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A b s t r a c t - - I n  this article, we propose a mixed method for the vorticity-velocity formulation of 
the stationary Stokes and Navier-Stokes equations in space dimension three, the unknowns being the 
vorticity and the velocity of the fluid. 

K e y w o r d s - - I n c o m p r e s s i b l e  fluid, Navier-Stokes equations, Vorticity-Velocity formulation, Mixed 
formulation. 

1. I N T R O D U C T I O N  

There  are var ious  formula t ions  for the  th ree -d imens iona l  Navier-Stokes  equat ions ,  each of t h e m  

having  b o t h  advan tages  and  disadvantages .  

In  the  las t  decade,  the  ve loc i ty -vor t ic i ty  formula t ion  of the  Navier -Stokes  equa t ions  a p p e a r e d  

to  an increas ing  number  of people  as an a t t r ac t ive  a l t e rna t ive  to  the  usual  p r imi t ive  var iables  

formula t ion .  In  con t ras t  wi th  the  s t r eam funct ion-vor t ic i ty  formula t ion  t h a t  canno t  eas i ly  be  

e x t e n d e d  to th ree -d imens iona l  flows, the  vor t ic i ty -ve loc i ty  formula t ion  is val id for b o t h  two and  

th ree -d imens iona l  flows. 

In  [1], the  au tho r  gives a closed sys tem of Navier-Stokes  equat ions  in vor t i c i ty -ve loc i ty  var iab les  

which is equivalent  to  the  usual  pr imi t ive  var iables  formulat ion.  

In  t h a t  formula t ion ,  the  vor t i c i ty  w is supp lemen ted  wi th  the  following two b o u n d a r y  condi-  

t ions:  

div  ~ = XY.w = 0 on ~ ,  n.w = n.~Ts × b on 0 ~ ,  

where  b is the  veloci ty  b o u n d a r y  condi t ion  and the  re la t ion  n.w = n . V s  × b on 0 ~  is the  

c o m p o n e n t  of  the  equa t ion  • = ~7 × u normal  to  the  boundary .  

T h e  a u t h o r  in [1] notes  t h a t  these  condi t ions  cannot  be a p p a r e n t l y  imposed  s imul t aneous ly  

in the  f ramework  of a var ia t iona l  formulat ion,  hence, a d i sadvan tage  of the  vor t i c i ty -ve loc i ty  

formula t ion .  
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In this article, we propose a mixed method for the vorticity-velocity formulation of the station- 
ary Navier-Stokes equations in the three-dimensional case in which these boundaries conditions 
are indeed simultaneously satisfied. We show the existence and uniqueness of solution of the 
variational problem, and prove for the steady-state case, the equivalence of this formulation with 
the Navier-Stokes equations (1). 

2 .  V A R I A T I O N A L  F O R M U L A T I O N  

Let ~ be a bounded, simply-connected domain in ~3 with a Lipschitz-continuous boundary. 
Let us consider the stat ionary incompressible Navier-Stokes equations in primitive variables: 

- u A u  + (u.V) u 4- grad p = f in ~,  

div u = 0 in f~, (1) 

u = b  on 0 ~ .  

The vorticity-velocity formulation can be used to rewrite the system (1). The vorticity w is 
defined by w = V × u = curl u. The equation of motion then reads: 

- y A w  + V x (w x u) = f = curl f in f~, 

- A u  = V x w in f~, 

u = b  o n 0 ~ ,  

div u = V.u = 0 on 0 ~ ,  

div w -- V.w -- 0 on 0 ft, 

n.w -- n .Vs  x b on 0 ~2, 

assuming the following conditions on the data: fo ~ b.n ds -- O. 
We consider the following spaces. 

(2) 

Finally, let 

V = V(0) = { ~ =  (u,w) e X, b(~,#) = 0, V# e M = ~ ( a ) }  

= { ~  = (u, ~ )  e X ,  - A u  = V x ~}. 

Hereafter, F denoting any vector space, we denote by F the space F × F × F.  Let • = 
{¢ E H I ( ~ ) ,  V x ¢ E H~(f~),div ¢ = 0, ¢ x n = 0 on O ~ , f o ~ ¢ . n d s  = 0}. The definition of 
the space • is motivated by the properties of the curl operator given in [4, Appendix I], and 
[2, Theorem 3.6]. X1 : {0 E L2(f~) ,3¢ E ~ , - - A ¢  = 0}, X = H~(fl) x X1, M : H~(f~). We 
suppose tha t  f E H-l ( f~) .  Since XI  is a closed subspace of L2(f~), X is a closed subspace of 
H~(a) × L2(a). 

We consider the following bilinear forms a(., .), and b(., .) defined respectively on X × X and 

X x M b y :  f o r ~ = ( u , w ) ,  ~ =  (v,0) E X ,  A E M ,  

a ( ~ , v )  = y ( ~ ,  0), b(~, ~) = ( - A u  - V x ~, ~), 

where A = (A1, A2, A3), and (., .) is the scalar product in L2(~). 
For the nonlinearity, we consider the trilinear form j : X x X x X , ~ defined by: for 
= (u, ¢ ) ,  ~ = (v, 0), ~ = (~, ~) E X ,  

j ( ~ , ~ , ~ )  = ~ (¢ x v).wdz.  

The trilinear form j is well defined since ¢ E L2(~), v E ~ ( g t )  c L6(f~), w E [-]I~(f~) C L3(f~). 
Moreover, we have j (~ ,~ ,~ )  -- 0 V~,~ E X. We consider also the trilinear form al  defined on 
X x X x X b y :  

al (~, V,-~) = j (~, V,'~) ÷ a (~,-~) , V~, ~,'~ e X.  
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PROPOSITION 1. For a l l~  = (u,w) • V n (~']12(Ft)) 2, we have 

div u = V.u = 0 

div w = V.w = 0 

n.w = n . V s  x ?o(u) 

on OFt, 

on OFt, 

on 0 ~ ,  

where 70(u) is the trace operator detlned by ~'0(u) = U[ar. 

We consider the following problem, called problem (Q1): 

To find (~, A) • X x M such that,  

al (~, ~, ~) + b(~, A) = {g, ~) 

b(~, #) = 0 

V~ • X, 

V# • M, 

where g = ( f ,  0) = ( ( f l ,  f2, f3),  0) • X'.  To (Q1), we associate the problem: 

To find ~ • V such that,  

al (~,~',~) = (g,~) V~ • V. 
(P1) 

THEOREM 2. Problem (P1) has at least one solution ~. Moreover, there exists v0 = v0(Ft, g) 
such that [or v > vo, problem (P1) has a unique solution ~ = (u, w), which is exactly the solution 
o~ (2). 

THEOREM 3. For any solution ~ o/(P1) ,  there exists A E M such that (~, A) is solution of (Q1). 
Moreover, we have the relation (0,0, vw) = (0,0, V × A) in X ~. 

The details of the proof will appear in [6]. The following section is devoted to some indications 
on the proof. 

3.  S K E T C H  O F  T H E  P R O O F S  

The proofs of the previous results follow from the framework given in [2] provided we check 
that  all hypotheses hold. The following properties are easy to check: 

Pl: The bilinear form a(., .) is V-elliptic. 
P2: The bilinear form b satisfies the inf-sup condition; that is 

3f~ > 0, such that  V# • M, sup b(v,#____~) >_ ~II#[IM. 
v x-(0} Ilvllx 

P3: 3 a  > 0 such that  a l (v , v , v )  >_ ~llvll2x Vv • V. 
P4: The space V is separable. 
P5: Vv • V, the mapping u , 

means: 
al(u ,u,v) is sequentially weakly continuous on V which 

un ~ u in V, implies lim al (un ,un ,v )  = a l (u ,u , v )  Vv  • V. 
r t , " -~  OO 

P6: The bilinear form al(w,. ,  .) is uniformly V-elliptic with respect to w; i.e., 3a  ~ > 0 such 
that  

al (w,v ,v )  >_ ~'llvll~ Vv, w • V. 

PT: The mapping w ~ reAl(w) is locally Lipschitz-continuous in V, which means that  there 
exists a continuous and monotocally increasing function L : In+ , R+ such that: 

V#  > O, la l (wl ,u ,v)  - al(w2,u,v)[ < L(#) x {lu{Ix x Hvllx x I[wl -w2{Ix ,  

Vu,  v • V, Vwl,w2 • $(#) ,  where S(#)  = {w • Y such that  [{wllx <_ #}. 
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Theorem 2 follows from properties Pl,P2,P3,P4,Ps, P6,PT, and the  general f ramework given 
in [2], 

The first par t  of Theorem 3 follows from the proper ty  P2, and the second from the variat ional  
problem (Q1), by  taking the part icular  case o f ~  = (0,0) E X.  

We give hereafter  the interpretat ion of (P1) in the homogeneous case. Let  us suppose u = 0 

on 0 ~ .  Let (u,w) be the solution of (2). Let us prove tha t  ~ = (u,w) is a solution of  (P1)- We 

have w = V × u, and div u = 0, since (2) is equivalent to the primitive variables formulat ion (1). 

Moreover, 3 ¢ E • such tha t  u = V × ¢ = curl ¢ ,  d i v ¢  = 0. Since w = V × u, we have - A  ¢ = w 
and - A u  = V × w; which means ~ = (u, w) E V. Since (1) and (2) axe equivalent, there exists p 

such t h a t  

- u A u  + ( u . v ) u  + grad p = f .  

The  nonlinear te rm is expressed in the form 

Then  u satisfies: 

( u . v ) u - -  (V × u) × u +grad (21-u2) .  

Mult iplying this equali ty by V × ~ for ~ E ~ ,  we obtain  

v ( V × V × V × ¢ , V × v ) + ( ( V × u ) × u , V × ~ ) = ( ? , V × ~ ) ,  

which gives 

u ( w , e ) + ( w × u , ~ × ~ ) = ( 7 ,  V × ~ ) ,  

which means tha t  

a ( ~ , ~ )  + j  (~,~,~)  = (g,~) ~ E V, 

since for ~ = (v, 0) E V. Let now ~ E kO such tha t  - A ~  = 0; then we have 

= o) = a (7 ,  V × = (g, 

((w × u ) , V  x ~) = ((w × u),v)  = j (~ ,~ ,V) ,  

which proves tha t  ~ is a solution of (P1). We conclude tha t  if u > u0, (P1) is equivalent to  (2). 

The  nonhomogeneous  case is quite similar; for more details, the reader is referred to [5] in which 
we also consider the three-dimensional nons ta t ionary  Stokes equations. 

We have similar results in the two-dimensional case. In this case, the space • is replaced by: 

qJl = { ¢  E i 2 ( a ) ,  V x ¢ E H~(~)  × H~(~) ,  • = 0 on 0 a } .  

The  reader is referred to [6] for a variational formulation for the full two-dimensional  Navier- 
Stokes equat ions in the vortici ty-velocity variables. 
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