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Abstract 

Chaos control means to design a controller that is able to eliminating the chaos behaviour of nonlinear systems that 

experiencing such phenomenon. In this paper, a delayed feedback control mode is presented.  

The paper describes the control of the bifurcation behaviour of a modular peak current-mode controlled DC-DC boost 

converter which is used to provide an interface between energy storage batteries and photovoltaic (PV) arrays 

renewable energy sources. The parallel-input/parallel-output converter comprises two identical boost circuits and 

operates in the continuous-current conduction mode. A comparison is made between waveforms obtained from a 

MATLAB/SIMULINK model for open-loop converter and the controlled one. The study shows the effectiveness of 

the designed delayed feedback control mode.  

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of TerraGreen 

Society.
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1. Introduction 

    Current-controlled DC-DC switch-mode converters are non-linear electronic devices and it has been 

observed that they may behave in a chaotic manner. The design of such converters, with a low harmonic 

content and low voltage ripple is a constant challenge; this has generated much interest, particularly in 

single-stage topologies such as the buck, boost, and cuk converters [1-7]. 

This paper investigates the control of chaotic behaviour in a two-module parallel input/parallel-output 

boost converter operating under a peak current-mode control scheme using a delayed feedback control 
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strategy, which is based on the idea of stabilization of unstable periodic orbits that exist in the chaotic 

attractor [8], where each module has its own current feedback loop. The converter consists of two similar 

boost circuits operating in the continuous-current conduction mode. A non-linear map for the converter 

was derived using discrete time modelling and numerical iteration of the map produces bifurcation 

diagrams which indicate the chaotic operation.  

In order to check the validity of the controller, a MATLAB/SIMULINK model for the controlled 

converter was developed. The waveforms for the open-loop model already produced by the 

MATLAB/SIMULINK model which integrates numerically the system state-variable equations for the 

converter. The results for the controlled model are compared with the open-loop model. 

2. Bifurcation and Chaos Theory 

    Bifurcation theory, originally developed by Poincare, is used to indicate the qualitative change in 

behaviour of a system in terms of the number and the type of solutions, under the variation of one or more 

parameters on which the system depends [9-10]. 

    The system state variables and the control parameters are defined and the relationships between any of 

these control parameters and a state variable is called the state-control space. In this space, locations at 

which bifurcations occur are called bifurcation points. Bifurcations of an equilibrium or fixed-point 

solution are classified as either static bifurcations, such as saddle-node, pitch fork, or transcritical 

bifurcations; or as dynamic bifurcations which are also known as the Hopf bifurcation that exhibits 

periodic solutions. For the fixed-point solutions, the local stability of the system is determined from the 

eigenvalues of the Jacobian matrix of the linearized system. On the other hand, with periodic-solutions, 

the system stability depends on what is known as the Floquet theory and the eigenvalues of the 

Monodromy matrix that are known in the literature as Floquet or characteristic multipliers. The types of 

bifurcation are determined from the manner in which the Floquet multipliers leave the unit circle. There 

are three possible ways for this to happen [9-10]: 

i) If the Floquet multiplier leaves the unit circle through +1, then three possible bifurcations may 

occur: transcritical, symmetry-breaking, or cyclic-fold bifurcation.  

ii)  If the Floquet multiplier leaves through -1, the period-doubling (Flip bifurcation) occurs. 

iii) If the Floquet multipliers are complex conjugate and leave the unit circle from the real axis, the 

system exhibits secondary Hopf bifurcation.  

    To observe the system dynamics under all the above possible bifurcations, a complete diagram known 

as a bifurcation diagram is constructed. A bifurcation diagram shows the variation of one of the state 

variables with one of the system parameters, otherwise known as a control parameter. 

3. Converter Operation 

   A circuit diagram for the module boost converter is shown in Fig. 1. A simplified diagram for the 

proposed converter consists of two peak current-mode controlled DC-DC boost converters whose outputs 

are connected in parallel to feed a common resistive load. Each converter has its own current feedback 

loop comprising a comparator and a flip-flop. Each comparator compares its respective peak inductor 

current with a reference value, to determine the on-time of the switch. 
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Fig. 1. Module Boost Converter Circuit Diagram    

The iterative map describing the system takes the form: 
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where subscript n denotes the value at the beginning of the nth cycle and x is the state vector 
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where: 

1i , 2i  are the currents through inductors 1L  and 2L , respectively. 

1cv , 2cv  are voltages across capacitors 1C  and 2C , respectively. 

So the iterative map: 

R

V
tIt

L

evVIkL
eii I

nrefn

kt

nIreftk

nn

n

n

2
]cossin[

2

)1(2)1(1                          (3) 

n

refI

kt

ntk

Incnc t
CIkVekv

eVvv
n

n sin
/

[

2

)1(2)1(1 ]cos)(
2

n

kt

nI tevV n       (4)                       

    A MATLAB program was written to produce bifurcation diagrams for the two-module boost converter, 

with the nominal parameters given in Table 1. 
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Table 1. System Parameters 

    Fig. 2 shows the bifurcation diagram for load current of the proposed system with the reference current 

as the bifurcation parameter.

Fig. 2. Bifurcation diagram for the two-module converter 

4. MATLAB/SIMULINK Simulation (Simulated Open-Loop) 

    MATLAB/SIMULINK model was developed based on the system equations: 
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    Where 1Su  and 2Su  take the value 0 or 1 depending on whether the switches 1 or 2 are closed or open.  

The result for chaotic regimes at AI ref 5  is obtained for the inductor current waveform and is given in 

Fig. 3. The inductor current at switch turn-on now have many values. 

Fig. 3. Chaotic inductor current  
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5. Control of Chaos 

    The feedback control force F(t), applied to the system is the difference between the current value of 

some system variable y(t), and its value  seconds previously, multiplied by a constant K, where K is the 

feedback strength.  The idea behind the scheme relies on the fact that a skeleton of a chaotic attractor is 

formed by an infinite set of unstable periodic orbits with different periods. If the value of the time delay 

is exactly equal to the period T of one of the orbits, then at the appropriate values of K, the orbit can 

become stable and chaos will be eliminated. 

    As the controller connected to the open-loop model, the inductor current at switch turn-on now does 

not have many values and the periodic regime is stable as shown in Fig. 4. 

Fig. 4. Delayed Feedback Control 

6. Conclusion 

The simulated time waveforms for iL(t) at AI ref 5  with the converter connected to the delayed 

current feedback (the control circuit) showed the converter is operating in a "period-1" mode as required. 

The study shows the effectiveness of the designed delayed feedback control mode. The results indicated 

that delayed feedback control mode results in a greater range of stable period-1 operation, compared with 

the traditional method. 
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