Vorticity-Velocity Formulation for the Stationary Navier-Stokes Equations: The Three-Dimensional Case

T. Tachim Medjo
Institute for Applied Mathematics and Scientific Computing
Indiana University, Bloomington, IN 47405, U.S.A.
and
Laboratoire d'Analyse Numérique, Batiment 425
Université de Paris-Sud, 91400 Orsay, France

(Received January 1995; accepted February 1995)

Abstract

In this article, we propose a mixed method for the vorticity-velocity formulation of the stationary Stokes and Navier-Stokes equations in space dimension three, the unknowns being the vorticity and the velocity of the fluid.

Keywords-Incompressible fluid, Navier-Stokes equations, Vorticity-Velocity formulation, Mixed formulation.

1. INTRODUCTION

There are various formulations for the three-dimensional Navier-Stokes equations, each of them having both advantages and disadvantages.

In the last decade, the velocity-vorticity formulation of the Navier-Stokes equations appeared to an increasing number of people as an attractive alternative to the usual primitive variables formulation. In contrast with the stream function-vorticity formulation that cannot easily be extended to three-dimensional flows, the vorticity-velocity formulation is valid for both two and three-dimensional flows.

In [1], the author gives a closed system of Navier-Stokes equations in vorticity-velocity variables which is equivalent to the usual primitive variables formulation.

In that formulation, the vorticity ω is supplemented with the following two boundary conditions:

$$
\operatorname{div} \omega=\nabla \cdot \omega=0 \quad \text { on } \partial \Omega, \quad n \cdot \omega=n \cdot \nabla_{S} \times b \quad \text { on } \partial \Omega
$$

where b is the velocity boundary condition and the relation $n \cdot \omega=n . \nabla_{S} \times b$ on $\partial \Omega$ is the component of the equation $\omega=\nabla \times u$ normal to the boundary.

The author in [1] notes that these conditions cannot be apparently imposed simultaneously in the framework of a variational formulation, hence, a disadvantage of the vorticity-velocity formulation.

[^0]In this article, we propose a mixed method for the vorticity-velocity formulation of the stationary Navier-Stokes equations in the three-dimensional case in which these boundaries conditions are indeed simultaneously satisfied. We show the existence and uniqueness of solution of the variational problem, and prove for the steady-state case, the equivalence of this formulation with the Navier-Stokes equations (1).

2. VARIATIONAL FORMULATION

Let Ω be a bounded, simply-connected domain in \mathbb{R}^{3} with a Lipschitz-continuous boundary. Let us consider the stationary incompressible Navier-Stokes equations in primitive variables:

$$
\begin{align*}
-\nu \Delta u+(u \cdot \nabla) u+\operatorname{grad} p & =\bar{f} & & \text { in } \Omega, \\
\operatorname{div} u & =0 & & \text { in } \Omega, \tag{1}\\
u & =b & & \text { on } \partial \Omega .
\end{align*}
$$

The vorticity-velocity formulation can be used to rewrite the system (1). The vorticity ω is defined by $\omega=\nabla \times u=$ curl u. The equation of motion then reads:

$$
\begin{align*}
-\nu \Delta \omega+\nabla \times(\omega \times u) & =f=\operatorname{curl} \bar{f} & & \text { in } \Omega, \\
-\Delta u & =\nabla \times \omega & & \text { in } \Omega, \\
u & =b & & \text { on } \partial \Omega, \\
\operatorname{div} u=\nabla \cdot u & =0 & & \text { on } \partial \Omega, \tag{2}\\
\operatorname{div} \omega=\nabla \cdot \omega & =0 & & \text { on } \partial \Omega, \\
n \cdot \omega & =n \cdot \nabla_{S} \times b & & \text { on } \partial \Omega,
\end{align*}
$$

assuming the following conditions on the data: $\int_{\partial \Omega} b . n d s=0$.
We consider the following spaces.
Hereafter, F denoting any vector space, we denote by \mathbb{F} the space $F \times F \times F$. Let $\Psi=$ $\left\{\phi \in \mathbb{H}^{\mathbf{1}}(\Omega), \nabla \times \phi \in \mathbb{H}_{0}^{1}(\Omega)\right.$, div $\phi=0, \phi \times n=0$ on $\left.\partial \Omega, \int_{\partial \Omega} \phi . n d s=0\right\}$. The definition of the space Ψ is motivated by the properties of the curl operator given in [4, Appendix I], and $\left[2\right.$, Theorem 3.6]. $X_{1}=\left\{\theta \in \mathbb{L}^{2}(\Omega), \exists \psi \in \Psi,-\Delta \psi=\theta\right\}, X=\mathbb{H}_{0}^{1}(\Omega) \times X_{1}, M=\mathbb{H}_{0}^{1}(\Omega)$. We suppose that $\bar{f} \in \mathbb{H}^{-1}(\Omega)$. Since X_{1} is a closed subspace of $\mathbb{L}^{2}(\Omega), X$ is a closed subspace of $\mathbb{H}_{0}^{1}(\Omega) \times \mathbb{L}^{2}(\Omega)$.

We consider the following bilinear forms $a(.,$.$) , and b(.,$.$) defined respectively on X \times X$ and $X \times M$ by: for $\bar{u}=(u, \omega), \bar{v}=(v, \theta) \in X, \lambda \in M$,

$$
a(\bar{u}, \bar{v})=\nu(\omega, \theta), \quad b(\bar{u}, \lambda)=(-\Delta u-\nabla \times \omega, \lambda),
$$

where $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$, and (.,.) is the scalar product in $\mathbb{L}^{2}(\Omega)$.
For the nonlinearity, we consider the trilinear form $j: X \times X \times X \longrightarrow \mathbb{R}$ defined by: for $\bar{u}=(u, \phi), \bar{v}=(v, \theta), \bar{\omega}=(\omega, \tau) \in X$,

$$
j(\bar{u}, \bar{v}, \bar{\omega})=\int_{\Omega}(\phi \times v) \cdot \omega \mathrm{d} x .
$$

The trilinear form j is well defined since $\phi \in L^{2}(\Omega), v \in \mathbb{H}_{0}^{1}(\Omega) \subset \mathbb{L}^{6}(\Omega), \omega \in \mathbb{H}_{0}^{1}(\Omega) \subset \mathbb{L}^{3}(\Omega)$. Moreover, we have $j(\bar{u}, \bar{v}, \bar{v})=0 \forall \bar{u}, \bar{v} \in X$. We consider also the trilinear form a_{1} defined on $X \times X \times X$ by:

$$
a_{1}(\bar{u}, \bar{v}, \bar{\omega})=j(\bar{u}, \bar{v}, \bar{\omega})+a(\bar{v}, \bar{\omega}), \quad \forall \bar{u}, \bar{v}, \bar{\omega} \in X .
$$

Finally, let

$$
\begin{aligned}
V & =V(0)=\left\{\bar{u}=(u, \omega) \in X, b(\bar{u}, \mu)=0, \forall \mu \in M=\mathbb{H}_{0}^{1}(\Omega)\right\} \\
& =\{\bar{u}=(u, \omega) \in X,-\Delta u=\nabla \times \omega\} .
\end{aligned}
$$

Proposition 1. For all $\bar{u}=(u, \omega) \in V \cap\left(\mathbb{H}^{2}(\Omega)\right)^{2}$, we have

$$
\begin{aligned}
\operatorname{div} u=\nabla \cdot u & =0 & & \text { on } \partial \Omega, \\
\operatorname{div} \omega=\nabla \cdot \omega & =0 & & \text { on } \partial \Omega, \\
n \cdot \omega & =n \cdot \nabla_{S} \times \gamma_{0}(u) & & \text { on } \partial \Omega,
\end{aligned}
$$

where $\gamma_{0}(u)$ is the trace operator defined by $\gamma_{0}(u)=\left.u\right|_{\partial \Gamma}$.
We consider the following problem, called problem $\left(Q_{1}\right)$:
To find $(\bar{u}, \lambda) \in X \times M$ such that,

$$
\begin{align*}
a_{1}(\bar{u}, \bar{u}, \bar{v})+b(\bar{v}, \lambda) & =\langle g, \bar{v}\rangle & & \forall \bar{v} \in X, \tag{1}\\
b(\bar{u}, \mu) & =0 & & \forall \mu \in M,
\end{align*}
$$

where $g=(\bar{f}, 0)=\left(\left(\bar{f}_{1}, \bar{f}_{2}, \bar{f}_{3}\right), 0\right) \in X^{\prime}$. To $\left(\mathrm{Q}_{1}\right)$, we associate the problem:

$$
\begin{align*}
& \text { To find } \bar{u} \in V \text { such that, } \\
& a_{1}(\bar{u}, \bar{u}, \bar{v})=\langle g, \bar{v}\rangle \quad \forall \bar{v} \in V . \tag{1}
\end{align*}
$$

Theorem 2. Problem (P_{1}) has at least one solution \bar{u}. Moreover, there exists $\nu_{0}=\nu_{0}(\Omega, g)$ such that for $\nu>\nu_{0}$, problem $\left(\mathrm{P}_{1}\right)$ has a unique solution $\bar{u}=(u, \omega)$, which is exactly the solution of (2).

Theorem 3. For any solution \bar{u} of $\left(\mathrm{P}_{1}\right)$, there exists $\lambda \in M$ such that (\bar{u}, λ) is solution of $\left(\mathrm{Q}_{1}\right)$. Moreover, we have the relation $(0,0, \nu \omega)=(0,0, \nabla \times \lambda)$ in X^{\prime}.

The details of the proof will appear in [6]. The following section is devoted to some indications on the proof.

3. SKETCH OF THE PROOFS

The proofs of the previous results follow from the framework given in [2] provided we check that all hypotheses hold. The following properties are easy to check:
p_{1} : The bilinear form $a(.,$.$) is V$-elliptic.
p_{2} : The bilinear form b satisfies the inf-sup condition; that is

$$
\exists \beta>0, \quad \text { such that } \forall \mu \in M, \quad \sup _{v \in X-\{0\}} \frac{b(v, \mu)}{\|v\|_{X}} \geq \beta\|\mu\|_{M} .
$$

$p_{3}: \exists \alpha>0$ such that $a_{1}(v, v, v) \geq \alpha\|v\|_{X}^{2} \forall v \in V$.
p_{4} : The space V is separable.
$p_{5}: \forall v \in V$, the mapping $u \longmapsto a_{1}(u, u, v)$ is sequentially weakly continuous on V which means:

$$
u_{n} \rightharpoonup u \text { in } V \text {, implies } \lim _{n \rightarrow \infty} a_{1}\left(u_{n}, u_{n}, v\right)=a_{1}(u, u, v) \quad \forall v \in V
$$

p_{6} : The bilinear form $a_{1}(\omega, \ldots)$ is uniformly V-elliptic with respect to ω; i.e., $\exists \alpha^{\prime}>0$ such that

$$
a_{1}(\omega, v, v) \geq \alpha^{\prime}\|v\|_{X}^{2} \quad \forall v, \omega \in V .
$$

p_{7} : The mapping $\omega \longmapsto \pi A_{1}(\omega)$ is locally Lipschitz-continuous in V, which means that there exists a continuous and monotocally increasing function $L: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$such that:

$$
\begin{gathered}
\forall \mu>0, \quad\left|a_{1}\left(\omega_{1}, u, v\right)-a_{1}\left(\omega_{2}, u, v\right)\right| \leq L(\mu) \times\|u\|_{X} \times\|v\|_{X} \times\left\|\omega_{1}-\omega_{2}\right\|_{X} \\
\forall u, v \in V, \quad \forall \omega_{1}, \omega_{2} \in \mathcal{S}(\mu), \quad \text { where } \mathcal{S}(\mu)=\left\{\omega \in V \text { such that }\|\omega\|_{X} \leq \mu\right\} .
\end{gathered}
$$

Theorem 2 follows from properties $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}, p_{7}$, and the general framework given in [2].

The first part of Theorem 3 follows from the property p_{2}, and the second from the variational problem (Q_{1}), by taking the particular case of $\bar{v}=(0, \theta) \in X$.

We give hereafter the interpretation of (P_{1}) in the homogeneous case. Let us suppose $u=0$ on $\partial \Omega$. Let (u, ω) be the solution of (2). Let us prove that $\bar{u}=(u, \omega)$ is a solution of $\left(\mathrm{P}_{1}\right)$. We have $\omega=\nabla \times u$, and div $u=0$, since (2) is equivalent to the primitive variables formulation (1). Moreover, $\exists \psi \in \Psi$ such that $u=\nabla \times \psi=\operatorname{curl} \psi$, div $\psi=0$. Since $\omega=\nabla \times u$, we have $-\Delta \psi=\omega$ and $-\Delta u=\nabla \times \omega$; which means $\bar{u}=(u, \omega) \in V$. Since (1) and (2) are equivalent, there exists p such that

$$
-\nu \Delta u+(u \cdot \nabla) u+\operatorname{grad} p=\bar{f} .
$$

The nonlinear term is expressed in the form

$$
(u \cdot \nabla) u=(\nabla \times u) \times u+\operatorname{grad}\left(\frac{1}{2} u^{2}\right) .
$$

Then u satisfies:

$$
\nu \nabla \times \nabla \times u+(\nabla \times u) \times u+\operatorname{grad}\left(\frac{1}{2} u^{2}\right)=\bar{f} .
$$

Multiplying this equality by $\nabla \times \varphi$ for $\varphi \in \Psi$, we obtain

$$
\nu(\nabla \times \nabla \times \nabla \times \psi, \nabla \times \varphi)+((\nabla \times u) \times u, \nabla \times \varphi)=(\bar{f}, \nabla \times \varphi),
$$

which gives

$$
\nu(\omega, \theta)+(\omega \times u, \nabla \times \varphi)=(\bar{f}, \nabla \times \varphi),
$$

which means that

$$
a(\bar{u}, \bar{v})+j(\bar{u}, \bar{u}, \bar{v})=(g, \bar{v}) \quad \forall \bar{v} \in V,
$$

since for $\bar{v}=(v, \theta) \in V$. Let now $\varphi \in \Psi$ such that $-\Delta \varphi=\theta$; then we have

$$
\begin{gathered}
-\nu(\omega, \Delta \varphi)=\nu(\omega, \theta)=a(\bar{u}, \bar{v}), \quad\langle\bar{f}, \nabla \times \varphi\rangle=\langle g, \bar{v}\rangle, \\
\langle(\omega \times u), \nabla \times \varphi\rangle=\langle(\omega \times u), v\rangle=j(\bar{u}, \bar{u}, \bar{v}),
\end{gathered}
$$

which proves that \bar{u} is a solution of $\left(\mathrm{P}_{1}\right)$. We conclude that if $\nu>\nu_{0},\left(\mathrm{P}_{1}\right)$ is equivalent to (2). The nonhomogeneous case is quite similar; for more details, the reader is referred to [5] in which we also consider the three-dimensional nonstationary Stokes equations.

We have similar results in the two-dimensional case. In this case, the space Ψ is replaced by:

$$
\Psi_{1}=\left\{\psi \in L^{2}(\Omega), \nabla \times \psi \in H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega), \psi=0 \text { on } \partial \Omega\right\} .
$$

The reader is referred to $[6]$ for a variational formulation for the full two-dimensional NavierStokes equations in the vorticity-velocity variables.

REFERENCES

1. L. Quartappelle, Numerical Solutions of the Navier-Stokes Equations, Birkhäuser, Berlin, (1993).
2. V. Girault and R.A. Raviart, Finite Element Method for Navier-Stokes Equations. Theory and Algorithms, Springer-Verlag, New York, (1979).
3. Daube, Resolution of the 2D N.S. equation in velocity-vorticity form by means of an influence matrice technique, J. Comput. Phys. 103, 402-414, (1992).
4. R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam, (1979).
5. T. Tachim Medjo, Vorticity-velocity formulation for the stationary Navier-Stokes equations: The threedimensional case (to appear).
6. T. Tachim Medjo, The Navier-Stokes equations in the vorticity-velocity formulation: The two dimensional case (to appear).
7. R. Temam, Navier-Stokes equations and functional analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, (1983).

[^0]: This work was partially supported by the National Science Foundation under Grant NSF-DMS9400615, by the Department of Energy under Grant DOE-DE-FG02-92ER25120, and by the Research Fund of Indiana University.

