Polynomial maps with invertible sums of Jacobian matrices and directional derivatives ${ }^{\text {d/ }}$

Hongbo Guo ${ }^{\text {a }}$, Michiel de Bondt ${ }^{\text {b }}$, Xiankun Du ${ }^{\text {a,* }, ~ X i a o s o n g ~ S u n ~}{ }^{\text {a }}$
${ }^{\text {a }}$ School of Mathematics, Jilin University, Changchun 130012, China
${ }^{\mathrm{b}}$ Radboud University, Nijmegen, The Netherlands

Received 17 June 2011; received in revised form 18 October 2011; accepted 30 November 2011

Communicated by J. Top

Abstract

Let $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a polynomial map with $\operatorname{deg} F=d \geq 2$. We prove that F is invertible if $m=n$ and $\left.\sum_{i=1}^{d-1}(\mathcal{J} F)\right|_{\alpha_{i}}$ is invertible for all $\alpha_{i} \in \mathbb{C}^{n}$, which is trivially the case for invertible quadratic maps.

More generally, we prove that for affine lines $L=\{\beta+\mu \gamma \mid \mu \in \mathbb{C}\} \subseteq \mathbb{C}^{n}(\gamma \neq 0),\left.F\right|_{L}$ is linearly rectifiable, if and only if $\left.\sum_{i=1}^{d-1}(\mathcal{J} F)\right|_{\alpha_{i}} \cdot \gamma \neq 0$ for all $\alpha_{i} \in L$. This appears to be the case for all affine lines L when F is injective and $d \leq 3$.

We also prove that if $m=n$ and $\left.\sum_{i=1}^{n}(\mathcal{J} F)\right|_{\alpha_{i}}$ is invertible for all $\alpha_{i} \in \mathbb{C}^{n}$, then F is a composition of an invertible linear map and an invertible polynomial map $X+H$ with linear part X, such that the subspace generated by $\left\{\left.(\mathcal{J} H)\right|_{\alpha} \mid \alpha \in \mathbb{C}^{n}\right\}$ consists of nilpotent matrices. (C) 2011 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Jacobian matrix; Jacobian Conjecture; Polynomial embedding; Linearly rectifiable

1. Introduction

Denote by $\mathcal{J} F$ the Jacobian matrix of a polynomial map $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$. The Jacobian Conjecture states that F is invertible if $\mathcal{J} F$ is invertible, or equivalently if $\left.(\mathcal{J} F)\right|_{\alpha}$ is invertible

[^0]for all $\alpha \in \mathbb{C}^{n}$. The conjecture has been reduced to polynomial maps of the form $F=X+H$, where H is homogeneous (of degree 3) and $\mathcal{J} H$ is nilpotent, by Bass et al. [1], and independently by Yagzhev in [13]. Subsequent reductions are to the case where for the polynomial map $F=X+H$ above, each component of H is a cube of a linear form, by Drużkowski in [7], and to the case where $\mathcal{J} H$ is symmetric, by de Bondt and van den Essen in [2], but these reductions cannot be applied simultaneously; see also [3]. More details about the Jacobian Conjecture can be found in [8,4].

Invertibility of a polynomial map F has been examined by several authors under certain conditions on the evaluated Jacobian matrices $\left.(\mathcal{J} F)\right|_{\alpha}, \alpha \in \mathbb{C}^{n}$. With an extra assumption that $F-X$ is cubic homogeneous, Yagzhev proved in [13] that if $\left.(\mathcal{J} F)\right|_{\alpha_{1}}+\left.(\mathcal{J} F)\right|_{\alpha_{2}}$ is invertible for all $\alpha_{1}, \alpha_{2} \in \mathbb{C}^{n}$, then the polynomial map F is invertible. The Jacobian matrix $\mathcal{J} H$ of a polynomial map H is called strongly nilpotent if $\left.\left.\left.(\mathcal{J} H)\right|_{\alpha_{1}} \cdot(\mathcal{J} H)\right|_{\alpha_{2}} \cdots \cdot(\mathcal{J} H)\right|_{\alpha_{n}}=0$ for all $\alpha_{i} \in \mathbb{C}^{n}$. Van den Essen and Hubbers proved in [9] that $\mathcal{J} H$ is strongly nilpotent if and only if there exists $T \in G L_{n}(\mathbb{C})$ such that $T^{-1} \mathcal{J}(H) T$ is strictly upper triangular, if and only if the polynomial map $F=X+H$ is linearly triangularizable (so F is invertible). This result was generalized by Yu in [14], where he additionally observed that $\mathcal{J} H$ is already strongly nilpotent if $\left.\left.\left.(\mathcal{J} H)\right|_{\alpha_{1}} \cdot(\mathcal{J} H)\right|_{\alpha_{2}} \cdots \cdot(\mathcal{J} H)\right|_{\alpha_{m}}=0$ for some $m \in \mathbb{N}$.

In [11] Sun introduced the notion of additive-nilpotency to extend that of strong nilpotency. The Jacobian matrix $\mathcal{J} H$ of a polynomial map H is additive-nilpotent, if $\left.\sum_{i=1}^{m}(\mathcal{J} H)\right|_{\alpha_{i}}$ is nilpotent for each positive integer m and all $\alpha_{i} \in \mathbb{C}^{n}$. By expanding $\left(\sum_{i=1}^{m}(\mathcal{J} H) \mid \alpha_{i}\right)^{n}$, one can see that strong nilpotency implies additive-nilpotency. Sun proved that a polynomial map $F=$ $X+H$ is invertible if the Jacobian matrix $\mathcal{J} H$ is additive-nilpotent, which generalizes results in [9,12-14]. In case $F=X+H$ with $J H$ additive-nilpotent, we have that $\left.\sum_{i=1}^{m}(\mathcal{J} F)\right|_{\alpha_{i}}=$ $m I_{n}+\left.\sum_{i=1}^{m}(\mathcal{J} H)\right|_{\alpha_{i}}$ is invertible for all positive integers m and all $\alpha_{i} \in \mathbb{C}^{n}$. Therefore, instead of looking at a polynomial map $F=X+H$ such that $\mathcal{J} H$ is nilpotent, we look at a polynomial map F in general, and assume that $\left.\operatorname{det} \sum_{i=1}^{d-1}(\mathcal{J} F)\right|_{\alpha_{i}} \neq 0$ for all $\alpha_{i} \in \mathbb{C}^{n}$, where $d=\operatorname{deg} F$.

More generally, we consider a polynomial map $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ and assume that $\left.\sum_{i=1}^{d-1}(\mathcal{J} F)\right|_{\alpha_{i}}$. $\gamma \neq 0$ only holds for $\alpha_{i} \in \mathbb{C}^{n}$ which are contained in a certain line, where $\gamma \neq 0$ is the direction of that line, in order to prove that F is injective on that line. In the particular case that $m=n$ and the assumption holds for all lines in \mathbb{C}^{n}, F is injective and hence invertible. This generalizes results of Wang in [12], Yagzhev in [13], van den Essen and Hubbers in [9] and Sun in [11].

Observe that if $F=X+H$ is a polynomial map such that $\mathcal{J} H$ is additive-nilpotent, then $\left.\sum_{i=1}^{m}(\mathcal{J} \tilde{F})\right|_{\alpha_{i}}$ is invertible for all $m \in \mathbb{N}$ and all $\alpha_{i} \in \mathbb{C}^{n}$, where $\tilde{F}=L_{1} \circ F \circ L_{2}$ is a composition of F and invertible linear maps L_{1} and L_{2}. Conversely, it is interesting to describe the polynomial maps such that sums of the evaluated Jacobian matrices are invertible. We prove the invertibility of a polynomial map $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ such that $\left.\sum_{i=1}^{n}(\mathcal{J} F)\right|_{\alpha_{i}}$ is invertible for all $\alpha_{i} \in \mathbb{C}^{n}$, and characterize such a polynomial map as a composition of an invertible linear map and an invertible polynomial map $X+H$ such that $\mathcal{J} H$ is additive-nilpotent.

2. Additive properties of the derivative on lines

Let $\left.F\right|_{G}$ denote substituting X by G in F.
Lemma 2.1. Assume $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d-1} \in \mathbb{C}$ such that $\sum_{i \in I} \lambda_{i} \neq 0$ for all nonempty $I \subseteq$ $\{1,2, \ldots, d-1\}$, and $P \in \mathbb{C}[[T]]$ with constant term $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{d-1}$. Then there are
$r_{1}, r_{2}, \ldots, r_{d-1} \in \mathbb{C}$ such that

$$
P-\sum_{i=1}^{d-1} \lambda_{i} \exp \left(r_{i} T\right)
$$

is divisible by T^{d}, where $\exp (T)=\sum_{j=0}^{\infty} \frac{1}{j!} T^{j}$.
Proof. Write

$$
P=\sum_{j=0}^{\infty} \frac{p_{j}}{j!} T^{j}
$$

Then we must find a solution $\left(Y_{1}, Y_{2}, \ldots, Y_{d-1}\right)=\left(r_{1}, r_{2}, \ldots, r_{d-1}\right) \in \mathbb{C}^{d-1}$ of

$$
\begin{equation*}
\sum_{i=1}^{d-1} \lambda_{i} Y_{i}^{j}=p_{j} \quad(j=0,1, \ldots, d-1) \tag{2.1}
\end{equation*}
$$

The equation for $j=0$ is fulfilled by assumption, and finding a solution of (2.1) is the same as finding a solution $\left(Y_{1}, Y_{2}, \ldots, Y_{d}\right)=\left(r_{1}, r_{2}, \ldots, r_{d}\right)$ of

$$
\begin{equation*}
\sum_{i=1}^{d-1} \lambda_{i} Y_{i}^{j}=p_{j} Y_{d}^{j} \quad(j=1, \ldots, d-1) \tag{2.2}
\end{equation*}
$$

for which $r_{d}=1$. Since $\left(Y_{1}, Y_{2}, \ldots, Y_{d}\right)=0$ is a solution of (2.2), it follows from Krull's Height Theorem that the dimension of the set of solutions $\left(r_{1}, r_{2}, \ldots, r_{d}\right) \in \mathbb{C}^{d}$ of (2.2) is at least one. Hence there exists a nonzero solution $\left(r_{1}, r_{2}, \ldots, r_{d}\right) \in \mathbb{C}^{d}$ of (2.2).

If $r_{d} \neq 0$, then $r_{d}^{-1}\left(r_{1}, r_{2}, \ldots, r_{d}\right)$ is a solution of (2.2) as well, because the equations of (2.2) are homogeneous. Hence $r_{d}^{-1}\left(r_{1}, r_{2}, \ldots, r_{d-1}\right)$ is a solution of (2.1) in that case. So assume that $r_{d}=0$. Then $\sum_{i=1}^{d-1} \lambda_{i} r_{i}^{j}=0$ for all j. Take $e \leq d-1$ and nonzero $s_{1}<s_{2}<\cdots<s_{e}$ such that $\left\{0, r_{1}, r_{2}, \ldots, r_{d-1}\right\}=\left\{0, s_{1}, s_{2}, \ldots, s_{e}\right\}$. Then $e \geq 1$ because $\left(r_{1}, r_{2}, \ldots, r_{d}\right) \neq 0$, and

$$
0=\sum_{i=1}^{d-1} \lambda_{i} r_{i}^{j}=\sum_{k=1}^{e} s_{k}^{j} \sum_{r_{i}=s_{k}} \lambda_{i}
$$

for all j such that $1 \leq j \leq e$. This means that the vector v defined by $v_{k}:=\sum_{r_{i}=s_{k}} \lambda_{i}$ for all k satisfies $M v=0$, where M is the Vandermonde matrix with entries $M_{j k}=s_{k}^{j}$. Since v_{k} is nonzero for all k by assumption, this contradicts $\operatorname{det} M \neq 0$.

Let $f \in \mathbb{C}[X]=\mathbb{C}\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ be a polynomial of degree d and $\beta, \gamma \in \mathbb{C}^{n}$. Set $g(T):=f(\beta+T \gamma)$ and $D:=\sum_{i=1}^{n} \gamma_{i} \frac{\partial}{\partial X_{i}}$. Notice that $T \mapsto D$ induces an isomorphism of $\mathbb{C}[T]$ and $\mathbb{C}[D]$. By the chain rule,

$$
\begin{aligned}
\frac{d^{i}}{d T^{i}}(f(\beta+T \gamma)) & =\frac{d^{i-1}}{d T^{i-1}}\left(\left.(\mathcal{J} f)\right|_{\beta+T \gamma} \cdot \gamma\right) \\
& =\frac{d^{i-1}}{d T^{i-1}}((D f)(\beta+T \gamma))=\left(D^{i} f\right)(\beta+T \gamma)
\end{aligned}
$$

follows for all $i \in \mathbb{N}$ by induction on i. Using the Taylor series at 0 of g, we see that for all $c \in \mathbb{C}$,

$$
\begin{align*}
f(\beta+c \gamma)=g(c) & =\left.\sum_{i=0}^{\infty} \frac{(c-0)^{i}}{i!}\left(\frac{d^{i}}{d T^{i}} g(T)\right)\right|_{T=0} \\
& =\left.\sum_{i=0}^{\infty} \frac{c^{i}}{i!}\left(\frac{d^{i}}{d T^{i}} f(\beta+T \gamma)\right)\right|_{T=0} \\
& =\left.\sum_{i=0}^{\infty} \frac{c^{i}}{i!}\left(\left(D^{i} f\right)(\beta+T \gamma)\right)\right|_{T=0} \\
& =\left.\left.((\exp c D) f)\right|_{\beta+T \gamma}\right|_{T=0}=\left.((\exp c D) f)\right|_{\beta} \tag{2.3}
\end{align*}
$$

Proposition 2.2. Let $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a polynomial map of degree d and $\lambda_{i} \in \mathbb{C}$ for all i, such that $\sum_{i \in I} \lambda_{i} \neq 0$ for all nonempty $I \subseteq\{1,2, \ldots, d-1\}$. Assume $\beta, \gamma \in \mathbb{C}^{n}$ such that $\gamma \neq 0$. If every sum of $d-1$ directional derivatives of $\left.F\right|_{\beta+\mathbb{C} \gamma}$ along γ is nonzero $\left(\lambda_{i}=1\right.$ for all i below), or more generally,

$$
\left.\sum_{i=1}^{d-1} \lambda_{i} \cdot(\mathcal{J} F)\right|_{\alpha_{i}} \cdot \gamma \neq 0
$$

for all $\alpha_{i} \in\{\beta+\mu \gamma \mid \mu \in \mathbb{C}\}$, then $F(\beta) \neq F(\beta+\gamma)$.
Proof. Set $D:=\sum_{i=1}^{n} \gamma_{i} \frac{\partial}{\partial X_{i}}$ and $P(T):=\left(\sum_{i=1}^{d-1} \lambda_{i}\right) T^{-1}(\exp (T)-1)$. By (2.3),

$$
\begin{aligned}
\left(\sum_{i=1}^{d-1} \lambda_{i}\right) \cdot\left(F_{j}(\beta+\gamma)-F_{j}(\beta)\right) & =\left.\left(\sum_{i=1}^{d-1} \lambda_{i}\right) \cdot\left((\exp (D)-1) F_{j}\right)\right|_{\beta} \\
& =\left.\left(D P(D) F_{j}\right)\right|_{\beta}=\left.\left(P(D)\left(D F_{j}\right)\right)\right|_{\beta}
\end{aligned}
$$

for all j. Choose r_{i} as in Lemma 2.1 for all i. From the definition of D and (2.3) with $c=r_{i}$ and $f=D F_{j}$,

$$
\begin{aligned}
\left.\sum_{i=1}^{d-1} \lambda_{i} \cdot\left(\mathcal{J} F_{j}\right)\right|_{\beta+r_{i} \gamma} \cdot \gamma & =\sum_{i=1}^{d-1} \lambda_{i}\left(D F_{j}\right)\left(\beta+r_{i} \gamma\right) \\
& =\left.\left(\sum_{i=1}^{d-1} \lambda_{i} \exp \left(r_{i} D\right)\left(D F_{j}\right)\right)\right|_{\beta}
\end{aligned}
$$

follows for all j. Since $P(T)-\sum_{i=1}^{d-1} \lambda_{i} \exp \left(r_{i} T\right)$ is divisible by T^{d} and $D F_{j}$ has degree at most $d-1$, we have

$$
P(D)\left(D F_{j}\right)=\sum_{i=1}^{d-1} \lambda_{i} \exp \left(r_{i} D\right)\left(D F_{j}\right)
$$

for all j. By substituting $X=\beta$ on both sides, we obtain

$$
\left(\sum_{i=1}^{d-1} \lambda_{i}\right) \cdot\left(F_{j}(\beta+\gamma)-F_{j}(\beta)\right)=\left.\sum_{i=1}^{d-1} \lambda_{i}\left(\mathcal{J} F_{j}\right)\right|_{\beta+r_{i} \gamma} \cdot \gamma
$$

for all j, which gives the desired result.

Corollary 2.3. Let $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a polynomial map of degree d and $\lambda_{i} \in \mathbb{C}$ for all i, such that $\sum_{i \in I} \lambda_{i} \neq 0$ for all nonempty $I \subseteq\{1,2, \ldots, d-1\}$. If $\operatorname{rk}\left(\left.\sum_{i=1}^{d-1} \lambda_{i}(\mathcal{J} F)\right|_{\alpha_{i}}\right)=n$ for all $\alpha_{i} \in \mathbb{C}^{n}$, then F is injective.

If additionally $n=m$, then F is an invertible polynomial map.
Proof. Assume $F(\beta)=F(\beta+\gamma)$ for some $\beta, \gamma \in \mathbb{C}^{n}$. By Proposition 2.2, there are $\alpha_{i} \in \mathbb{C}^{n}$ such that

$$
\left.\sum_{i=1}^{d-1} \lambda_{i} \cdot(\mathcal{J} F)\right|_{\alpha_{i}} \cdot \gamma=0
$$

and in particular $\operatorname{rk}\left(\left.\sum_{i=1}^{d-1} \lambda_{i} \cdot(\mathcal{J} F)\right|_{\alpha_{i}}\right) \neq n$.
If $n=m$, then a special case of the Cynk-Rusek Theorem in [6] (see also [13, Lemma 3] and [5]) tells us that F is an invertible polynomial map in case it is injective, which is the case here.

Remark 2.4. When $d=2$ or $d=3$, Corollary 2.3 gives a result of Wang [12, Theorem 1.2.2] and one of Yagzhev [13, Theorem 1(ii)], respectively. Corollary 2.3 also generalizes [11, Theorem 2.2.1, Corollary 2.2.2].

Remark 2.5. Now you might think that for Proposition 2.2, the condition that there are $d-1$ collinear α_{i} 's with the additive property therein is weaker than a similar property for $s \alpha_{i}$'s, where $s \in \mathbb{N}$ is arbitrary. This is however not the case.

Theorem 2.6. Let $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a polynomial map of degree $\leq d$ and $\beta, \gamma \in \mathbb{C}^{n}$. Then the following statements are equivalent.
(1) There exists $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d-1} \in \mathbb{C}$ satisfying $\sum_{i \in I} \lambda_{i} \neq 0$ for all nonempty $I \subseteq$ $\{1,2, \ldots, d-1\}$, such that

$$
\left.\sum_{i=1}^{d-1} \lambda_{i} \cdot(\mathcal{J} F)\right|_{\alpha_{i}} \cdot \gamma \neq 0
$$

for all $\alpha_{i} \in\{\beta+\mu \gamma \mid \mu \in \mathbb{C}\}$.
(2) $\left.F\right|_{\beta+\mathbb{C} \gamma}$ is linearly rectifiable (in particular injective), that is, there exists a vector $v \in \mathbb{C}^{m}$ such that

$$
\begin{equation*}
\sum_{j=1}^{m} v_{j} \cdot \frac{d}{d T}\left(F_{j}(\beta+T \gamma)\right)=1 \tag{2.4}
\end{equation*}
$$

(3) For all $s \in \mathbb{N}$,

$$
\left.\sum_{i=1}^{s} \lambda_{i} \cdot(\mathcal{J} F)\right|_{\alpha_{i}} \cdot \gamma \neq 0
$$

for all $\lambda_{i} \in \mathbb{C}$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{s} \neq 0$, and all $\alpha_{i} \in\{\beta+\mu \gamma \mid \mu \in \mathbb{C}\}$.
Proof. Since (3) \Rightarrow (1) is trivial, only two implications remain.
(2) \Rightarrow (3). Assume that (2) is satisfied. Take $s \in \mathbb{N}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{s} \in \mathbb{C}$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{s} \neq 0$, and $\alpha_{i} \in\{\beta+\mu \gamma \mid \mu \in \mathbb{C}\}$. Each α_{i} is of the form $\alpha_{i}=\beta+r_{i} \gamma$ for
some $r_{i} \in \mathbb{C}$. By the chain rule,

$$
\begin{aligned}
v^{t} \cdot\left(\left.\sum_{i=1}^{s} \lambda_{i} \cdot(\mathcal{J} F)\right|_{\alpha_{i}} \cdot \gamma\right) & =\sum_{i=1}^{s} \lambda_{i} \cdot\left(\left.\sum_{j=1}^{m} v_{j} \cdot\left(\mathcal{J} F_{j}\right)\right|_{\beta+r_{i} \gamma} \cdot \gamma\right) \\
& =\left.\sum_{i=1}^{s} \lambda_{i} \cdot\left(\sum_{j=1}^{m} v_{j} \frac{d}{d T}\left(F_{j}(\beta+T \gamma)\right)\right)\right|_{T=r_{i}} \\
& =\left.\sum_{i=1}^{s} \lambda_{i} \cdot 1\right|_{T=r_{i}}=\sum_{i=1}^{s} \lambda_{i} \neq 0,
\end{aligned}
$$

which gives (3).
(1) \Rightarrow (2). Assume that (2) does not hold. We will derive a contradiction by showing that (1) does not hold either.

Since $\operatorname{deg}_{T} \frac{d}{d T} F_{j}(\beta+T \gamma) \leq d-1$ for all j, the \mathbb{C}-space U that is generated by

$$
\frac{d}{d T} F_{1}(\beta+T \gamma), \frac{d}{d T} F_{2}(\beta+T \gamma), \ldots, \frac{d}{d T} F_{m}(\beta+T \gamma)
$$

has dimension $s \leq d-1$, for $1 \notin U$. Take a basis of U of monic $u_{1}, u_{2}, \ldots, u_{s} \in \mathbb{C}[T]$ such that $0<\operatorname{deg} u_{1}<\operatorname{deg} u_{2}<\cdots<\operatorname{deg} u_{s}<d$. Write $u_{j i}$ for the coefficient of T^{i} of u_{j}.

Next, define p_{i} for $i=0,1, \ldots, d-1$ as follows.

$$
p_{i}:= \begin{cases}-\sum_{k=0}^{i-1} p_{k} u_{j k} & \text { if } u_{j} \text { has degree } i, \\ \lambda_{1}+\lambda_{2}+\cdots+\lambda_{d-1} & \text { if no } u_{j} \text { has degree } i\end{cases}
$$

Set $P:=\sum_{k=1}^{d-1} \frac{p_{k}}{k!} T^{k}$ and choose r_{i} as in Lemma 2.1 for all i. Looking at the term expansion of u_{j}, we see that

$$
P\left(\frac{d}{d T}\right) u_{j}=\sum_{k=0}^{\infty} \frac{p_{k}}{k!} \cdot \sum_{l=0}^{\infty} \frac{(k+l)!}{l!} u_{j k} T^{l},
$$

whence for $i=\operatorname{deg} u_{j}$,

$$
\left.\left(P\left(\frac{d}{d T}\right) u_{j}\right)\right|_{T=0}=\sum_{k=0}^{\infty} p_{k} u_{j k}=p_{i}+\sum_{k=0}^{i-1} p_{k} u_{j k}=0
$$

and similarly for each i

$$
\left.\left(\exp \left(r_{i} \frac{d}{d T}\right) u_{j}\right)\right|_{T=0}=\sum_{k=0}^{\infty} r_{i}^{k} u_{j k}=u_{j}\left(r_{i}\right)=\left.u_{j}\right|_{T=r_{i}}
$$

follow for all j.
By Lemma 2.1, $P-\sum_{i=1}^{d-1} \lambda_{i} \exp \left(r_{i} T\right)$ is divisible by T^{d}. Since $\operatorname{deg} u_{j}<d$ for all j,

$$
0=\left.\left(P\left(\frac{d}{d T}\right) u_{j}\right)\right|_{T=0}=\left.\sum_{i=1}^{d-1} \lambda_{i} \cdot\left(\exp \left(r_{i} \frac{d}{d T}\right) u_{j}\right)\right|_{T=0}=\left.\sum_{i=1}^{d-1} \lambda_{i} u_{j}\right|_{T=r_{i}}
$$

Since $\frac{d}{d T} F_{j}(\beta+T \gamma)$ is a \mathbb{C}-linear combination of $u_{1}, u_{2}, \ldots, u_{s}$ for all j, we have

$$
\begin{aligned}
0 & =\left.\sum_{i=1}^{d-1} \lambda_{i} \cdot\left(\mathcal{J}_{T}(F(\beta+T \gamma))\right)\right|_{T=r_{i}} \\
& =\left.\sum_{i=1}^{d-1} \lambda_{i} \cdot\left(\left.(\mathcal{J} F)\right|_{\beta+T \gamma} \cdot \gamma\right)\right|_{T=r_{i}} \\
& =\left.\sum_{i=1}^{d-1} \lambda_{i} \cdot(\mathcal{J} F)\right|_{\beta+r_{i} \gamma} \cdot \gamma,
\end{aligned}
$$

which is a contradiction.
Remark 2.7. The definition of rectifiable in [8, Definition 5.3.3], which is there for the formulation of the Abhyankar-Moh-Suzuki theorem [8, Theorem 5.3.5], is about the existence of an invertible polynomial map G (called F^{-1} in [8, Definition 5.3.3]) such that $G\left(\phi_{1}(T), \phi_{2}(T), \ldots, \phi_{m}(T)\right)=(T, 0, \ldots, 0)$. The definition of linearly rectifiable is more specific in the sense that $\operatorname{deg} G_{1}=1$ is required.

In (2.4), we have $\phi(T)=F(\beta+T \gamma)$ and $G_{1}=\sum_{j=1}^{m} v_{j}\left(Y_{j}-F_{j}(\beta)\right)$, and one can show that G can be extended to an automorphism (both in (2.4) and any other situation where G_{1} is known), because for all $i \geq 2$ we can choose $G_{i}=Y_{j}-\phi_{j}\left(G_{1}\right)$ for some $j \in\{i-1, i\}$.

Remark 2.8. For the map $F=\left(X_{1}+\left(X_{2}+X_{1}^{2}\right)^{2}, X_{2}+X_{1}^{2}\right)$, only images of lines parallel to the X_{2}-axis are linearly rectifiable. But all images of lines are linearly rectifiable when $F=\left(X_{1}+\left(X_{2}+X_{1}^{2}\right)^{2}-\left(X_{3}+X_{1}^{2}\right)^{2}, X_{2}+X_{1}^{2}, X_{3}+X_{1}^{2}\right)$ or any other invertible cubic map over \mathbb{C}. This follows from the proposition below.

Proposition 2.9. Let $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a polynomial map of degree ≤ 3, and $\beta, \gamma \in \mathbb{C}^{n}$ such that $\gamma \neq 0$. If $\left.F\right|_{\beta+\mathbb{C} \gamma}$ is injective and $\left.(\mathcal{J} F)\right|_{\alpha} \cdot \gamma \neq 0$ for all $\alpha \in\{\beta+\mu \gamma \mid \mu \in \mathbb{C}\}$, then $\left.F\right|_{\beta+\mathbb{C}}{ }_{\gamma}$ is linearly rectifiable, that is, there exists $a v \in \mathbb{C}^{m}$ such that (2.4) holds.

Proof. Assume $\left.F\right|_{\beta+\mathbb{C} \gamma}$ is not linearly rectifiable. Then there exist monic $u_{1}, u_{2} \in \mathbb{C}[T]$ such that $\operatorname{deg} u_{i}=i$ and for all $j, \frac{d}{d T} F_{j}(\beta+T \gamma)$ is linearly dependent over \mathbb{C} of u_{1} and u_{2}. If the constant term u_{10} of u_{1} is nonzero, then u_{10} will become zero after replacing β by $\beta-u_{10} \gamma$ and adapting u_{1} and u_{2} accordingly. So assume $u_{10}=0$ and let u_{20} be the constant term of u_{2}. By taking the integral of u_{1} and u_{2} from $T=-\sqrt{-3 u_{20}}$ to $T=+\sqrt{-3 u_{20}}$, we see that $F\left(\beta-\sqrt{-3 u_{20}} \gamma\right)=F\left(\beta+\sqrt{-3 u_{20}} \gamma\right)$, thus either $\left.F\right|_{\beta+\mathbb{C} \gamma}$ is not injective or $u_{20}=0$. If $u_{20}=0$, then $\left.(\mathcal{J} F)\right|_{X=\beta} \cdot \gamma=0$ because both u_{1} and u_{2} are divisible by T. This completes the proof of Proposition 2.9.

Corollary 2.10. Assume $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is a polynomial map of degree ≤ 3 which satisfies the Keller condition $\operatorname{det} \mathcal{J} F \in \mathbb{C}^{*}$. Then F is invertible, if and only if $\left.F\right|_{L}$ is linearly rectifiable for every affine line $L \subseteq \mathbb{C}^{n}$, if and only if $\left(\left.(\mathcal{J} F)\right|_{\alpha}+\left.(\mathcal{J} F)\right|_{\beta}\right)(\alpha-\beta) \neq 0$ for all $\alpha, \beta \in \mathbb{C}^{n}$ with $\alpha \neq \beta$.

Proof. By Proposition 2.9, F is invertible, if and only if $\left.F\right|_{L}$ is linearly rectifiable for every affine line $L \subseteq \mathbb{C}^{n}$. By Theorem 2.6, the latter is equivalent to $\left(\left.(\mathcal{J} F)\right|_{\alpha}+\left.(\mathcal{J} F)\right|_{\beta}\right)(\alpha-\beta) \neq 0$ for all $\alpha, \beta \in \mathbb{C}^{n}$ with $\alpha \neq \beta$, as desired.

Remark 2.11. Notice that in the proof of Lemma 2.1, we solve $d-1$ equations in $d-1$ variables to obtain $r_{1}, r_{2}, \ldots, r_{d-1}$. In case $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{d-1}$, it suffices to solve only one equation in only one variable to obtain $r_{1}, r_{2}, \ldots, r_{d-1}$.

Lemma 2.1'. Let $P \in \mathbb{C}[[T]]$ with constant term $d-1$. Then there are $r_{1}, r_{2}, \ldots, r_{d-1} \in \mathbb{C}$, which are roots of a polynomial whose coefficients are polynomials in those of P, such that

$$
P-\sum_{i=1}^{d-1} \exp \left(r_{i} T\right)
$$

is divisible by T^{d}, where $\exp (T)=\sum_{j=0}^{\infty} \frac{1}{j!} T^{j}$.
Proof. Write

$$
P=\sum_{j=0}^{\infty} \frac{p_{j}}{j!} T^{j}
$$

Then we must find a solution $\left(Y_{1}, Y_{2}, \ldots, Y_{d-1}\right)=\left(r_{1}, r_{2}, \ldots, r_{d-1}\right)$ of

$$
\sum_{i=1}^{d-1} Y_{i}^{j}=p_{j} \quad(j=0,1, \ldots, d-1)
$$

By Newton's identities for symmetric polynomials, there exists a polynomial $f \in \mathbb{C}[T]$ [$\left.X_{1}, X_{2}, \ldots, X_{d-1}\right]$ which is injective as a function of \mathbb{C}^{d-1} to $\mathbb{C}[T]$, such that

$$
f\left(\sum_{i=1}^{d-1} X_{i}, \sum_{i=1}^{d-1} X_{i}^{2}, \ldots, \sum_{i=1}^{d-1} X_{i}^{d-1}\right)=\prod_{i=1}^{d-1}\left(T+X_{i}\right) .
$$

Notice that $g:=f\left(p_{1}, \ldots, p_{d-1}\right)$ is a monic polynomial of degree $d-1$ in T. Hence we can decompose g as

$$
g=\prod_{i=1}^{d-1}\left(T+r_{i}\right)=f\left(\sum_{i=1}^{d-1} r_{i}, \sum_{i=1}^{d-1} r_{i}^{2}, \ldots, \sum_{i=1}^{d-1} r_{i}^{d-1}\right)
$$

and the injectivity of f gives the desired result.

3. Additive properties of the Jacobian determinant

Proposition 3.1. Let $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a quadratic polynomial map such that $\operatorname{det} \mathcal{J} F \in \mathbb{C}$. Then for all $s \in \mathbb{N}$,

$$
\operatorname{det}\left(\left.\sum_{i=1}^{s} b_{i} \cdot(\mathcal{J} F)\right|_{\alpha_{i}}\right)=\operatorname{det}\left(\sum_{i=1}^{s} b_{i} \cdot \mathcal{J} F\right)=\left(\sum_{i=1}^{s} b_{i}\right)^{n} \cdot \operatorname{det} \mathcal{J} F
$$

for all $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s} \in \mathbb{C}^{n}$ and all $b_{1}, b_{2}, \ldots, b_{s} \in \mathbb{C}$.
Proof. Since the entries of $\mathcal{J} F$ are affinely linear, we have

$$
\left.\sum_{i=1}^{s} b_{i} \cdot(\mathcal{J} F)\right|_{\alpha_{i}}=\left.\sigma \cdot(\mathcal{J} F)\right|_{\sigma^{-1}} \sum_{i=1}^{s} b_{i} \alpha_{i}
$$

for all $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s} \in \mathbb{C}^{n}$ and all $b_{1}, b_{2}, \ldots, b_{s} \in \mathbb{C}$, in case $\sigma:=\sum_{i=1}^{s} b_{i} \neq 0$. Taking determinants on both sides, it follows from $\operatorname{det} \mathcal{J} F \in \mathbb{C}$ that

$$
\operatorname{det}\left(\left.\sum_{i=1}^{s} b_{i} \cdot(\mathcal{J} F)\right|_{\alpha_{i}}\right)=\operatorname{det}(\sigma \cdot \mathcal{J} F)=\sigma^{n} \cdot \operatorname{det} \mathcal{J} F
$$

when $\sigma \neq 0$, and by continuity also in case $\sigma=0$, as desired.
Lemma 3.2. Assume $f \in \mathbb{C}[X]$ has degree $\leq d$. If f vanishes on the set $S:=\left\{a \in \mathbb{N}^{n} \mid\right.$ $\left.a_{1}+a_{2}+\cdots+a_{n} \leq d\right\}$, then $f=0$.

Proof. Notice that we can write f in the form

$$
f\left(X_{1}, \ldots, X_{n-1}, X_{n}\right)=f\left(X_{1}, \ldots, X_{n-1}, 0\right)+X_{n} \cdot g\left(X_{1}, \ldots, X_{n-1}, X_{n}-1\right)
$$

where $g \in \mathbb{C}[X]$. By induction on $n, f\left(X_{1}, \ldots, X_{n-1}, 0\right)=0$. Furthermore, if $a \in S$ and $a_{n} \geq 1$, then

$$
g\left(a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}-1\right)=\frac{f(a)-f\left(a_{1}, a_{2}, \ldots, a_{n-1}, 0\right)}{a_{n}}=0 .
$$

Thus by induction on $d, g=0$. Hence $f=0$ as well.
Corollary 3.3. Let $f \in \mathbb{C}[X]$ be a polynomial of degree $\leq d$. If $f(a)=0$ for all $a \in \mathbb{N}^{n}$ such that $\sum_{i=1}^{n} a_{i}=d$, then $\sum_{i=1}^{n} x_{i}-d \mid f$. If additionally f is homogeneous, then $f=0$.

Proof. If we substitute $X_{n}=d-\sum_{i=1}^{n-1} X_{i}$ in f, then we get a polynomial of degree $\leq d$ which is zero on account of Lemma 3.2. Hence $X_{n}=d-\sum_{i=1}^{n-1} X_{i}$ is a zero of $f \in \mathbb{C}\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)\left[X_{n}\right]$ and f is divisible over $\mathbb{C}\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)$ by $\sum_{i=1}^{n} X_{i}-d$. By Gauss' Lemma, f is divisible over $\mathbb{C}[X]$ by $\sum_{i=1}^{n} X_{i}-d$, which is only homogeneous if $d=0$. Hence $f=0$ when f is homogeneous.

Lemma 3.4. Let $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a polynomial map and $P:$ Mat $_{m, n}(\mathbb{C}) \rightarrow \mathbb{C}$ be a polynomial of degree $\leq d$ in the entries of its input matrix. Fix $\mu \in \mathbb{C}$ and assume that

$$
P\left(\left.\sum_{i=1}^{d}(\mathcal{J} F)\right|_{\alpha_{i}}\right)=\mu
$$

for all $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d} \in \mathbb{C}^{n}$. Then for all $s \in \mathbb{N}$

$$
P\left(\left.\sum_{i=1}^{s} b_{i} \cdot(\mathcal{J} F)\right|_{\alpha_{i}}\right)=\mu=P(d \mathcal{J} F)
$$

for all $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s} \in \mathbb{C}^{n}$ and all $b_{1}, b_{2}, \ldots, b_{s} \in \mathbb{C}$ such that $\sum_{i=1}^{s} b_{i}=d$.
If additionally P is homogeneous, then

$$
P\left(\left.\sum_{i=1}^{s} b_{i} \cdot(\mathcal{J} F)\right|_{\alpha_{i}}\right)=\left(\frac{1}{d} \sum_{i=1}^{s} b_{i}\right)^{\operatorname{deg} P} \mu=\left(\sum_{i=1}^{s} b_{i}\right)^{\operatorname{deg} P} P(\mathcal{J} F)
$$

for all $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s} \in \mathbb{C}^{n}$ and all $b_{1}, b_{2}, \ldots, b_{s} \in \mathbb{C}$.

Proof. Since $P\left(\left.\sum_{i=1}^{d}(\mathcal{J} F)\right|_{\alpha_{i}}\right)=\mu$ is constant,

$$
\mu=P\left(\left.\sum_{i=1}^{d}(\mathcal{J} F)\right|_{\alpha_{i}}\right)=P(d \mathcal{J} F)
$$

for all $\alpha_{i} \in \mathbb{C}^{n}$. Take $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s} \in \mathbb{C}^{n}$ and let

$$
f\left(Y_{1}, Y_{2}, \ldots, Y_{s}\right):=P\left(\left.\sum_{i=1}^{s} Y_{i} \cdot(\mathcal{J} F)\right|_{\alpha_{i}}\right)-\mu .
$$

Then $\operatorname{deg} f\left(Y_{1}, Y_{2}, \ldots, Y_{s}\right) \leq d$, and for all $b \in \mathbb{N}^{s}$ such that $\sum_{i=1}^{s} b_{i}=d$, we have

$$
\begin{aligned}
f(b) & =P\left(\left.\sum_{i=1}^{s} b_{i} \cdot(\mathcal{J} F)\right|_{\alpha_{i}}\right)-\mu \\
& =P\left(\left.\sum_{i=1}^{s} \sum_{j=1}^{b_{i}}(\mathcal{J} F)\right|_{\alpha_{i}}\right)-\mu=0 .
\end{aligned}
$$

By Corollary 3.3, $\sum_{i=1}^{s} Y_{i}-d \mid f\left(Y_{1}, Y_{2}, \ldots, Y_{s}\right)-\mu$, whence

$$
0 \mid P\left(\left.\sum_{i=1}^{s} b_{i} \cdot(\mathcal{J} F)\right|_{\alpha_{i}}\right)-\mu
$$

for all $b \in \mathbb{C}^{s}$ such that $\sum_{i=1}^{s} b_{i}=d$. This gives the first assertion of Lemma 3.4.
Assume P is homogeneous. Then

$$
\begin{aligned}
g\left(Y_{1}, Y_{2}, \ldots, Y_{s}\right) & :=P\left(\left.\sum_{i=1}^{s} Y_{i} \cdot(\mathcal{J} F)\right|_{\alpha_{i}}\right)-\left(\frac{1}{d} \sum_{i=1}^{s} Y_{i}\right)^{\operatorname{deg} P} \mu \\
& =P\left(\left.\sum_{i=1}^{s} Y_{i} \cdot(\mathcal{J} F)\right|_{\alpha_{i}}\right)-\left(\sum_{i=1}^{s} Y_{i}\right)^{\operatorname{deg} P} P(\mathcal{J} F)
\end{aligned}
$$

is homogeneous as well. Since g vanishes on b for all $b \in \mathbb{N}^{s}$ such that $\sum_{i=1}^{s} b_{i}=d$, we obtain from Corollary 3.3 that $g=0$, which completes the proof of Lemma 3.4.

Theorem 3.5. Let $m \geq n$ and $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a polynomial map such that for a fixed $\mu \in \mathbb{C}$, we have

$$
\operatorname{det}\left(\left.\sum_{i=1}^{m}(\mathcal{J} F)\right|_{\alpha_{i}}\right)=\mu
$$

for all $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in \mathbb{C}^{n}$. Then $\mu=\operatorname{det}(m \mathcal{J} F)=m^{n} \operatorname{det}(\mathcal{J} F)$ and for all $s \in \mathbb{N}$

$$
\operatorname{det}\left(\left.\sum_{i=1}^{s} b_{i} \cdot(\mathcal{J} F)\right|_{\alpha_{i}}\right)=\left(\frac{1}{m} \sum_{i=1}^{s} b_{i}\right)^{n} \mu=\left(\sum_{i=1}^{s} b_{i}\right)^{n} \operatorname{det}(\mathcal{J} F)
$$

for all $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s} \in \mathbb{C}^{n}$ and all $b_{1}, b_{2}, \ldots, b_{s} \in \mathbb{C}$. Furthermore, F is an invertible polynomial map in case $\operatorname{det} \mathcal{J} F \neq 0$.
Proof. To obtain the first assertion, take $P=\operatorname{det}, d=m$ and $m=n$ in Lemma 3.4. By taking $s=\operatorname{deg} F-1$ and $b_{i}=1$ for all i in this assertion, it follows from Corollary 2.3 that F is an invertible polynomial map in case $\operatorname{det} \mathcal{J} F \neq 0$.

Theorem 3.6. Assume $H: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is a polynomial map and define

$$
M\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right):=\left.(\mathcal{J} H)\right|_{\alpha_{1}}+\left.(\mathcal{J} H)\right|_{\alpha_{2}}+\cdots+\left.(\mathcal{J} H)\right|_{\alpha_{s}} .
$$

If for some $m \geq d$, the sum of the principal minors of size d of $M\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ is zero for all $\alpha_{i} \in \mathbb{C}^{n}$, then for all $s \in \mathbb{N}$, the sum of the principal minors of size d of

$$
\begin{equation*}
\left.b_{1} \cdot(\mathcal{J} H)\right|_{\alpha_{1}}+\left.b_{2} \cdot(\mathcal{J} H)\right|_{\alpha_{2}}+\cdots+\left.b_{s} \cdot(\mathcal{J} H)\right|_{\alpha_{s}} \tag{3.1}
\end{equation*}
$$

is zero as well, for all $b_{i} \in \mathbb{C}$ and all $\alpha_{i} \in \mathbb{C}^{n}$. If for some $m \geq d$, the trace of $M\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)^{d}$ is zero for all $\alpha_{i} \in \mathbb{C}^{n}$, then for all $s \in \mathbb{N}$, the trace of the d-th power of (3.1) is zero as well, for all $b_{i} \in \mathbb{C}$ and all $\alpha_{i} \in \mathbb{C}^{n}$.

Proof. Take for P the sum of the principal minors of size m or the trace of the m-th power, respectively. By Lemma 3.4, $P((3.1))$ is divisible by $\mu:=P(m \mathcal{J} H)=P$ $\left(M\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)\right)=0$.

Remark 3.7. Let $F=X+H$ such that the Jacobian matrix $\mathcal{J} H$ is additive-nilpotent. Then for all $m \in \mathbb{N},\left.\sum_{i=1}^{m}(\mathcal{J} F)\right|_{\alpha_{i}}$ is invertible for all $\alpha_{i} \in \mathbb{C}^{n}$. We shall show below that the converse holds when H does not have linear terms. But the converse is not true in general. For example, let $F(X)=X+H$, where $H=\left(-X_{1}+X_{2}, X_{1}-X_{2}+X_{2}^{2}\right)$. Then

$$
\mathcal{J} H=\left(\begin{array}{cc}
-1 & 1 \\
1 & 2 X_{2}-1
\end{array}\right) \quad \text { and } \quad \mathcal{J} F=\left(\begin{array}{cc}
0 & 1 \\
1 & 2 X_{2}
\end{array}\right)
$$

such that $\mathcal{J} H$ is not even nilpotent and $\left.\sum_{i=1}^{2}(\mathcal{J} F)\right|_{\alpha_{i}}$ is invertible for all $\alpha_{1}, \alpha_{2} \in \mathbb{C}^{2}$.
Proposition 3.8. Assume $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is a polynomial map of the form $F=L+H$, such that L is invertible and $\operatorname{deg} L=1$. Then for all $s \in \mathbb{N}$, all $b_{i} \in \mathbb{C}$, and all $\alpha_{i} \in \mathbb{C}^{n}$, the following statements are equivalent to each other.
(1) For all $\mu \in \mathbb{C}$, we have

$$
\operatorname{det}\left(\mu \cdot \mathcal{J} L+\left.\sum_{i=1}^{s} b_{i} \cdot(\mathcal{J} F)\right|_{\alpha_{i}}\right)=\left(\mu+\sum_{i=1}^{s} b_{i}\right)^{n} \cdot \operatorname{det}(\mathcal{J} L) .
$$

(2) $\left.\sum_{i=1}^{s} b_{i} \cdot\left(\mathcal{J}\left(L^{-1} \circ H\right)\right)\right|_{\alpha_{i}}$ is nilpotent.

Proof. Assume (1). Since the equality of (1) holds for all $\mu \in \mathbb{C}$, we obtain

$$
\operatorname{det}\left(T \cdot \mathcal{J} L+\left.\sum_{i=1}^{s} b_{i} \cdot(\mathcal{J} F)\right|_{\alpha_{i}}\right)=\left(T+\sum_{i=1}^{s} b_{i}\right)^{n} \cdot \operatorname{det}(\mathcal{J} L)
$$

which is equivalent to

$$
\operatorname{det}\left(\left(T-\sum_{i=1}^{s} b_{i}\right) \cdot \mathcal{J} L+\left.\sum_{i=1}^{s} b_{i} \cdot(\mathcal{J} L+\mathcal{J} H)\right|_{\alpha_{i}}\right)=T^{n} \cdot \operatorname{det}(\mathcal{J} L)
$$

and

$$
\operatorname{det}\left(T \cdot \mathcal{J} L+\left.\sum_{i=1}^{s} b_{i} \cdot(\mathcal{J} H)\right|_{\alpha_{i}}\right)=T^{n} \cdot \operatorname{det}(\mathcal{J} L)
$$

By dividing both sides by $\operatorname{det}(\mathcal{J} L)$, we obtain

$$
\operatorname{det}\left(T+\left.\sum_{i=1}^{s} b_{i} \cdot(\mathcal{J} L)^{-1} \cdot(\mathcal{J} H)\right|_{\alpha_{i}}\right)=T^{n}
$$

which implies (2). The converse is similar.
Let $F=X+H$ such that $\mathcal{J} H$ is additive-nilpotent. Then $\left.\sum_{i=1}^{m}(\mathcal{J} \tilde{F})\right|_{\alpha_{i}}$ is invertible for all $\alpha_{i} \in \mathbb{C}^{n}$ and all positive integers m, where $\tilde{F}=L_{1} \circ F \circ L_{2}$ for invertible linear maps L_{1} and L_{2}. We next prove that the converse holds.

Theorem 3.9. For a polynomial map $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ the following statements are equivalent.
(1) $\left.\sum_{i=1}^{n}(\mathcal{J} F)\right|_{\alpha_{i}}$ is invertible for all $\alpha_{i} \in \mathbb{C}^{n}$;
(2) $F=L \circ(X+H)$, where H has no linear terms, the linear part L of F is invertible and $\mathcal{J} H$ is additive-nilpotent;
(3) $F=(X+H) \circ L$, where H has no linear terms, the linear part L of F is invertible and $\mathcal{J} H$ is additive-nilpotent;
(4) $F=L_{1} \circ(X+H) \circ L_{2}$, where L_{1} and L_{2} are invertible maps of degree one and $\mathcal{J} H$ is additive-nilpotent.

Proof. Since $(3) \Rightarrow(4)$ is trivial, the following three implications remain to be proved.
$(4) \Rightarrow(1)$. Since $\mathcal{J} H$ is additive-nilpotent, (1) holds with $X+H$ instead of F. Since (1) is not affected by compositions with translations and invertible linear maps, and F can be obtained from $X+H$ in that manner, (1) follows.
(1) \Rightarrow (2). By the fundamental theorem of algebra, the determinant of $\left.\sum_{i=1}^{n}(\mathcal{J} F)\right|_{\alpha_{i}}$ is a nonzero constant which does not depend on $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. Let L be the linear part of F. By Theorem 3.5, we obtain that $\operatorname{det} \mathcal{J} F=\left.\operatorname{det}(\mathcal{J} F)\right|_{0}=\operatorname{det} \mathcal{J} L$ and that (1) of Proposition 3.8 holds for all $s \in \mathbb{N}$, all $b_{i} \in \mathbb{C}$, and all $\alpha_{i} \in \mathbb{C}^{n}$. Hence the Jacobian matrix of $H:=L^{-1} \circ(F-L)$ is additive-nilpotent on account of Proposition 3.8, which gives the desired result.
(2) \Rightarrow (3). This follows from the fact that $F=L \circ(X+H)=\left(X+\left(L \circ H \circ L^{-1}\right)\right) \circ L$ and the Jacobian matrix of $L \circ H \circ L^{-1}$ is also additive-nilpotent.

Remark 3.10. A polynomial map $F=\left(F_{1}, \ldots, F_{n}\right)$ is called triangular if its Jacobian matrix is triangular, that is, either above or below the main diagonal, all entries of $\mathcal{J} F$ are zero. The Jacobian matrix $\mathcal{J} F$ of a triangular invertible polynomial map F can only have nonzero constants on the main diagonal, and thus for all invertible linear maps L_{1} and $L_{2},\left.\sum_{i=1}^{n}\left(\mathcal{J}\left(L_{1} \circ F \circ L_{2}\right)\right)\right|_{\alpha_{i}}$ is invertible for all $\alpha_{i} \in \mathbb{C}^{n}$. However, a polynomial map satisfying the conditions of Theorem 3.9 is not necessarily a composition of a triangular map and two linear maps. Indeed, in [10], it was shown that in dimension 5 and up, Keller maps $X+H$ with H quadratic homogeneous do not necessarily have the property that $\mathcal{J} H$ is strongly nilpotent. But on account of Proposition 3.1, such maps satisfy property (1) of Theorem 3.9.

In [4], all those maps such that $\mathcal{J} H$ is not strongly nilpotent are determined in dimension 5. H is either of the form

$$
H=L^{-1} \circ\left(\left(\begin{array}{c}
0 \\
\lambda X_{1}^{2} \\
X_{2} X_{4} \\
X_{1} X_{3}-X_{2} X_{5} \\
X_{1} X_{4}
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
p\left(X_{1}, X_{2}\right) \\
q\left(X_{1}, X_{2}\right) \\
r\left(X_{1}, X_{2}\right)
\end{array}\right)\right) \circ L,
$$

where $\lambda \in\{0,1\}, L$ is linear and $p, q, r \in \mathbb{C}\left[X_{1}, X_{2}\right]$, or of the form

$$
H=L^{-1} \circ\left(\left(\begin{array}{c}
0 \\
X_{1} X_{3} \\
X_{2}^{2}-X_{1} X_{4} \\
2 X_{2} X_{3}-X_{1} X_{5} \\
X_{3}^{2}
\end{array}\right)+\left(\begin{array}{c}
0 \\
\lambda_{2} X_{1}^{2} \\
\lambda_{3} X_{1}^{2} \\
\lambda_{4} X_{1}^{2} \\
\lambda_{5} X_{1}^{2}
\end{array}\right)\right) \circ L
$$

where L is linear and $\lambda_{i} \in \mathbb{C}$. One can show that in both cases, the columns of $\mathcal{J}\left(L \circ H \circ L^{-1}\right)$ are linearly independent over \mathbb{C}, something that cannot be counteracted with compositions with invertible linear maps. Hence the columns of $\mathcal{J}\left(L_{1} \circ H \circ L_{2}\right)$ are linearly independent over \mathbb{C} for all invertible maps $L_{i} . \mathcal{J}\left(L_{1} \circ H \circ L_{2}\right)$ is exactly the linear part of $\mathcal{J}\left(L_{1} \circ F \circ L_{2}\right)$, thus $\mathcal{J}\left(L_{1} \circ F \circ L_{2}\right)$ can only be triangular if its main diagonal is not constant on one of its ends. This is however not possible since $L_{1} \circ F \circ L_{2}$ is invertible.

Acknowledgments

The authors would like to thank the referees for their careful reading and constructive comments.

References

[1] H. Bass, E. Connell, D. Wright, The Jacobian Conjecture: reduction of degree and formal expansion of inverse, Bull. Amer. Math. Soc. 7 (1982) 287-330.
[2] M. de Bondt, A. van den Essen, A reduction of the Jacobian Conjecture to the symmetric case, Proc. Amer. Math. Soc. 133 (8) (2005) 2201-2205.
[3] M. de Bondt, A. van den Essen, The Jacobian Conjecture for symmetric Drużkowski mappings, Ann. Polon. Math. 86 (1) (2005) 43-46.
[4] M. de Bondt, Homogeneous Keller maps, Ph.D. Thesis, Nijmegen: Radboud University, 2009, http://webdoc.ubn.ru.nl/mono/b/bondt_m_de/homokema.pdf.
[5] A. Borel, Injective endomorphisms of algebraic varieties, Arch. Math. (Basel) 20 (1969) 531-537.
[6] S. Cynk, L. Rusek, Injective endomorphisms of algebraic and analytic sets, Ann. Polon. Math. 56 (1991) 29-35.
[7] L.M. Dru zkowski, An effective approach to the Jacobian Conjecture, Math. Ann. 264 (1983) 303-313.
[8] A. van den Essen, Prog. Math., in: Polynomial automorphisms and the Jacobian Conjecture, 190, Birkhäuser, Basel-Boston-Berlin, 2000.
[9] A. van den Essen, E. Hubbers, Polynomial maps with strongly nilpotent Jacobian matrix and the Jacobian Conjecture, Linear Algebra Appl. 247 (1996) 121-132.
[10] G.H. Meisters, C. Olech, Strong nilpotence holds in dimensions up to five only, Linear Multilinear Algebra 30 (4) (1991) 231-255.
[11] X. Sun, Polynomial maps with additive-nilpotent Jacobian matrices, Ph.D. Thesis, Changchun: Jilin University, 2009.
[12] S.S.-S. Wang, A Jacobian criterion for separability, J. Algebra 65 (2) (1980) 453-494.
[13] A. Yagzhev, On Keller's problem, Siberian Math. J. 21 (5) (1980) 747-754.
[14] J.-T. Yu, On generalized strongly nilpotent matrices, Linear Multilinear Algebra 41 (1) (1996) 19-22.

[^0]: ${ }^{*}$ Supported by NSF of China (No. 11071097, No. 11026039) and "211 Project" and "985 Project" of Jilin University.

 * Corresponding author.

 E-mail addresses: 0417ghb@163.com (H. Guo), debondt@math.ru.nl (M. de Bondt), duxk@jlu.edu.cn (X. Du), sunxs@jlu.edu.cn (X. Sun).
 0019-3577/\$ - see front matter © 2011 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
 doi:10.1016/j.indag.2011.11.007

