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Abstract—In this article, we propose a mixed method for the vorticity-velocity formulation of
the stationary Stokes and Navier-Stokes equations in space dimension three, the unknowns being the
vorticity and the velocity of the fluid.

KeywordS—Incompressible fluid, Navier-Stokes equations, Vorticity-Velocity formulation, Mixed
formulation.

1. INTRODUCTION

There are various formulations for the three-dimensional Navier-Stokes equations, each of them
having both advantages and disadvantages.

In the last decade, the velocity-vorticity formulation of the Navier-Stokes equations appeared
to an increasing number of people as an attractive alternative to the usual primitive variables
formulation. In contrast with the stream function-vorticity formulation that cannot easily be
extended to three-dimensional flows, the vorticity-velocity formulation is valid for both two and
three-dimensional flows.

In [1], the author gives a closed system of Navier-Stokes equations in vorticity-velocity variables
which is equivalent to the usual primitive variables formulation.

In that formulation, the vorticity w is supplemented with the following two boundary condi-
tions:

divw=V.w=0 on 09, nw=nVgxb on 89,

where b is the velocity boundary condition and the relation n.w = n.Vg x b on 9Q is the
component of the equation w = V x u normal to the boundary.

The author in {1] notes that these conditions cannot be apparently imposed simultaneously
in the framework of a variational formulation, hence, a disadvantage of the vorticity-velocity
formulation.
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In this article, we propose a mixed method for the vorticity-velocity formulation of the station-
ary Navier-Stokes equations in the three-dimensional case in which these boundaries conditions
are indeed simultaneously satisfied. We show the existence and uniqueness of solution of the
variational problem, and prove for the steady-state case, the equivalence of this formulation with
the Navier-Stokes equations (1).

2. VARIATIONAL FORMULATION

Let Q be a bounded, simply-connected domain in R® with a Lipschitz-continuous boundary.
Let us consider the stationary incompressible Navier-Stokes equations in primitive variables:
—vAu+ (u.7)u+gradp=f in Q,
dive=0 ing, (1)
u="b on 94,

The vorticity-velocity formulation can be used to rewrite the system (1). The vorticity w is
defined by w = V x u = curl u. The equation of motion then reads:

—VAw+V x (wxu)=f=curl f in Q,

~Au=V xw in Q,
u=>= on 8%,
o (2)
divu=V.u=0 on 9%,
divw=Vw=0 on 91,
nw=nVgxb on 91,

assuming the following conditions on the data: [ b.nds = 0.

We consider the following spaces.

Hereafter, F denoting any vector space, we denote by [ the space FF x F x F. Let ¥ =
{¢p e HY(R), V x ¢ € H}(),dive =0, ¢ x n =0o0n dQ, f,,d.nds = 0}. The definition of
the space ¥ is motivated by the properties of the curl operator given in [4, Appendix I, and
[2, Theorem 3.6]. X; = {6 € L?(Q),3¢ € ¥,—Ay = 0}, X = H{(Q) x X1, M = H}(Q). We
suppose that f € H™1(Q). Since X; is a closed subspace of L?(Q2), X is a closed subspace of
H3(Q) x L2(Q).

We consider the following bilinear forms a(.,.), and b(.,.) defined respectively on X x X and
X x M by: for T = (u,w), T=(v,0) € X, Ae M,

a(w,?) = v(w, ), b(@, A) = (—Au — V x w, A},
where A = (A1, A2, A3), and (.,.) is the scalar product in L2(Q).

For the nonlinearity, we consider the trilinear form j : X x X x X — R defined by: for
= (u,¢), 7= (v,0), w=(w,71) € X,

](ﬂaﬁaw) = /S;(q& X v).wdx.

The trilinear form j is well defined since ¢ € L2(R2), v € H}(Q) C L8(), w € H(Q) C L3(N).
Moreover, we have j(%,7,7) = 0 VT,7 € X. We consider also the trilinear form a; defined on
X xX x X by:
a1 (T, 0,%) =j(8,7,@) +a(7,0), vVu,7,w € X.
Finally, let
V=V(0)={2=(v,w) € X, bTp) =0,VueM=HQ)}
={t=(y,w) € X, —Au=V xw}
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PROPOSITION 1. For all @ = (u,w) € V N (H*(Q))2, we have

divu=V.au=0 on 99,
divw=V.w=0 on 41,
nw =n.Vg X v (u) on 49,

where vo(u) is the trace operator defined by vo(u) = ulsr.
We consider the following problem, called problem (Q):

To find (@, A) € X x M such that,
a1 (T, u,7) + b(7, A) = (g,7) Voe X, (Q1)
b(ﬂv“):o Vue M,

where g = (£,0) = ((F1, f2, f3),0) € X’. To (Q;), we associate the problem:

To find @ € V such that,

ay (,%,7) = (9,9) VUEV. (P1)

THEOREM 2. Problem (P;) has at least one solution T. Moreover, there exists vy = v9(,g)
such that for v > vy, problem (P;) has a unique solution @ = (u,w), which is exactly the solution
of (2).
THEOREM 3. For any solution @ of (P), there exists A € M such that (@, \) is solution of (Q1).
Moreover, we have the relation (0,0,vw) = (0,0,V x A) in X'.

The details of the proof will appear in [6]. The following section is devoted to some indications
on the proof.

3. SKETCH OF THE PROOFS

The proofs of the previous results follow from the framework given in [2] provided we check
that all hypotheses hold. The following properties are easy to check:

p1: The bilinear form a(.,.) is V-elliptic.

p2: The bilinear form b satisfies the inf-sup condition; that is

38 >0, such that Vu € M, sup M > Bllellaz-

vEX —{0} llvlix
p3: Ja > 0 such that a;1(v,v,v) > alpv||} Vve V.
p4: The space V is separable.
ps: Yv € V, the mapping u — a;(u,u,v) is sequentially weakly continuous on V which
means:

Up — u in V, implies lim a1 (un,un,v) = a1(u,u,v) YveV.
n—roo

pg: The bilinear form a4(w,.,.) is uniformly V-elliptic with respect to w; i.e., 3o’ > 0 such
that
ar(w,v,v) > ||v||%  Yv,weV.
p7: The mapping w — wA;(w) is locally Lipschitz-continuous in V', which means that there

exists a continuous and monotocally increasing function L : Ry — R, such that:

Vu>0, lai(wi,u,v) —ay(wz,u,v)| < L(p) X Jullx X [vlx x lwr — wa| x,
Vu,v €V, Vwi,wp €S(p), where S(u)={w €V such that ||w||x < u}.
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Theorem 2 follows from properties p1,p2,ps, P4, D5, D6, D7, and the general framework given
in [2].

The first part of Theorem 3 follows from the property ps, and the second from the variational
problem (Q;), by taking the particular case of 7 = (0,0) € X.

We give hereafter the interpretation of (P;) in the homogeneous case. Let us suppose u = 0
on 8. Let (u,w) be the solution of (2). Let us prove that T = (u,w) is a solution of (P;). We
have w = V X u, and div u = 0, since (2) is equivalent to the primitive variables formulation (1).
Moreover, 3¢ € ¥ such that u = V x4 = curl 9, div ¢ = 0. Since w = V xu, we have —A Y = w
and —Au = V X w; which means @ = (u,w) € V. Since (1) and (2) are equivalent, there exists p
such that

—vAu+ (u.y)u+grad p=f.

The nonlinear term is expressed in the form
(u.v)u = (V x u) x u+grad (% u2) .

Then u satisfies:

vV x V xu+ (VX u) x u+grad (%uz) = f.
Multiplying this equality by V x ¢ for ¢ € ¥, we obtain
V(VXx VXV x9h,Vxe)+((Vxu)xuVxe)=(f,Vxp),

which gives
v(w,0) + (wxu,Vxo)=(f,Vxy),

which means that :
a(T,0)+7(%,0,7)=(9,7) VoeV,

since for 7 = (v,0) € V. Let now ¢ € ¥ such that —Ayp = §; then we have
——I/(w,A<p)=1/(w,0)=a(ﬂ,5), <?,VX(P>=<Q,5>,
(wxu),Vxp)=(wxu),v)=7@10),

which proves that @ is a solution of (P1). We conclude that if v > v, (P;) is equivalent to (2).
The nonhomogeneous case is quite similar; for more details, the reader is referred to [5] in which
we also consider the three-dimensional nonstationary Stokes equations.

We have similar results in the two-dimensional case. In this case, the space ¥ is replaced by:

¥y = {p € L*Q), V x ¢ € Hy(Q) x Hy(2), ¥ =0o0n 80}

The reader is referred to [6] for a variational formulation for the full two-dimensional Navier-
Stokes equations in the vorticity-velocity variables.
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