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A uniformly resolvable pairwise balanced design is a pairwise balanced design 
whose blocks can be resolved into parallel classes in such a way that all blocks in a 
given parallel class have the same size. We are concerned here with designs in which 
each block has size two or three, and we prove that the obvious necessary con- 
ditions on the existence of such designs are also sufficient, with two exceptions, 
corresponding to the non-existence of Nearly Kirkman Triple Systems of orders 6 
and 12. 6 1987 Academic Press, Inc. 

1. INTRODUCTION 

A pairwise balanced design (PBD) (of index 1) is a set X of elements 
called treatments, together with a collection B of subsets of X called blocks, 
such that each pair of treatments is contained in exactly one block. A 
parallel class of blocks is a subset B, G B which partitions the set X. A PBD 
is resoluble if its blocks can be partitioned into parallel classes. The size of 
a block b E B is the number (bl. The replication number of a resolvable PBD 
is the number of parallel classes contained in any resolution of its blocks 
or, equivalently, the number of blocks containing any fixed treatment. 

A uniformly resolvable pairwise balanced design (URD) is a pairwise 
balanced design whose blocks can be resolved into parallel classes in such a 
way that all blocks in a given parallel class have the same size. 

A URD(p, k) is a uniformly resolvable PBD on p treatments, with 
replication number k, in which each block has size two or three. When con- 
venient we may think of this as a resolution of the complete graph K, into r 
l-factors and k-t d-factors, where a d-factor is a 2-factor consisting of 
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triangles. (Note that by counting the treatments contained in the pencil of 
blocks through any fixed treatment we have t + 2(k - t) =p - 1, or 
2k - t =p - 1; i.e., each of k, t will uniquely determine the other.) In par- 
ticular a URD(p, p - 1) is merely a l-factorization of the complete graph 
KP; these exist if and only if p is even. At the other end of the spectrum a 
URD(p, (p - 1)/2) is a resolution of K, into d-factors. These are referred 
to as Kirkman Triple Systems KTS(p), and are known to exist if and only 
if p is an odd multiple of three [7]. 

The purpose of this report is to investigate the existence problem for 
values of k between the above extremes. Since both block sizes are present 
we clearly must have p = 0 (mod 6) and p/2 <k <p - 2. The case k = p/2 
corresponds to a Nearly Kirkman Triple System NKTS(p), i.e., one 
l-factor and p/2 - 1 d-factors. These have been extensively studied, and 
exist if and only if p > 18 (see [ 1, 2, 8, 61). In particular, URD(6, 3) and 
URD( 12,6) do not exist. We prove that these are the only exceptions: 

THEOREM. Let p E 0 (mod 6) and p/2 + 1 < k < p - 2. Then there exists a 

UWp, k). 

These designs form a special type of restricted resolvable designs, which 
arise when considering the problem of determining the smallest number of 
blocks required to build a PBD given only the number of treatments and 
the size of the largest block. A restricted resolvable design (see [9]) is a 
resolvable PBD of index one in which all blocks have size I or I+ 1 for 
some integer 1. 

In another direction, uniformly resolvable designs can arise naturally in 
certain embedding problems. Thus for example a resolution of KP into t 
l-factors and k - t d-factors is simultaneously a PRP 2 - (2, 3, p; t) and a 
PRP 2 - (3, 2, p; k - t) (PRP = partially resolvable partition; see [S]); our 
main theorem (together with the NKTS results) immediately yields the 
following result (which is a variant of a theorem of Doyen and Wilson 
[3]): for any integers v, w  with v- w  z 1 or 3 (mod 6) and v>2w+ 1, 
(0, w) # (7, 1) or (13, 1) there exists a Steiner Triple System STS(v) con- 
taining a sub-STS(w) in such a way that the triples that miss the subsystem 
can be arranged into d-factors (i.e., d-factors on Ku-,). 

Before proceeding we will need some more terminology. A resolvable 
balanced incomplete block design RBIBD(v, s, 1) is a resolvable PBD of 
index 1 on v treatments in which each block has size s. Thus an 
RBIBD(v, 3, 1) is a KTS(v). We will make use of the fact that an 
RBIBD(v, 4, 1) exists if and only if u = 4 (mod 12); see [4]. A group 
divisible design GDD(S, G; v) consists of a set X of treatments which has 
been partitioned into subsets X, , X, ,..., X, (called groups), together with a 
collection B of subsets of X (called blocks) with the following properties: 



UNIFORMLYRESOLVABLE PBDs 209 

(ii) each pair of treatments is contained in exactly one block or 
exactly one group (but not both), and 

(iii) each group Xi has size gi E G, each block Bi has size si E S. 

A group divisible design is said to be resolvable if its blocks can be par- 
titioned into parallel classes. A resolvable GDD(S, G; v) will be denoted 
RGD(S, G; v). 

A frame (see [lo]) is a group divisible design whose blocks can be par- 
titioned into partial parallel classes, i.e., each partial parallel class C is a 
partition of X- Xi for some group Xi (we will say that Xi corresponds to C 
when C partitions X-Xi). The groups in a frame are referred to as holes. 
By an Fr(S, G; v) we will mean a frame obtained from a GDD(S, G; v). In 
[lo], Stinson proves that an Fr( { 3 ), {g}, gt) exists if and only if g is even, 
t84andg(t-l)=O (mod3). 

Finally, we point out that some of the material contained herein appears 
in an unpublished manuscript by the author entitled, The spectrum of 
uniformly resolvable PBDs with blocksizes two and three. 

2. PRELIMINARY RESULTS 

The bulk of the main theorem (i.e., the cases where p & 12 (mod 18)) 
relies on the existence of NKTSs and KTSs, together with the first con- 
struction in this section (Theorem 2.1). The constructions for the p = 12 
(mod 18) designs make essential use of frames together with 
RBIBD(v, 4, 1 )s, in a manner similar to a construction in [8] (see 
Corollary 2.4 of that paper). Additionally, some small starting designs are 
needed, and these are constructed in Theorems 2.2 through 2.4. 

Let n be an even integer and define a resolvable group divisible design on 
the treatment set 2, x {a, 6, c f as follows: 

Groups 2,x {a}, Z,X {b}, Z,x {c} 

Blocks Si={((x,a),(x+i,b),(x+2i,c)):x~Z,), 

O<i<n/2- 1, 

Si= (((x,a), (x+i, b), (x+2i+ 1, c)):x~Z,), 

n/2<i<n-2, 

Ml = { {(x7 a), (x- 1, b)), ((x + n/2, a), (x + 42 - 1, cl>, 

{(x+n/2-l,b),(x-l,c)}:Odx<n/2-l}, 

M2= {{(x- 1, b), (x+n/2- 1, cl}, {(x+n/2, a), (x+n/2- 1,b)) 

{(x,a),(x-l,c)f:O<x,<n/2-1). 
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Each Si is a parallel class of blocks of size three, while M, and Mz are 
parallel classes of blocks of size two. Define a T(n, r) to be an 
RGD({2,3}, {n>;3 1 h n w  ose blocks can be resolved into 2r - 2n parallel 
classes of blocks of size two and 2n - Y parallel classes of blocks of size 
three, i.e., there are r parallel classes in all. Thus our design above is a 
T(n, n + 1). 

THEOREM 2.1. Let n be u positive even integer. There exists a T(n, r) if 
and only if n < r < 2n, with the exceptions n = r = 2 or n = r = 6. 

Proof: The condition n < r < 2n is clearly necessary. A T(n, n) is a trans- 
versal design, corresponding to the existence of two orthogonal latin 
squares of order n (see, e.g., [6]). Thus a T(n, n) exists if and only if n # 2 
or 6. We now assume r > n. We refer to the T(n, n + 1) constructed above, 
making the following two observations: 

(A) Consider the classes M, and S,,,? ~, = { {(x, a), (x + n/2 - 1, b), 
(x - 2, c)}: x E Z,,}. Partition M, into the three following subclasses: 

M~={{(~,Q),(~Y-l,b)}:O,<x<n/2-lj 

Mi={((x,a),(x-l,c)}:n/2dx<n-landxevenj 

u{{(x+n/2-l,b),(x-l,c)}:O<x<n/2-landxeven} 

M;=M,-M~-M:. 

For each block b of S,,,,- ,, b intersects exactly one block of M’, , i = 1, 2, 3; 
let h’(b) be the intersection of b and M;. By breaking up each block of 
S + ~ , into its three 2-subsets and defining for each i = 1, 2, 3 

A’=M;u u {b-h’(b)} 
/J E &,2 - I 

we can replace the classes M, and S,,,,-, by the three parallel classes 
A’, A’, A3 of blocks of size two. This has the effect of increasing by one the 
number of blocks on which each treatment lies. (A more general 
application of this construction appears in [9].) 

(B) Let 0 < i < n/2 - 2. Consider the classes Sj and Si+ n,Z. Since 0 6 i d 
n/2 - 2 we have 

Si={((x,a),(x+i,b),(x+2i,c)}:x~Z,} 

and 

si + n/2 = {((x,a),(x+i+n/2,b),(x+2i+l,c)} ,:XEZ, 1. 
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Break up each block of these two classes into its three 2-subsets and 
define four new classes of blocks of size two as follows: 

E,={{(x,a),(x+i,b)}, {(x+i+n/2,b),(x+2i+l,c)}, 

{(x+n/2,a),(x+n/2+2i+1,c)}:O~x~n/2-1} 

E,={{(x,a),(x+i+n/2,b)},{(~+i,b),(~+2i,~)}, 

{(x+n/2,a),(x+n/2+2i,c)}:O<x<n/2-1) 

E, (resp. E4) is identical to E, (resp. E,) except that the range n/2 d x 6 
n- 1 is used instead of O<x<n/2- 1. 

Replacing Si and Sj + ,,,* by E,, E,, E,, E4 has the effect of increasing by 
two the number of blocks on which each treatment lies. 

As pointed out previously our original design is a r(n, n + 1). To obtain 
a T(n,n+2) we apply (A) to our T(n,n+l). Now let n+3<r<2n. We 
construct a r(n, r) as follows: 

s (i) if r- 
n is odd, apply (B) to our T(n, n + 1) using the pairs Si, 

r+nlZ for O<i<(r-n-3)/2. 

(ii) if y-n is even, apply (B) to our T(n, n + 1) using the pairs Si, 
si+n/2 for 0 d i < (r-n - 4)/2. Then apply (A). 

This completes the proof of Theorem 2.1. a 

THEOREM 2.2. Let H,, H,, H,, H4 be four disjoint sets of six elements 
each. For each j = 0, 1, 2, 3,4 there exists an Fr( (2, 3}, (6); 24) with holes 
Hi such that the holes H,, i< j correspond to one partial parallel class of 
blocks of size three and four partial parallel classes of blocks of size two, 
while the holes Hi, i > j, correspond to three partial parallel classes of blocks 
of size three. 

Proof: The case j = 0 is a Kirkman frame, in the sense of Stinson [lo]. 
We display one of these designs below (it is obtained as in [lo]; remove a 
point from the projective plane of order 3 and replace each block of size 
four by an Fr({3}, (2); 8)). The hole Hi contains the treatments 
6(i - 1) + k, 0 < k < 5. The partial parallel classes are written vertically. 

6, 12, 18 6, 14, 23 6, 16, 21 
7, 13, 19 7, 15, 22 7, 17, 20 

(0, 374, 51 8, 14, 21 H, 1, 2, 8, 16, 19 8, 13, 22 = 
9, 15, 20 9, 17, 18 9, 12, 23 
10, 16, 23 10, 13, 20 10, 14, 19 
11, 17,22 11, 12,21 11, 15, 18 
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H, = { 6, 7, 8, 9, 10, 11) 

0, 12, 19 0, 14, 20 1, 16, 22 
1, 13, 18 1, 15, 21 0, 17, 23 
2, 14, 22 3, 16, 18 3, 12, 20 
3, 15, 23 2, 17, 19 2, 13, 21 
5, 16, 20 5, 12, 22 5, 14, 18 
4, 17, 21 4, 13, 23 4, 15, 19 

0, 7, 18 1, 8, 20 0, 10, 22 
1, 6, 19 0, 9, 21 1, 11, 23 

H,={12,13,14,15,16,17} ;‘;;‘;; ;$‘;; 2, 8, 18 
9 2 1 1 3, 9, 19 

4, 9, 22 4, 10, 18 4, 6, 20 
5, 8, 23 5, 11, 19 5, 7, 21 

0, 6, 13 0, 8, 15 0, 11, 16 
1, 7, 12 1, 9, 14 1, 10, 17 

H,={18, 19,20,21,22,23} ;‘;‘;; 2, 10, 12 2, 6, 15 
2 2 3, 11, 13 3, 7, 14 

4, 11, 14 4, 7, 16 4, 8, 12 
5, 10, 15 5, 6, 17 5, 9, 13 

Consider now the first two partial parallel classes corresponding to H,. 
Break each block into its three 2-subsets and define four partial parallel 
classes of blocks of size two as follows: 

(i) 12, 18 11, 21 9, 17 16,23 6, 14 8, 19 15,20 7,22 10, 13 

(ii) 13, 19 10, 20 8, 16 14,21 6,23 11,12 17,22 9,18 7,15 

(iii) 14, 23 8, 21 10, 16 17, 18 6, 12 11,22 13,20 7, 19 9, 15 

(iv) 16, 19 10, 23 7, 13 15,22 9,20 11, 17 12,21 6, 18 8, 14 

In similar fashion the first two partial parallel classes corresponding to 
each of H,, H,, H4 can be so decomposed: 

HZ 
(i) 12, 19 5, 22 2, 17 16,20 0, 14 3, 18 15, 23 1,21 4, 13 

(ii) 13, 18 4, 23 3, 16 14, 22 0, 20 5, 12 17, 21 2, 19 1, 15 

(iii) 14, 20 2, 22 5, 16 13, 23 1, 18 3, 15 17, 19 4, 21 0, 12 

(iv) 15, 21 3, 23 4, 17 16, 18 5, 20 1, 13 12, 22 0, 19 2, 14 
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H3 
(i) 0, 7 9, 21 2, 23 5, 8 
(ii) 1, 6 8, 20 3, 22 2, 11 

(iii) 1, 8 6, 19 5, 23 2, 7 
(iv) 0,9 7,18 4,22 3,6 

H‘l 
(i) 0,6 8,15 5, 17 2,9 
(ii) 1, 7 9, 14 4, 16 3, 8 

(iii) 0, 8 6, 13 3, 17 4, 7 
(iv) 1,9 7, 12 2, 16 3, 11 

11, 19 1,20 3, 10 6, 22 4, 18 

7, 23 5, 19 4,9 10, 18 0, 21 
11,20 0,18 4,lO 9, 22 3, 21 
10,21 1, 19 5,ll 8, 23 2. 20 

10, 12 1, 14 4, 11 7, 16 3, 13 
11, 13 0, 15 5, 10 6, 17 2, 12 
11,14 1,12 2,lO 9, 16 5, 15 
8,17 4,14 5,6 10,15 0, 13 

This completes the proof of Theorem 2.2. 1 

THEOREM 2.3. Let H,, H,, H,, H4, H, be five disjoint sets of six 
elements each. For each j=O, 1, 2, 3,4, 5 there exists an Fr((2, 3}, (6); 30) 
with holes H, such that the holes H,, i < j correspond to one partial parallel 
clas of blocks of size three and four partial parallel classes of blocks of size 
two, while the holes Hi, i > j correspond to three partial parallel classes of 
blocks of size three. 

Proof We proceed as in Theorem 2.2. The j = 0 case can be constructed 
as in [lo] by removing a point from the afftne plane of order 4 and 
replacing each block of size 4 by an Fr( {3}, (2); 8). We consider the 
following such design. 

12, 26, 22 18, 14, 28 24, 20, 16 
13, 27, 23 19, 15, 29 25, 21, 17 
6, 20, 28 24, 8, 22 18, 26, 10 

(0, 5) 7, 21, 29 25, 9, 23 H, 19, 27, 11 = 1, 2, 394, 
24, 14, 10 6, 26, 16 12, 8, 28 
25, 15, 11 7, 27, 17 13,9, 29 

18, 8, 16 12, 20, 10 6, 14, 22 
19,9, 17 13, 21, 11 7, 15, 23 

12, 18, 24 26, 14, 20 22, 28, 16 
13, 19, 25 27, 15, 21 23, 29, 17 
0, 29, 20 22, 2, 25 27, 18, 4 

{ 6, 7, 8, 9, 10, 1 1 } 1, 28, 21 H, 23, 3, 24 26, 19, 5 = 

27, 2, 16 12, 29, 4 0, 14, 25 
26, 3, 17 13, 28, 5 1, 15, 24 
23, 14, 4 0, 19, 16 12, 2, 21 
22, 15, 5 1, 18, 17 13, 3,20 
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6, 25, 18 29, 2, 18 20, 25, 4 

7, 24, 19 28, 3, 19 21, 24, 5 

0, 22, 27 20, 8, 27 29, 22, 10 

H,= 112, 13. 14, 15, 16, 17) 
1, 23, 26 21, 9, 26 28, 23, 11 
28, 9, 4 0, 24, 11 7, 2, 26 

29, 8, 5 1, 25, 10 6, 3, 27 

20, 2, 11 7, 22, 4 0, 9, 18 

21, 3, 10 6, 23, 5 1, 8, 19 

15, 2, 28 24, 17, 4 0, 26, 13 

14, 3, 29 25, 16, 5 1, 27, 12 

24, 6, 13 15, 26, 8 10, 17, 28 

H,= { 18, 19,20,21,22,23} ;;’ :,‘; ;72;89 
11, 16, 29 

3 > 9 2 24, 2, 9 

10, 27, 5 1, 6, 29 25, 3, 8 

0, 17, 8 10, 2, 13 15, 6,4 

1, 16, 9 11, 3, 12 14, 7, 5 

16, 21, 4 8, 21, 14 19, 2, 14 

17, 20, 5 9, 20, 15 18, 3, 15 

19, 12, 6 0, 12,23 16, 10, 23 

H,= {24,25,26,27,28,29} A8;';,' 
1, 13, 22 17, 11, 22 

> 7 19, 10,4 0, 21, 6 

9, 3, 22 18, 11, 5 1, 20, 7 

0, 10, 15 17, 2, 6 8, 13, 4 

1, 11, 14 16, 3, 7 9, 12, 5 

The first two partial parallel classes of each of the Hi can be decomposed 
into four partial parallel classes of blocks of size two: 

H, 
(i) 26, 22 

20,28 
(ii) 8, 16 

14, 10 
(iii) 14, 28 

8, 22 
(iv) lo,20 

26, 16 

6, 16 24,8 27,23 7, 17 25, 9 
12, 10 18, 14 21,29 13,11 19,15 
24,22 6,26 9,17 25,23 7, 27 

18,28 12,20 15,ll 19,29 13,21 

24, 10 6,20 15,29 25,ll 7, 21 
18, 16 12,26 9,23 19, 17 13,27 
6,28 24, 14 21, 11 7, 29 25, 15 
12,22 18,8 27, 17 13,23 19, 9 
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HZ 
0) 

(ii) 

(iii) 

(iv) 

H3 
0) 

(ii) 

(iii) 

(iv) 

H‘l 
(i) 

(ii) 

(iii) 

(iv) 

H5 
6) 

(ii) 

(iii) 

(iv) 

18,24 1,17 23,3 19,25 0, 16 22, 2 

29,20 12,4 26, 14 28,21 13, 5 27, 15 

3, 17 23,24 1, 18 2, 16 22,25 0, 19 
14, 4 26,20 12,29 15, 5 27,21 13,28 
14,20 23, 4 0, 29 15,21 22, 5 1, 28 

2, 25 27, 16 13, 19 3, 24 26, 17 12, 18 
29,4 0,20 23, 14 28, 5 1, 21 22,15 
19,16 13,25 27,2 l&l7 12,24 26, 3 

25, 18 1, 10 29, 2 24, 19 0, 11 28, 3 
22,27 794 20, 8 23,26 6, 5 21, 9 

994 21,26 7,22 8, 5 20,27 6, 23 
2, 11 29, 18 0,24 3, 10 28, 19 1, 25 
2, 18 20, 11 6,25 3, 19 21, 10 7,24 
8, 27 29, 5 0, 22 9, 26 28, 4 1, 23 
24, 11 7, 19 20, 2 25, 10 6, 18 21, 3 
22, 4 0, 27 28, 9 23, 5 1,26 29, 8 

2, 28 10, 13 0, 7 3, 29 11,12 1, 6 
26, 4 24, 17 15,8 27, 5 14, 9 25, 16 
6, 13 1, 29 10, 2 7, 12 0, 28 11, 3 
17, 8 24, 4 15,26 16, 9 25, 5 14,27 
17, 4 0, 8 11,26 16, 5 1, 9 lo,27 
7, 28 25,12 15,2 6, 29 24, 13 14, 3 
26, 8 11,4 0, 17 27, 9 10, 5 1, 16 
2, 13 l&28 24,6 3. 12 14,29 25, 7 

21, 4 8,14 19,lO 20, 5 9, 15 l&11 
12, 6 0, 23 17, 2 13, 7 1, 22 16, 3 
10, 15 19,4 9,20 11,14 18, 5 8, 21 
2, 23 17, 6 0, 12 3, 22 16, 7 1, 13 
21, 14 16, 4 1, 11 20,15 17, 5 0, 10 
12,23 19,6 8,2 13,22 18, 7 9, 3 
10, 4 0, 15 16,21 11, 5 1, 14 17,20 

296 8, 23 19, 12 3, 7 9, 22 18, 13 

rhis completes the proof of Theorem 2.3. 1 
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THEOREM 2.4. For each j = 0, 1, 2, 3, 4 there exists an RGD( (2, 3 1, 
(6); 30) whose blocks can be resolved into 4j parallel classes of blocks of size 
two and 12 - 2j parallel classes of blocks of size three (i.e., 12 + 2j classes in 
all). 

ProoJ 

j=O. See Lemma 3.10 of [S]. 

j= 1. Take the treatment set Z,, x {a, b, c}. Take the groups 
g,= ((1 +x,a), (6+x,a), (x,b), (5+x,b), kc), (5+x,c)} for 
x = 0, 1, 2, 3, 4. Take the initial parallel class of blocks 

(0, a), (2, a), (2, b) (3, a), (9, ah (5,b) 

(1, b), (5, cl, (9, c) (4,b), (6, cl, (8, c) 

(4, a), (8, a), (1, a) (6, a), (5, a), (7, a) 

(0, b), (6, 61, (3, b) (8, b), (7, b), (9, b) 

(0, CL (4, CL (7, c) (1, c), (2, CL (3, c) 

Four more classes are obtained from the above class by adding 2i to the 
first coordinate of each treatment, for i = 1, 2, 3,4. The remaining live 
classes of blocks of size three are given below: 

C,={{(x,a),(x+6,b),(x+3,c)}:xeven} 

u {{(~,a), (x,b), (-x+3, cl):.xodd), 

C,={{(x,a),(x+3,b),(x,c)}:xeven} 

u{{(?s,a),(x+7,b),(x,c)):xodd}, 

C,={{(x,a),(x+1,b),(x+2,c)}:x~Zlo}, 

C,={{(x,a),(x+5,b),(x+1,~)}:x~Z,~}, 

C,,= {{(x, a), (x+8, b), (x+7, c)):xEZ~O). 

The four classes of blocks of size two go as follows: 

D, = (7, a), (0, b) (2, b), (4, b) (6, b), (8, b) 

(3, b), (5, c) (5, b), (996) (1, b), (776) 

together with ( { ( x,a),(x+8,c)}:x#7}, 

D2 = (5, a), (8, b) (0, 61, (2, b) (4, b), (6, b) 

(9, b), (1, c) (3, b), (7, b) (1, b), (5, b) 

together with { { ( x,a), (x+~,c)}:x#~}, 
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D, = @,a), (5, cl (7, a), (2, cl (4, b), (1, a) 

(6, c), (8, b) (O,b), (8, cl (3, a), (6, b) 

(4, cl, (9, a) (2, b), (0, c) (5, a), (1, c) 

(6, a), (3, b) (9, h), (2, a) (7, ~1, (5, b) 

(8, a), (3, c) (1, 61, (4, a) (9, cl, (7, b), 

and 

Dc, = (5, cl, (7, a) (2, c), (4, 6) (1, a), (6, c) 

(8, 61, (0, b) (8, c), (3, a) (6, b), (4, cl 

(9, ~1, (2, b) (0, c), (5, a) (1, ~1, (6, a) 

(3, b), (9, b) (2, a), (7, cl (5, b), (8, a) 

(3, cl, (A b) (4, a), (9, c) (7,6), (0, a). 

j= 2. Take the j= 1 design, and decompose the blocks of C,, C,, 
into the following four parallel classes of blocks of size two: 

E,={{(x,4,(x+W)): xodd} u{{(x,u),(x+2,c)}:xeven} 

u{{(x,b),(x+l,c)}:xeven}, 

E,={{(x,~,(x+~,~)): xeven}u{{(x,u),(x+2,c)}:xodd} 

u {{(x, b), (x+ 1, c)): x odd), 

E~={{(x,~,(x+W): xodd) u {{(x, a), (x+7, c)): xeven} 

u({(~,6),(x+9,c)}:xodd}, 

E,={{(.w4,(x+L~)): xeven>u{{(x,u),(x+7,c)}:xodd} 

u{{(~,6),(x+9,c)}:xeven}. 

j= 3. Start with a KTS( 15) replacing each treatment by two new 
ones. Replace each block in six of the d-factors by a T(2, 3) (Theorem 2.1); 
each block of the seventh d-factor becomes a group with six treatments. 
This yields twelve classes of blocks of size two and six classes of blocks of 
size three, as desired (this is an example of a well known recursive techni- 
que sometimes referred to as “inflation” see, e.g., [6] or [lo]). 

j = 4. Proceed as in the j = 3 case; this time each block in four of the 
d-classes is replaced by a T(2, 3) while each block in two of the d-classes is 
replaced by a T(2,4). Again each block in the seventh d-class becomes a 
group. 

This completes the proof of Theorem 2.4. 1 

3. THE MAIN THEOREM 

THEOREM 3.1. Let p ~0 (mod 6) and p/2 + 1 < kdp - 2. Then there 
exists a URD(p, k). 
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We prove Theorem 3.1 by proving a sequence of lemmas which deal with 
the various cases that arise. 

LEMMA 3.1. Ifp E 0 (mod 6) and k 3 $I there exists a URD(p, k). 

Proof: Let n=p/3 and r=k-(n-l). Since $p<kdp-2 we have 
n + 1 d r d 2n - 1. Replace each group of a 7’(n, r) (Theorem 2.1) by a K,, 
which has been equipped with a one-factorization. This yields a URD(p, k) 
as desired. 1 

LEMMA 3.2. Zf p E 0 (mod 18) and p/2 + 1 < k <p - 2 there exists a 
UWP, k). 

Proof Let n =p/3. From Lemma 3.1 we may assume that k < fp. 
Assume first that n # 6 or 12. Let r = k - n/2; then n + 1 d r < 3n/2. Replace 
each group of a T(n, r) by an NKTS(n). 

There remain (p, k)= (36, 19), (36, 20), (36, 21), (36,22), (36,23), 
(18, lo), (18, 11). Begin by constructing a URD(12, 7), obtainable by 
replacing each group of a T(4,4) by a K4 which has been equipped with a 
one factorization. The cases for p = 36 are then settled by substituting our 
URD( 12,7) for the groups in a r( 12, 12), T(12, 13), T(12, 14), T( 12, 15) 
and T( 12, 16), respectively. A URD( 18, 11) is obtained by replacing each 
group of a T(6, 7) by a URD(6,4). A URD(18, 10) is given below (it was 
obtained by applying a construction similar to that used in Theorem 2.1A) 
to the NKTS(18) of Kotzig and Rosa [6]). 

1, 5, 9 1, 2, 6’ 1, 3, 5’ 1, 6, 3’ 1, 8, 7’ 8, 9, 1’ 

2, 6, 7 4, 5, 9’ 4, 6, 8’ 2, 9, 8’ 3, 5,2’ 2, 3,4’ 

334, 8 7, 8, 3’ 7, 9, 2’ 5, 7, 4’ 4, 9, 6’ 5, 6, 7’ 

1’,5’,9’ 1’,2’,6 1’,3’,5 1’,6’,3 1’,8’,7 8’,9’, 1 

2’, 6’, 7’ 4’, 5’, 9 4’, 6’, 8 2’, 9’, 8 3’, 5’, 2 2’, 3’, 4 

3’, 4’, 8’ 7’, 8’, 3 7’, 9’, 2 5’, 7’, 4 4’, 9’, 6 5’, 6’, 7 

1, 1’ 4,4’ 7, 7’ 

2, 2’ 5, 5’ 8, 8’ 

2,4, 1’ 3, 3’ 6, 6’ 9,9’ 

6,8,5’ 4,7 1,7 1,4 
3, 7, 9’ 4’, 7’ l’, 7’ l’, 4’ 

2’, 4’, 1 5, 8 2, 8 2, 5 

6’, 8’, 5 5’, 8’ 2’, 8’ 2’, 5’ 

3’, 7’, 9 6, 9 3, 9 3, 6 
6’, 9’ 3’, 9’ 3’, 6’ 

This completes the proof of Lemma 3.2. 1 
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LEMMA 3.3. Zf p~6 (mod 18) and p/2 + 1 <k<p- 2 there exists a 

URW P, k). 

Proof. From Lemma 3.1 we may assume that k < <p (whence p 2 24). 
Let n =p/3, and set r = k -n/2; then n + 1 < r < 3nJ2. Take a T(n, r); since 
r < 3n/2 there will be a parallel class of blocks of size three. Relabel the 
treatments of the T(n, r) so that this class is of the form 
{ { (4 a), (x, b), (x3 c)>: XEZ,}. Let D, be an Fr( {3}, (2); n) (D, can be 
obtained by removing a treatment from a KTS(n + 1)). For each w  = a, h, c 
replace the group Z, x (wj} in the T(n, r) by a copy of D,, in such a way 
that the holes of D, take the form { ((4 WI, t-x + 1, w,}: 
x = 0, 2, 4 ,...) n - 2). We denote that copy of D, replacing Z,, x {E)} by 
D(w) and its holes by H(w, x), x = 0, 2, 4 ,..., n - 2. To each hole H(w, x) of 
D(w) there corresponds one partial parallel class Pot’, x) of blocks of size 
three in D(w). For each x = 0, 2 ,..., n - 2 the set 

B,=P(a,x)uP(h,x)uP(c,x) 

u{{(x,a),(x,h),(-~,c)), {(-~+1,a),(-~+1,h),(-~+1,c)}) 

is a parallel class of blocks of size three, while the collection of holes 

H= {H(a,x), H(h,x), H(c,x):x=O, 2 ,..., n-2) 

forms a parallel class of blocks of size two. In this way we form a uniformly 
resolvable design on p treatments with replication number 
n/2 + 1 + r - 1 = k, as desired. 1 

Only the class p E 12 (mod 18) remains; this seems to be the most dif- 
ficult one, and we consider two subcases separately. 

LEMMA 3.4. If p E 12 (mod 36) and p/2 + 1 d k <p-2 there exists a 
URWP, k). 

Proof. If k =p/2 + 1 we take an RGD( { 3}, (4); p) (see [S, Lemma 3.81 
or [ 10, Theorem 6.61) and replace each group with a K4 which has 
been equipped with a one-factorization. From Lemma 3.1 we may now 
assume that p/2 + 2 < k6 #p- 1 (whence ~248). Let n =p/3 and 
r = k - (n/2 + 1); then n + 1 <r < 3n/2 - 2. We start as before with a 
T(n, r). Now r < 3n/2 - 2, whence our T(n, r) will have the parallel classes 

S,,,~,={((x,a),(x+n/4-2,6),(x+n/2-4,c)):xEZ,} 

and 

Sn,Z~2={((x,a),(x+n/2-2,b),(x-4,c)):.~EZ,} 

of blocks of size three (see the proof of Theorem 2.1). Let D, be an 
W(3), (4);n) ( see Theorem 4.4 of [lo]). We proceed as in Lemma 3.3, 
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replacing the group Z, x {w} in the T(n, r) by a copy of D,, (denoted 
D(ul)) in such a way that its holes take the form 

H( w, x) = {(x, w), (.Y + n/4, w), (x + n/2, w), (x + 3n/4, w) > 

for .Y = 0, l,..., n/4 - 1. To each hole H( W, X) of D(W) there correspond two 
partial parallel classes P’(w, X) and P’( W, X) of blocks of size three in D(w) 
(see Theorem 1.2 of [lo]); for each x=0, l,..., n/4- 1 the sets 

B; = P’(a, x) u P’(b, x - 2) u P’(c, x - 4) 

u { {(x + i, a), (5 + i + n/4 - 2, b), (x + i + n/2 - 4, c)}: 

i = 0, n/4, n/2, 3n/4} 

and 

B2, = P2(a, x) u P’(h, x - 2) u P2(c, x - 4) 

u{{(.~+i,a),(x+i+n/2-2,b),(.~+i-4,c)): 

i = 0, n/4, n/2, 3n/4 ). 

are parallel classes of blocks of size three, where the expressions x - 2 and 
x - 4 appearing in the “I”’ terms are to be evaluated mod n/4. By replacing 
each hole by a K4 which has been equipped with a one-factorization, we 
can describe three parallel classes of blocks of size two. This yields a 
uniformly resolvable design on p treatments with replication number 
2(n/4) + 3 + r - 2 = n/2 + 1 + r = k, as desired. 1 

LEMMA 3.5. If p = 30 (mod 36) and p f66; 138 then for each k with 
p/2 + 1 d k <p - 2 there exists a URD(p, k). 

Proqf Let p = 6t. Then t E 5 (mod 6). 

Case 1. t=5 (mod 12). Let q = L(k - (p/2 + 1))/2J. Take an 
RBIBD(t - 1,4, 1) (from [4]) and fix a subset Q of “distinguished” treat- 
ments in this design with IQ1 = q. Note that by Lemma 3.1 we may assume 
that k < (2/3) p whence q < t/2 < t - 1. Regarding this resolvable design as 
a GDD({4}, (4); t- 1) ( our “starter” GDD) we apply a construction 
analogous to one found in [S], see Theorem 2.2 and Corollary 2.4. Replace 
each treatment xi of the GDD by a set Xi of six treatments, and add a set 
X, of six additional treatments. 

Let G,= {X;,, X,zT Xi,, -x,4J 1 be a group in the GDD and let j(l) = IQ n G, 1. 
From Theorem 2.4 there exists an RGD( (2, 3), (6); 30) consisting 
of 4j(l) parallel classes of blocks of size two and 12 - 2j(Z) parallel classes 
of blocks of size three. Construct such a design using the groups 
X,, Xi,, Xi>, Xi,, X,. Do this for each group G,. 
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Let B, = {xi,, xi2, xii, xi4} be a block in the GDD and let 
i(m)=lQnB,l. From Theorem 2.2 we can construct a frame 
Fr( (2, 3}, { 6); 24) using holes Xi,, X,, Xi,, X, such that hole X, 
corresponds to one partial parallel class of blocks of size three and four 
partial parallel classes of blocks of size two when xin E Q, while hole X, 
corresponds to three partial parallel classes of blocks of size three when 
x, $ Q, n = 1,2, 3,4. We do this for each block B,. 

In this way we can construct an RGD( { 2, 3 >, { 6); p) in which each xi in 
the starter GDD gives rise to one parallel class of blocks of size three and 
four parallel classes of blocks of size two, or to three parallel classes of 
blocks of size three, depending on whether -xi is in Q or not. In particular, 
each parallel class of blocks in the RGD( (2, 3}, (6); p) consists of blocks 
of the same size, and there are SlQl+3(t-l-IQl)=2q+3t-3 classes 
Recalling the definitions of q and t this is equal to k - 4 when k - (p/2 + 1) 
is even, and k - 5 when k - (p/2 + 1) is odd. In the former case replace 
each group of the RGD( {2,3}, (6);~) by a URD(6,4) to obtain a 
URD(p, k); in the latter case replace each group by a URD(6, 5). 

Case 2. t = 11 (mod 12). This case proceeds exactly as does Case 1, 
except that our starter GDD is obtained by adjoining a group at infinity of 
size 6 to an RBIBD(t - 7,4, 1). This can be done since p # 66, 138, i.e., 
t # 11, 23. Thus our starter is a GDD( (4, 5}, (4, 6); t - 1). Note that since 
this GDD contains blocks of size 5 we will need Theorem 2.3 in a manner 
analogous to that for which Theorem 2.2 was used in Case 1. Furthermore, 
since there is a group of size 6 we will need the existence of an 
RGD( {3}, (6); 42). Th is is established in [8]. (The set Q of distinguished 
treatments in the starter GDD is chosen so that it is disjoint from the 
group of size6, and IQ1 =L(k-(p/2+ 1))/2J.) 

This completes the proof of Lemma 3.5. 1 

LEMMA 3.6. There exists URD(66, k) for 34 <k < 64. 

ProoJ: k = 34, 35. We start by constructing the following PBD on the 
treatment set Z,, u (a, b, c, d, e, f } (it is obtained by applying a construc- 
tion similar to that in Theorem 2.1A) to Brouwer’s “ingredient c” [Z]). 
Start with the block {a, b, c, d, e, f }. The remaining blocks are arranged 
into the following six parallel classes: 

(i) a,O,ll b, 1,3 c, 4, 8 d, 6, 10 e, 2, 7 f, 5, 9 
(ii) a, 7, 9 6, 0, 10 c, 1, 5 d, 2, 4 e, 8, 11 A 3, 6 

(iii) a, 4, 6 6, 2, 11 c, 0, 9 4 5, 7 e, 3, 10 5 1, 8 
(iv) a, 1, 10 b, 5, 6 c, 2, 3 d, 0, 8 e, 4, 9 f, 7, 11 

(v) a,%8 b,4,7 c,6,11 d, 1,9 e,0,5 A2, 10 

(vi) a, 2, 5 b, 8, 9 c, 7, 10 d, 3, 11 e, 1, 6 f, 0, 4 
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and the following four classes on Z,,: 

(vii) 0,3,7 1,4,11 2,6,9 5,8,10 

(viii) 0, 6 3, 9 1, 2 4, 5 7, 8 10,ll 

(ix) 1, 7 4, 10 0, 2 3, 5 6, 8 9, 11 

(x) 238 5, 11 0, 1 3, 4 6, 7 9, 10. 

Call the above design B,. Construct a second design Bz by replacing the 
classes (vii) and (viii) in B, by the three classes 

(i)’ 0, 6 10, 11 3, 7 1, 4 2, 9 5, 8 

(ii)’ 3, 9 4, 5 0, 7 1, 11 2, 6 8, 10 

(iii)’ 1, 2 7, 8 0, 3 4, 11 6, 9 5, 10. 

We now apply Brouwer’s construction for NKTS(66) except that 
“ingredient a” and “ingredient c” are replaced by a URD(18, 10) and B, 
(respectively a URD( 18, 11) and B,) to obtain a URD(66, 34) (respectively 
URD(66, 35)). 

k 3 36. We start by constructing a URD(66, 36). Take the treatment 
set Zzz x Z,, and take the initial parallel class of blocks 

(O,O),(ll, 1),(0,2) (ll,O), (0, 11, (11,2) 

(16, Oh (17, I), (17, 2) (17, O), (16, 11, (16, 2) 

and 

(2,OL (4301, (830) (3,OL (19,OL (2190) 

(6,0), (9, Oh (180) (l,O), (13,0), (14 0) mod(-, 3) 

(5, O), (12, O), (20, 0) (7,OL (l&O), (15,O). 

Ten more classes are obtained from the above class by adding 2i to the 
first coordinate of each treatment, for i= 1, 2,..., 10. Take the seven classes: 

I. {{(-~,0),(-~+140)}, {(x,1),(.x+11, I,>> {(x,2),(x+11,2)): 
06x6 lo}, 

11. { {(.? 01, (.x+ 1, O)}, {CT 11, t-x+ 1, l,), {(-x, 21, (x+ 1, 2)): 
even x E Z,, }, 

III. {{(x3 01, t-x+ 17,0)}, I(.& 11, (x+ 17, I,>, (t-x, 2), (x+ 1772)): 
even x E Z,, } , 

IV. {{(A 1),(x+10,2)}, ((x,o),(x--1,2)}, {(-~+l,O),(x+l, 1,): 
even x E Zzz}, 
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v. {{(x+1,0),(x--,2)),{(x+1,1),(x,2)),{(~,0),(~,1)}: 
evenxEZz2}, 

VI. {{(x1 1),(x-1,2)}, {(x40),(x,2)}, {cG0),(x-1, I,>: 
even x E Z,, } , 

VII. {{(x,o),(x--2,2)},((~--1,o),(~,1)},{(~+11,1),(~~--1,2)): 
even x E Z,,}. 

Finish with the eighteen classes: 

S;={((x,0),(.X+i,1),(x+2i-1,2)}: XEZ,,}, 2<i6 10; 

Si={{(x,o),(x+i,1),(x+2i,2)}: x E Zzz}, 126i620. 

By applying a construction similar to that of Theorem 2.1A) on classes I 
and S,, (in this case split class I into the three subclasses 
{{(x,O),(x+11,O)):O~x~1O}, ({(x,1),(x+11,1)}: O<x<lO} and 
({(x, 21, (x+ 11,2)}: Odxd 10)) and one similar to construction 2.1B) 
on the pairs Si, Si+ ,i, 2 < i6 9, we can now construct URD(66, k) for 
37 d k < 53. The larger k values are settled by Lemma 3.1. 

This completes the proof of Lemma 3.6. 1 

LEMMA 3.7. There exist URD( 138, k) for 70 < k d 136. 

Prooj k = 70,71. The proof is exactly the same as the first case of 
Lemma 3.6, applying Brouwer’s construction for an NKTS( 138). 

k 2 72. Here the construction proceeds along the lines of the second 
case of Lemma 3.6, starting with the following URD( 138, 72). Its treatment 
set is Z,, x Z,. Take the initial parallel class 

and 

(0, 01, (23, 11, (0, 2) 

(34, Oh (35, l), (35, 2) 

(23, O), (0, 11, (23, 2) 

(35, Oh (34, l), (34,2) 

t&O), (l&O), (3&O) t&O), t&O), (14,O) 

(13,0), (22, Oh (2830) w,o), (12, oh (~5~0) 

(4, oh (29, oh (32,o) (15, oh (20, oh (42,o) 

(1% OL (30, O), (3330) (7, Oh (27, O), (43,O) mod( -, 3) 

(3,0), (37,0), (41,O) (11, Oh (17,0), (24,O) 

(1, Oh (3601, (45,O) (21,0), (39, O), (40,O) 

(9, Oh (X0), (31,O) (5, O), (19,0), (44,O) 
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Twenty-two more classes are obtained by adding 2i to the first co- 
ordinate of each treatment, for i= 1, 2,..., 22. Take the seven classes: 

I. {{(x.0), (x+23,0)}, {(x, l), (x+23, I)}, {(x,2),(x+23, 2)): 

Odx<22), 

II. {{lx, 01, (.y+ 1, O)}, ((4 11, (.x+ 1, I,>, ((4 2), t-x+ 1,2)}: 

even x E Z,, }, 

III. {{(x,0),(x+35,0)), {(x,1),(x+35, I,}, ((x,2),(.x+35,2)}: 
even x E Z,, } , 

IV. { {Cc 11, t-x + 22, 2)}, { (4 O), (.u - 1,2)}, (b + 1, O), (x + 1, 1,): 

evenxEZ40}, 

v. { (C-K+ 1, O), t-x- 1, I)}, (b> 2), (.x+ 1, I)}, ((4 01, (x, 1)): 
even x E Z,,}, 

VI. { ((& l), t-u- 1,2)}, {(x- 1, O), (x, 2)), (6% O), (x- 1, 1)): 

even x E Z,, } , 

VII. {((x,0),(-~--2,2)}, ((x-1,0),(x, I,}, ((x+23, U(-K-U)): 

even x E Z,, }. 

Finish with the 42 classes: 

Si={{(x,0),(.u+i,1),(x+2i-1,2)}: xEZd6}, 2<i<22; 

Si = {{(x, 0), (x + i, 1 ), (x + 2i, 2)3: -KEZ,,}, 24<i<44. 1 

The main theorem now follows from Lemmas 3.2 through 3.7. 
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