the results that we get here
are relevant for a much more motivated hypercharge portal. The
coupling of the mediator to the SM that we assume in the Higgs
portal is

L = cH
HĎHO

Λd−2
, (14)

with d being a scaling dimension of the scalar operator O, whose
critical dimension is 1. The most generic coupling that one could
write down to the fermionic DM is

L = c0
Oχ̄χ

Λd−1
+ c̃0

Oχ̄γ 5χ

Λd−1
. (15)

Note that a priori the scales Λ in Eqs. (14) and (15) can be very
different from one another. We absorb these differences in the
couplings c0 and cH which are not necessarily O(1).

As we claimed in Section 2 these interactions can be reduced
to the standard fermionic higgs portal with a q2-dependent
coefficient. This approach is very similar to the approach that we
are taking in the hypercharge portal scenario, wherewewill define
q2-dependent moments. The effective higgs portal is

L = ceff(q2)
|H|

2χ̄χ

Λ
+ c̃eff(q2)

|H|
2χ̄γ 5χ

Λ
(16)

with

ceff ≡
cHc00(2 − d)
4d−10(d)


−q2

Λ2

d−2

. (17)

The expression for c̃eff is identical to that for ceff up to an obvious
change c0 → c̃0. It is very easy to qualitatively understand what
would be the implications of this kind of higgs portal on direct
detection. The momentum-dependent coupling ceff(q2) would
translate into an effective dependence of the recoil spectrum on
q2, inducing an effective form factor, which has nothing to do
with either nuclear or dark matter form factors, but rather arises
because of the unusual properties of the mediator.

Unfortunately, higgs portal continuum-mediated DM is not
viable because of the immediate clash between the induced mass-
gap in the mediator sector and the cosmological constraints.
Interestingly, for any d < 4, Eq. (14) induces a mass gap in the
mediator sector which is

mgap =


cHv2

Λd−2

 1
(4−d)

. (18)
Of course if this mass gap is too small we can always assume extra
sources, whichmight generate an additional mass gap. However, it
is difficult to see how one would significantly reduce this induced
mass gap without very severe fine-tuning. At first glance the
automatic presence of a mass gap is good from the point of view
of satisfying BBN constraints; the problem is that the model is too
predictive, implying too long a lifetime for a given mass gap.

As we will immediately see the induced mass gap (18) is too
large in those regions of parameter space where we can satisfy
the cosmological constraints. As explained in Section 2, the lightest
particle in the mediation sector with a mass of order mgap should
decay faster than one second. Assuming that this particle is a scalar
swith a massms we can write down its matrix element as

⟨0|O|p⟩ = ξsmd−1
s eip·x. (19)

In this expression ξs is an unknown O(1) constant, that we will
take to one in our further estimates. Therefore the term (14)
induces mixing between the scalar s and the physical h, which the
scalar s can decay through. Kinematically, only decays s → e+e−

and s → γ γ are allowed and their rates are

0(s → e+e−) =
2c2Hv

2m2d−2
s

Λ2d−4m4
h
Γh→e+e−(ms) (20)

0(s → γ γ ) =
2c2Hv

2m2d−2
s

Λ2d−4m4
h
Γh→γ γ (ms), (21)

where Γh→XX (ms) stands for the higgs partial decay widths if it
had a mass ms, rather than mh. In the relevant range of s masses,
1 MeV < ms < 100 MeV one can easily see that the γ γ channel
is completely subdominant and disregard it. The decay to the
electron pairs is the only viable decay channel of s, and because the
rate is suppressed by the electron Yukawa squared, the constraints
are not very easy to satisfy. In practice the constraint τs < 1 sec
translates to the following bound:

c2H


Λ

100 GeV

2  ms

10 MeV

 ms

Λ

2d−2
> 2 × 10−11. (22)

It is easy to see that one cannot satisfy this constraint and the
demand mgap . 50 MeV simultaneously. The latter suggests that
d > 3 for any phenomenologically interesting range of the scale
Λ. The former demands that d . 2.34 for Λ ∼ 1 TeV, and even
slightly smaller values of d for higher values ofΛ.

Of course, the constraint on the decay time of the lightest
narrow state can be circumvented if we assume non-standard
cosmology, but we still view the constraints on this scenario as
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not appealing and further concentrate on the hypercharge portal,
which is much more promising.1 Precisely because it does not
involve a scalar operator, the coupling to the StandardModel in the
hypercharge portal case does not automatically deform theCFT and
produce a mass gap, so masses and lifetimes are no longer closely
linked and there will be a larger viable parameter space to explore.

4. Hypercharge portals

4.1. Portal and recoil spectrum

We start from studying the hypercharge portal where the
hypercharge field strength couples to an antisymmetric operator,

L =
cB
Λd−2

BµνOµν . (23)

The critical dimension of the antisymmetric tensor is 2, so the
dimension of this operator is always bigger than or equal to 4.
This is a unique portal in the SM, because it allows coupling of the
BSM bosonic particles to the SMwith an operator of dimension 4.2
Moreover, in the context of the DM, it is the only low-dimension
operatorwhich allows couplings of the DM to the SMwhich are not
suppressed by themasses of heavymediators: EWbosons, Higgs or
BSM particles (e.g. Z ′).

The event rate and the total cross sections in the direct detection
experiment strongly depend on the coupling of the antisymmetric
tensor Oµν to the DM particles. Hereafter we will only consider
operatorswith dimensions not higher than 6 in the limit d[Oµν] →

2. With this restriction, and assuming fermionic dark matter one
can straightforwardly write down three different coupling of the
DM to this operator:

L =
c2
Λd−1

Oµν χ̄σ
µνχ (24)

L =
c̃2
Λd−1

Oµνχσ
µνγ 5χ (25)

L =
c̄2
Λd
∂νOµν χ̄γ

µγ 5χ. (26)

Because of the structure of these operators, which are identical to
the magnetic dipole moment (MDM), the electric dipole moment
(EDM) and to the anapole by replacing Oµν → Fµν , we will loosely
refer to each of these options as magnetic, electric and anapole
hypercharge portals respectively. As in the previous sections, we
do not necessarily assume that the couplings cB, c2, c̃2 and c̄2 are
order one.

Aswebriefly outline in Section 2 andprove in theAppendix, one
can reduce each of these couplings to the effective dipole/anapole
coupling of theDMto the SMphoton, reweightedby an appropriate
power of −q2, where the latter is the momentum exchanged
between the DM and the nucleus in the scattering process.
Therefore, each of these terms yields an effective (momentum-
dependent) DM dipole moment, which depends on an appropriate

1 Another potential way to circumvent the constraints on the higgs portal would
be speeding up the decay of the scalar s by introducing new couplings, which do not
necessarily have anything to dowith theDM, e.g.OF 2

µν . However this is not themost
minimal scenario and these types of couplings comewith their own constraints.We
relegate the analysis of these non-minimal scenarios to future studies.
2 Another unique portal which allows coupling of the BSM fermions to the SM

with an operator of dimension 4 is the so-called ‘‘neutrino portal’’ HL. We will not
consider the fermionicmediators in this paper,mainly because it is not easy to think
about a scenario, where it would not spoil observed neutrino properties.
power of−q2. The explicit calculation gives the following effective
magnetic dipole moment for the operator (24):

µmag =
cBc2 cos θW
Λ2d−3

0(3 − d)
4d−20(d + 1)


−q2

d−2
. (27)

For the EDM and the anapole hypercharge portals we get exactly
the same expression for the effective moment with an obvious
replacement c2 → c̃2 for the EDM and c2 → c̄2,Λ2d−3

→ Λ2d−2

for the anapole moment.
Because all the effective moments depend in a non-trivial way

on the momentum transfer q2, we expect that the differential
event rates dR/dER will be modified compared to the ‘‘standard’’
DM dipole/anapole scenario. One can refer to the factor (q2)d−2

as an effective DM form factor. However this form factor arises
because of the non-trivial dynamics in themediation sector, rather
than non-trivial structure of the DM. Of course these effective
DM form-factors multiply the nuclear form-factor in the direct
detection picture, yielding distinctive event distributions in the
direct detection experiments.

It is also worth noticing that the effective DM form-factors will
be further modified compared to the perfect CFT limit by the mass
gap effects. If this mass gap is not too far away from the BBN
limit, namely mgap ∼ O(1 . . . 10)MeV, this modification is mostly
important in the low-energy recoil regime. Therefore we expect
stronger modifications for the lighter elements, e.g. fluorine and
oxygen, while the heavy elements like xenon might be only very
weakly sensitive to the mass gap effects.

To illustrate these points we show the expected rate distribu-
tions dR/dER assuming scattering on both 131Xe and 19F for both
electric andmagnetic dipoles on Fig. 2.3 These figures are meant to
illustrate only the shape of the curve, and so have arbitrary normal-
ization. The differences between the distributions are clearly seen.
We further show the rates if the conformal invariance is broken by
mass gaps mgap = 15 MeV and mgap = 40 MeV in Fig. 3. In this
case, the overall normalization remains arbitrary but the relative
normalization of curves on the same plot is important, showing
how the mass gap suppresses the overall rate in a momentum-
dependent manner. To model the mass gap here we use the most
naivemodel, namelywe replace−q2 → (−q2+m2

gap). Because the
momentum transfer is spacelikewe assume very little possible dif-
ference betweendifferentways tomodel this effect (see Section 2.5
for details). As we see the effect is minor or very minor for scatter-
ing on 131Xe, however it is as expected muchmore pronounced for
scattering on 19F.

Fromherewe can immediately calculate the total cross sections
and the differential event rates in the direct detection experiments.
Of course, there are differences between the electric dipole on one
side and magnetic dipole/anapole on another side. While the cross
section of the former is enhanced by q−1 in the d[Oµν] → 2
limit, the cross sections of the anapole are completely regular and
behave as q0 in this limit. The MDM cross section is technically
also enhanced by q−1 and the total cross-section diverges in
the deep IR, this term is suppressed by the transverse velocity,
translating to the non-relativistic operator i

q2
S⃗χ ·(q⃗×v⃗). Therefore,

we expect to get much bigger cross sections in the EDM case
than in the other cases for the same values of Λ and d. The
cross sections have been calculated in multiple previous works

3 In xenon experiments like LUX and Xenon100 one of course is sensitive to the
nuclear responses of all the seven stable xenon isotopes, and not only to 131Xe.
We checked this explicitly, and the distributions that we show do not change
significantlywhen all other isotopes are included. Therefore here for the illustration
purposes we just use one isotope.
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Fig. 2. Event rate in arbitrary units for electric-hypercharge (top panel) andmagnetic-hypercharge (bottom panel) portals for different values of d. Green, orange and brown
lines stand for d = 2.3, 2.7, 3.4 respectively. The curves have been artificially scaled to intersect at a single point, because the goal is to convey shape information only. The
isotope 131Xe is shown at left and 19F at right. Notice that, due to different behavior of nuclear form factors, the shapes can be quite different for different atoms. To guide the
reader’s intuition for how these compare to more familiar scenarios, in the upper-left figure we also show the recoil spectrum arising from the standard contact operator
coupling to mass (χ̄χ N̄N) as a dashed gray line and the same operator with a massless mediator (χ̄χ N̄N/q2) as a dotted gray line. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Event rate in arbitrary units for electric-hypercharge (top panel) and magnetic-hypercharge (bottom panel) portals with and without mass gap. Black (solid), blue
(dashed) and red (dot-dashed) lines stand formgap = 0, 15, 40 MeV respectively. We assume d = 2.7 on all these plots. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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on the dipole/anapole DM [72–76]. The EDM cross section can be
calculated from integrating the following expression

dσEDM
d cos θ

=
Z2e2

4πv2
µ2

el(q
2(cos θ))

1 − cos θ
(28)

which is of course divergent for d = 2, but finite for any other
legitimate choice of d.

The expression for the MDM cross section is slightly more
complicated, and includes both a finite dipole–dipole piece and
a formally divergent dipole–charge radius interaction. The cross
sections for these interactions are
dσMDM-charge

d cos θ
=

e2µ2
mag(q

2(cos θ))Z2

4π

×


1

1 − cos θ
−

mχ

(mχ + mA)v2


(29)

dσMDM−MDM

d cos θ
=
µ2

Zµ
2
mag(q

2(cos θ))

2πv2
. (30)

One can get total cross sections for the DM–nucleon scattering
from integrating these expressions over cos θ . However, as we
will explain later in Section 4.5, the direct detection experiments
are sensitive to the effective cross sections, rather than ‘‘honest’’
total cross sections. Therefore, we will return to this question in
Section 4.5 and get numerically the effective cross sections, taking
into account the constraints on operator (23).

4.2. The BBN constraint

As we have mentioned in Section 2.2, we imagine that there
is a mass gap for particles created by the operator Oµν and that
these particles decay before BBN. First, let us suppose that the only
particles we need to concern ourselves with are those created by
Oµν . Consider a vector particle V of mass mV , which has a matrix
element
0|Oµν(x)|p, ϵ


= ξVmd−2

V


ϵµpν − ϵνpµ


eip·x. (31)

Here ξV is an order-one constant whose value can only be com-
puted ifweunderstand the detailed dynamics behind themass gap.

Through the mixing of Oµν with hypercharge, the V particle
can decay into charged Standard Model particles. In the mass
range mV ∼ 10 MeV that is primarily of interest to us, the only
kinematically accessible particles will be electrons since me− ≈

511 keV. Neutrinos also carry hypercharge, but we are considering
a process at energies below the Z boson mass for which a decay
to neutrinos will carry extram2

V/m
2
Z suppression in the amplitude.

As a result, we are interested in computing the partial width for
the decay V → e+e−. This is closely analogous to the ρ0

→

e+e− process in QCD, which proceeds via kinetic mixing of the
rho and the photon, or the frequently studied case of dark photons
(e.g. [77]). The kinetic mixing of the V particle is

ϵV

2
VµνFµν, ϵV = 2cBξV cos θW

mV

Λ

d−2
. (32)

We compute

0(V → e+e−) ≈
4
3
ξ 2V c

2
Bα cos2 θWmV

mV

Λ

2d−4

×


1 +

2m2
e

m2
V

 
1 −

4m2
e

m2
V
. (33)

We require the lifetime τ(V → e+e−) . 1 s in order to avoid BBN
constraints. This translates into a bound (dropping the phase space
factors, which are negligible ifmV ≫ 1 MeV):

ξ 2V c
2
B

mV

Λ

2d−4  mV

10 MeV


& 9 × 10−21. (34)
As expected, then, decay of the vector can easily happenbefore BBN
when d is not too large. Alternatively, we can express the bound in
terms of the effective mixing as

ϵV & 1.7 × 10−10


10 MeV

mV
. (35)

We note that this estimate could be overly conservative: more
detailed computations of constraints on dark photons from BBN
and the CMB have found that smaller values of ϵV may be safe [78].
On the other hand, these studies have assumed a single dark
photon with abundance determined from thermal equilibrium; in
our case, there is a whole dark sector. Precise constraints may
depend on the full model of the sector, but we will take our simple
estimates to be the best guide available in the absence of a detailed
model-dependent study.

The above constraint is the correct one if the only particles in
the approximately scale-invariant sector are vectors, in which case
they all decay directly through the mixing with hypercharge. On
the other hand, familiarity with a range of examples of strongly-
interacting theories tells us that often the lightest states are scalars
or pseudoscalars. These could decay through other portals, like
the Higgs portal—though as we noted above, the small value
of the electron Yukawa suppresses decays through that portal.
Alternatively, we could assume that the mixing between Oµν and
hypercharge is the only coupling between this sector and the
Standard Model. It does not permit a direct decay of a light scalar
into Standard Model states. However, the scale-invariant sector
will in general admit couplings of such a light scalar to heavier
vectors,which in turnmixwith the StandardModel. Suppose, then,
thatwe have in addition to the vector V considered above a scalar S
with massmS < mV . We expect that the strong sector will contain
couplings like

Leff =
ξSVV

mV
SVµνVµν, (36)

where we assume that mS ∼ mV ∼ mgap are all of the same order
and ξSVV is an order-one number. This effective coupling allows
the decay S → γ γ through two insertions of V − γ mixing. We
compute this decay width to be:

0(S → γ γ ) ≈ ξ 2SVV ξ
4
V cos4 θW c4B

mV

Λ

4d−8 m3
S

4πm2
V
. (37)

Again, if we impose a τ . 1 s constraint this leads to a bound:

ξ 2SVV ξ
4
V c

4
B

mV

Λ

4d−8  mS

10 MeV

3

15 MeV

mV

2

& 3.2 × 10−21. (38)

Again, we can write this as a bound on the mixing

ϵV & 1.3 × 10−5 ξ
−1/2
SVV


10 MeV

mS

3/4  mV

15 MeV

1/2
. (39)

In the alternative case that the lightest state is a pseudoscalar P , the
logic is essentially identicalwith themodification that the effective
coupling is of the type PVµν Ṽµν . We take this to be a conservative
bound on the constraint imposed by BBN on the hypercharge
portal. Of course, if the lightest state really is a vector, we can use
the safer bound from V → e+e−.

In both cases, we see that the most obvious danger arises
when d ≫ 2. In that case the small ratio mV/Λ is raised to
a significant power and could potentially become small enough
to cause problems. On the other hand, direct constraints tend
to be strongest at small values of d, so we will carefully check
whether the parameter space we consider below conflicts with
these constraints. However, as we noted in Section 2.2, it is also
possible that a nonstandard cosmological history can eliminate the
problem even if these bounds are violated.
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Fig. 4. Region of parameter space allowed by the inequality (40) in blue. We have
fixed cB =

1
16π2 (representative of a one-loop factor), ξV = 1, and mV = 10 MeV,

and plot the band of allowedmixing ϵV as a function of d andΛ. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

4.3. Further constraints from dark photon bounds

Many experimental searches have placed constraints on a
massive vector particle V whose field strength mixes with that
of hypercharge. These are generally referred to as ‘‘dark photon’’
searches and rely on a combination of precision measurements,
searches for rare meson decays, and low-energy collider or fixed
target experiments [77,79–81]. Further constraints on the small-
mixing regime arise from the effect of dark photon production
on energy loss in supernovas [82]. Recent reviews of the status
may be found in [83,84]. The continuum that we are interested
in is a limiting case of a tower of dark photons with different
masses and with a mass-dependent kinetic mixing parameter.
Some constraints on dark photons carry over directly to our
scenario. Others involve searches for narrow spectral features and
no longer apply to a continuum of new particles. However, in the
presence of a mass gap, it is quite plausible that near threshold
there is awell-defined, narrow single-particle state. In the case that
the spectral function consists of a sum over narrow poles from a
warped extra dimension, it has been argued that the lightest state
will give rise to the most important constraint [39].

One of the strongest constraints for resonances in the mass
range of interest, near 10 MeV, is from the NA48/2 experiment at
CERN, which searched for decays π0

→ γ V with V → e+e− [85].
They have expressed the constraint as an upper bound on ϵ2V which
fluctuates, over the mass range 10 MeV . mV . 20 MeV, between
about 2 × 10−7 and 8 × 10−7. Other interesting bounds come
from beam dump experiments [81,86,87]. For ϵV ∼ 10−3, the
Fermilab E774 experiment [88] excludesmV . 10MeV. Formasses
10 MeV . mV . 20 MeV, a combination of the SLAC E141 [89],
SLAC E137 [90], KEK [91], and Orsay [92] beam dump experiments
exclude a wide range of mixings between about 10−8 and few ×

10−4. Supernova constraints further exclude the range 10−10 .
ϵV . 10−8 for dark photon masses up to around 100 MeV [82,93,
94] and the lack of observations related to electromagnetic decays
of the dark photon outside the supernova exclude a further range
10−12 . ϵV . 10−10 formV . 20 MeV [95].

Reanalyzing all available data for the case of a continuum of
states is both beyond the scope of this paper and highly model-
dependent. Unlike direct detection phenomenology, searches for
dark photons directly probe the timelike region of the two-point
function forOµν and the result can be very sensitive to the detailed
mechanism for generating amass gap. Theories with a sequence of
many narrow resonances are subject to a wider variety of direct
constraints than theories with a broad continuum. We expect
that there will likely be a resonance-like state near the mass
threshold, based on analogy to QCD-like theories, but even this is
not obviously guaranteed by general principles of quantum field
theory. Furthermore, the amount of spectral weight in such a state
is not guaranteed; that is to say, we might find that the parameter
ξV in (31) is significantly smaller than one, relaxing the bounds.
Caveats aside, there is essentially only one window in which we
might aim for the light state V to lie:

2 × 10−4 . ϵV . 10−3. (40)

with 10 MeV . mV . 20 MeV (to avoid the E774 constraint while
still maintaining continuum-like direct detection phenomenol-
ogy). This window squeezes in between beam dump constraints
and the π0 decay search. The combination of beam dump and su-
pernova constraints rule out all smaller mixings above the BBN
constraint (35) and are fairly robust: for instance, even if further
dark sector states exist and a decay like V → SS is allowed and
prompt, the S particle will not promptly decay to Standard Model
particles unless couplings through portals other than just hyper-
charge are added to the theory. In the window (40) of allowed ϵV ,
decays of the V particle are prompt on collider length scales and
even the BBN constraint (39) for the case of scalar decays is safe.

This constraints are visualized in Fig. 4. We see that for
reasonable values of the suppression scale Λ, in the region of
allowed ϵ (in blue) the parameter space d → 2 is compatible with
suppression scales a feworders ofmagnitude above theweak scale.

4.4. Constraint from exotic Z decays

Mixing of the Z boson with the operator Oµν allows the Z to
decay into lightmediators. Thesemay shower or cascade in various
ways, possibly producing a large multiplicity of light particles, like
the vector V or scalar S discussed above. Depending on the lifetime
of these particles the event could be invisible or there could be
distinctive signals involving lepton jets [96], photon jets [97],
displaced vertices, or combinations thereof. Without a detailed
model, it is difficult to say preciselywhat the LEP constraint on such
exotic decays might be, or even whether the tightest constraint
arises from LEP rather than from a hadron collider. Consequently,
we will focus on a very robust limit arising from the total width
of the Z boson. The Z boson width is measured to be ΓZ =

2.4952 ± 0.0023 GeV [98] whereas the global electroweak fit not
including direct measurements of the width gives ΓZ = 2.4946 ±

0.0016 GeV [99]. From these numbers we estimate the constraint
on the total new physics contribution to the Z boson width,

Γ new
Z . 6 MeV. (41)

The bound for invisible decays is somewhat stricter, but not
dramatically so [100].

We will denote the decay width induced by the mixing of the Z
withOµν by0(Z → CFT), even though a smallmass gapmaymean
that strictly speaking we are not decaying to a conformal sector.
To compute this width we exploit the optical theorem, which tells
us that 0(Z → CFT) =

1
mZ

ImM(Z → Z), where M(Z → Z)
is the amplitude for the Z boson to mix with the mediator and
then mix back. The imaginary part of the amplitude comes from
the discontinuity across the branch cut in the factor (−k2)d−2 in the
two-point function ofOµν : Disc


(−k2)d−2


= 2i sin(πd)(−k2)d−2.

Using the identity sin(πd) =
π

0(d)0(1−d) , we find

0(Z → CFT) =
2πc2B sin2 θW (d − 1)(d − 2)

0(d)0(d + 1)

mZ

2Λ

2d−4
mZ . (42)
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Fig. 5. Constraints on couplings in the theory from the Z boson exotic width. At left, we also fix cB = 1 and plot the largest allowed value ofΛ as a function of the operator
dimension d. In the region to the left of the dashed line, this value ofΛ obeys the constraint (38) for BBN with a 10 MeV scalar as the lightest state; the entire plot obeys the
constraint (34) for BBNwith a 10MeV vector lightest particle. At right, we varyΛ and d and plot contours of the largest allowed value of cB . Again, the dashed line demarcates
the part of the plot that is safe from BBN even with a light scalar.
Notice that this decay width goes to zero when d → 2; in this
limit the mixing is with a free particle, and the spectral function
has no overlapwith the Z mass. Comparing Eqs. (41) and (42) gives
us a bound on the largest allowed mixing for any model. We plot
this bound in Fig. 5. The figure shows that at small values of d,
approaching the limit of simple kineticmixing, the bounds become
strong and force us to consider large values ofΛ. At larger operator
dimensions, the bound is weaker and even relatively low values
of Λ are allowed by the data. These large operator dimensions
(d & 2.9) can be in conflict with the BBN constraint (38) in the case
that the lightest particle in themediator sector is a scalar. However,
as noted earlier this bound can be avoided by adding more direct
couplings of the scalar operator to the SM (e.g. to the Higgs portal)
or by unconventional thermal histories of the early universe.

4.5. Maximum total cross sections

The constraints from dark photon searches and new contribu-
tions to the Z boson width lead to a maximum possible direct de-
tection cross section for a given operator dimension and value of
c2. We would like to assess how large a total cross section it is rea-
sonable to obtain. However, the total cross section itself is not an
ideal quantity to plot. The reason is that, particularly for models
that produce distributions dR/dER that are highly peaked at low
energy transfers, the total cross section may not be reflective of
the event rate in a real experiment with a finite energy threshold.
(Indeed, the total cross section may not even be defined, for suf-
ficiently singular behavior at low ER.) As a result, we will define a
notion of ‘‘effective total cross section’’.

The typical exclusion plot of an experiment like LUX gives a
constraint on the dark matter–proton scattering cross section. Of
course, this involves an assumption, and makes the most sense
for the case in which the operator involved in the non-relativistic
theory is simply 1, e.g. when the underlying relativistic interaction
is χ̄χ N̄N . Thus, to get a roughnotion of the total event rate allowed,
we take the following definition: For a given model of interest,
the effective dark matter–proton cross section σ eff

p is defined
as the value of σp obtained in a model with a 100 GeV Dirac
dark matter particle χ scattering through the interaction χ̄χ p̄p
that gives the same integrated rate for scattering on 131Xe over
the recoil energy range 3–25 keV as the model of interest. This
definition has the disadvantage of making explicit reference to a
particular experiment and its range of accessible recoil energies.
However, any definition of cross section that we compare across
different experiments and different models must build in some
assumptions. Rigorously speaking, we should fit each individual
model across all experiments. For the simple purpose of getting
an order-of-magnitude sense of how the scattering rate allowed
by our model compares to the scattering rate of a more standard
model, on the other hand, σ eff

p is fairly useful.
With these interpretational caveats out of the way, we present

the result for the largest σ eff
p allowed by the dark photon and Z

width constraints. We compute dR/dER for the comparison model,
L =

fp
Λ2 χ̄χ p̄p, using the code of Ref. [4], thennumerically integrate

over ER from 3 to 25 keV. For this model, σp =
µ2
p
π


fp
Λ2

2
. We

also compute dR/dER for our model of interest with the same code,
putting in a contact interaction and then weighting the answer
by appropriate powers of −q2 or of (−q2 + m2

gap) to model the
continuum exchange. Finally, we scale fp so that the integrated
rates match and read off the corresponding value of σp.

The result of this exercise, for dark matter scattering on 131Xe,
is presented in Fig. 6. The plot illustrates that there is no allowed
cross section when d & 2.6, because the Z width, beam dump,
and supernova constraints forbid all possible ϵV & 10−10 and
smaller ϵV are excluded by BBN. For smaller values of d compatible
with the range 2 × 10−4 . ϵV . 10−3, the largest allowed
cross section is determined mostly by the dark photon constraint
when d . 2.4 and mostly by the Z width constraint when d &
2.4. Notice that the cross sections allowed for EDMs are several
orders of magnitude larger than for MDMs. This is because, at fixed
coefficient cB, the non-relativistic scattering through the MDM
operator is suppressed by v2 ∼ 10−6 relative to that through the
EDM operator.

To summarize our results, despite the existence of a variety of
stringent constraints on the operatorOµν coupling to hypercharge,
arising fromboth low-energy probes like beam-dumpexperiments
and pion decay and high-energy probes like Z boson decays,
there is a range of dimensions – roughly 2 . d . 2.6 –
for which sizable direct detection cross sections could occur. Of
course, direct detection experiments themselves can constrain this
region. However, due to the unusual spectral shapes that appear
in continuum-mediated scattering, a new analysis of the direct
detection datawill be necessary to derive precise bounds.We leave
such analyses for future work.

5. Conclusions

As the simplest models of WIMPs come under strain from
a variety of experiments (direct detection, indirect detection,
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Fig. 6. The largest effective cross section σ eff
p for darkmatter scattering on 131Xe allowed by the constraints from dark photon searches and the Z boson width. The left-hand

plot is for magnetic dipole-type couplings of DM to Oµν and the right-hand plot for electric dipole-type coupling. We fix c2 = 1 and a dark matter mass of 100 GeV. For a
given Λ and d, the largest allowed value of cB is chosen. At small d this is determined by the dark photon constraint ϵV . 10−3 . At somewhat larger d & 2.4 the Z width
becomes the dominant constraint. At the point that the Z width no longer allows ϵV & 2 × 10−4 , the beam dump and supernova constraints on dark photons force us all
the way down to ϵV so small that the dark photons would decay after BBN, so no cross section is allowed above d ≈ 2.6. What is plotted is the cross section σp in square
centimeters associated to a model with scalar contact interaction achieving the same integrated rate.
and colliders), it becomes increasingly important to broaden our
theoretical vision of what dark matter might be. In recent years,
a large number of directions have been explored. One common
theme is the possibility of a dark sector, with additional new
particles beyond the dark matter alone. In this paper we have
explored a novel type of dark sector in which the scattering of
dark matter with ordinary matter proceeds not through a contact
interaction or the exchange of a single particle but through a
continuum of mediators.

The basic formalism for direct detection is simple: the contin-
uum mediator multiplies the amplitude by a function of q2, which
in the simplest scale-invariant scenario is just a power law. How-
ever, as we have seen, various complications arise. If we wish to
have a mass gap to avoid BBN constraints, the direct detection
phenomenology can be surprisingly robust, but the constraints
imposed on the scenario from other experiments may be very sen-
sitive to the nature of themass gap.We have explored this in some
detail for the case of an antisymmetric tensor mediator coupling
to the field strength of hypercharge. A combination of low-energy
and high-energy accelerator experiments puts significant restric-
tions on the allowed parameter space. Nonetheless, we have ar-
gued that these constraints still allow room for quite large and
detectable signals at direct detection experiments like LUX.

Many aspects of our analysis could be refined in the future,
as the interplay between direct detection experiments and other
experiments is complex.We have not discussed indirect detection,
where the Sommerfeld effect may be relevant (see [37] for related
work). The annihilations are expected to proceed dominantly
into the states of the approximately conformal sector, undergo
complicated cascades and then finally decays into the SMparticles.
Eventually the annihilation mode closely resembles the hidden
valley scenario (2 → many). This distinctive annihilation pattern
together with potential signal in low-energy searches for the light
dark photon can potentially help to differentiate this scenario
from an ordinary form-factor DM, which otherwise looks identical
to the continuum mediated DM scenario in the direct detection
experiments. These directions would be interesting to explore
further.

Despite these complexities, the picture for direct detection
is extremely simple, and searches for unusual dependence of
signals on recoil energy are well worth pursuing. It is an exciting
possibility that the discovery of dark matter could also be the
discovery of a rich, interacting sector that could exhibit novel
quantum field theoretic phenomena like scale-invariance in ways
that we have not previously seen in particle physics.
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Appendix. Factorization example: antisymmetric tensor

Let us consider two different scenarios that involve the
dark matter tensor current operator χĎσµνχ coupling to some
mediator. The first case is the standard electric or magnetic dipole
moment coupling to the photon:

L1 = cχ cσµνχFµν + h.c. (43)

In the second case, we couple to some more general operator Oµν

of dimension d ≥ 2 that mixes with the photon’s field strength:

L2 = c1χ cσµνχOµν + h.c.+ c2OµνFµν . (44)

Thequestion iswhether these two Lagrangians can lead to different
tensor structures or form factors. We will see that they do not.

In this computation we will use the following two propagators
for the photon and the tensor field Oµν :
Aµ(q)Aν(−q)


≡ Πµν(q) =

1
q2


gµν −

qµqν
q2


, (45)

Oµν(q)Oλσ (−q)

≡ Pµν,λσ (q) ∝ −(−q2)d−2

×


gµλgνσ − 2gµλ

qνqσ
q2

− 2gνσ
qµqλ
q2


− (µ ↔ ν)


. (46)
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A.1. Hypercharge with dipole moments

Let us first consider the case of L1:

∝ Jdarkµν (qµΠνρ(q)− qνΠµρ(q)) JSMρ . (47)

Because the electromagnetic field strength is dotted into the
dark matter tensor current, we have one term where the photon
propagator is Πνρ and one where it is Πµρ , each multiplying
the appropriate momentum from the derivative from Fµν . A little
simplification reveals that this amplitude dots the dark tensor
current and visible electromagnetic current into the object

Iµν,ρ(q) ≡ qµΠνρ(q)− qνΠµρ(q) =
qµgνρ − qνgµρ

q2
. (48)

A.2. Antisymmetric tensor mediator

Now we consider the case of L2, where the coupling is
to an antisymmetric tensor field that kinetically mixes with
hypercharge:

∝ Jdarkµν Pµν,λσ (q)

qλΠσρ(q)− qσΠλρ(q)


JSM ρ . (49)

In this case, we first have the propagator of Oµν itself, then an
insertion whichmixes it into electromagnetism, which propagates
and couples to the Standard Model current.

In this case, the structure appearing in the middle is

I′

µν,ρ(q) ≡ Pµν,λσ (q)

qλΠσ

ρ (q)− qσΠλ
ρ (q)


. (50)

Contracting all of the indices and simplifying, we find that

I′

µν,ρ(q) = 2

−q2

d−2
Iµν,ρ(q). (51)

This shows that the general case of antisymmetric tensor mediator
exchange is equivalent to the case of dark matter with dipole
moments, reweighted by constant factors times an appropriate
power of −q2 where q is the momentum exchanged between dark
matter and the Standard Model in the scattering process.

In particular, when the unitarity bound is saturated and d = 2,
the operator Oµν is the field strength of an abelian gauge field and
this reduces to the usual case of kinetic mixing. In that case, the q
dependence is exactly as for ordinary dipole moment dark matter.

A.3. Comment

In fact, this result should follow on general grounds. The
amplitude necessarily has the form Jdarkµν Iµνρ(q)JSMρ where Iµνρ(q)
is antisymmetric in µ and ν. The only possible tensor structure
is Iµν,ρ(q). More generally, exchange of a mediator field will
always produce at most a small finite set of tensor structures
coupling a dark current to a Standard Model current. If an analysis
of the full set of tensor structures has been carried out for the
exchange of ordinary weakly-coupled particles, then the more
general exchange of operators of arbitrary dimension will not
lead to new tensor structures or form factors, but only to new
momentum dependence in the amplitude.
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