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1. INTRODUCTION 

Consider the hnear regression model 

Yi = a + f ix  i + ci, i = 1 ,2 , . . . ,  (1.1) 

where a and fl are unknown parameters and the errors c n, c 2 . . . .  are 
independent and identically distributed (i.i.d.) random variables with mean 
0 and variance 0 2. In the econometrics literature, the "multiperiod control 
problem" is to choose successive levels x i , . . .  ,x ,  in the model 0.1) so that 
the outputs Yl . . . . .  Yn are as close as possible to a given target value y*. 
Several authors have approached this problem from a Bayesian point of 
view, formulating it as the problem of minimizing 

st ]} = ? l O  2 + flZE,,# (x, -- 0) 2 d~r(a,  f l ) ,  (1.2/ 
az - ~ l  i 1 

where 7r is a prior distribution of the unknown parameters a and/3 (cf. [15, 
17]). However, because of the computational complexities in the numerical 
solution of the dynamic programming problems and the analytical difficul- 
ties in studying the properties of the Bayes rules, not much is known about 
the performance of these rules and it is difficult to implement them in 
practice. 

A recent, departure from the Bayesian approach is due to Anderson and 
Taylor [1]. Noting that the optimal level is x = (y* - a ) / f l  when a and 
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fl ~ 0 are known, they assume for the case of unknown a and fl prior 
knowledge of bounds K l and K 2 such that 

--<DO < g 1 ~ ( y *  - -  o t ) / / ~  ~ g 2 -< oo ,  ( 1 . 3 )  

and propose the rule 

Xi+l = K2/~ (f l /~l(y,  _ ai ) ~ / I t } ,  i _> 2, (1.4) 

where V and /~ denote maximum and minimum, respectively, and 

 ,)yr - +' = - - x + ) ,  ( 1 . 5 )  
r 

are the least-squares estimates of fl and a at stage i. (Here and in the sequel 
we use the notation d i for the arithmetic mean of al . . . .  ,ar)  The initial 
values Xl, x 2 of the recursion (1.4) are distinct but otherwise arbitrary 
numbers between K t and K 2. Anderson and Taylor call this rule the 
"least-squares certainty equivalence" (LSCE) rule and, assuming the errors 
c i to be normally distributed, they carry out some Monte Carlo simulations 
of its performance. Based on the results of these simulations, they conjecture 
that for the LSCE rule (1.4), x ,  converges to 0 with probability 1, where 
0 = ( y * - a ) / f l ,  and that n l / 2 ( x , -  O) converges in distribution to a 
normal random variable with mean 0 and variance o : / f l : .  They also raise 
the question whether the least-squares estimates &i and /~i are strongly 
consistent. In Section 2 we disprove the conjecture and give a negative 
answer to the question. 

Another suggestion for treating the multiperiod control problem is due to 
Aoki [2]. He assumes that the sign of fl is known, say fl > 0, and proposes 
the use of a Robbins-Monro stochastic approximation scheme 

xi+ t = x i - c i ( y  i - y * ) ,  (1.6) 

where (ci} is a sequence of positive constants such that 

oo oo 

E c  2 < oo, E c i  = oo. (1.7) 
I I 

(If fl < 0, then (1.6) is replaced by xi+ 1 = x~ + cg(y i - y * ) . )  The condition 
(1.7) ensures (in the case fl > 0) that the stochastic approximation scheme 
(1.6) converges to 8 with probability 1 (cf. [3, 16]). As shown by Chung [6], 
the choice c~ = ( i f l )  -1  leads to an asymptotically normal distribution of x~ 
with the smallest asymptotic variance. For this optimal Robbins-Monro 
stochastic approximation scheme 

x i+ ,  = x i  - (Yi - Y * ) /  ( i f l ) ,  (1.8) 
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the following properties hold (cf. [10]): 

n ' / 2 (  x ,  -- O) ~ ® N(O,  o2/f l2) ,  (1.9) 

lira sup ( n / 2  log log n)'/21 x~ - 8 l=  o/fl 
n ~ O 0  

lim ~ (xi - O)2/log n = t 7 2 / f l  2 
1"/--->00 1 

a.s., 

a . s .  

(1.10) 

(1.11) 

® 

Here and in the sequel, the notation ~ denotes convergence in distribution, 
"a.s." means "almost surely" (with probabifity 1), and N(I~, 0 2) denotes the 
normal distribution with mean/~ and variance 0 2. 

In the case of known fl, the least-squares estimate of 0 based on the 
observations xL, y] . . . . .  x~, y~ is y _ f l - l ( j _ y , ) ,  and therefore the 
iterated least-squares procedure for choosing the level xg amounts to 
the recursive scheme 

X , + l  : - - (1.12) 

This recursion turns out to be equivalent to the stochastic approximation 
scheme (1.8); in fact, for every constant c and positive integer n, we have the 
equivalence 

Xi+ 1 =Xi--C(fii--y*) for alli  = 1 . . . . .  n 

~ x i +  ] = x ~ - c ( y i - y * ) / i  for all i = 1 . . . .  ,n (1.13) 

(cf. [10]). 
When fl is unknown, it is natural to replace fl in (1.8) or (1.12) by some 

estimate b i : b~(x 1, Y l , . . .  ,x~, y~) of fl based on the data already observed. 
Such a modification of (1.8) leads to the adaptive stochastic approximation 
scheme 

x~+ 1 = x~ - (y~ - y * ) /  ( ib , ) .  (1.14) 

Modifying the iterated least-squares procedure (1.12) likewise leads to 

xi+l = ~i - (fii - y * ) / b i .  (1.15) 

In spite of the equivalence between (1.8) and (1.12), the recursions (1.14) 
and (1.15) are no longer equivalent when the b, are changing with i. In 
Section 3 we obtain a general representation theorem for (1.15) and com- 
pare it with the corresponding result for the stochastic approximation 
scheme (1.14). 
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We have recently developed in [10-12] an asymptotic theory of adaptive 
stochastic approximation schemes of the form (1.14). In this paper we 
extend the theory to recursive schemes of the type (1.15). Note that if we let 
b~ --/~i, where/3~ is the least-squares estimate of fl in (1.5), then the recursive 
scheme (1.15) reduces to the LSCE rule (1.4) with infinite truncation points 
K 1 = - ~z, K 2 --  o0. In the counterexample of Section 2 on the LSCE rule, 
we exhibit an event with positive probability in which the sign of /~ differs 
from that of/3 for all i. In practice, although the value of/3 is unknown, its 
sign is often known. Making this assumption and therefore choosing b~ in 
(1.15) to have the same sign as/3, Theorem 2 of Section 4 shows that the 
recursive scheme (1.15) converges a.s. to 0. The requirement that b i should 
have the same sign as /3 also plays a vital role in establishing the a.s. 
convergence of the stochastic approximation scheme (1.14) (cf. [3, 10]). 
Estimates of the rate of convergence of the recursive scheme (1.15) under 
various general assumptions on b~ are also obtained in Section 4. 

As in [10], we call the cumulative squared difference Y?{(x i - 0 )  2 of the 
design levels x 1 . . . .  ,x ,  from the optimal level 0 the cos t  of the design at 
stage n. The relevance of this quantity to the multiperiod control problem is 
shown by (1.2). In Section 5 we obtain estimates of the cost X~(x~ - 0) 2 for 
the recursive scheme (1.15). In particular, we show that if b n --, fl a.s., then 
the cost Y~(x, - 0)2 of (1.15) also satisfies the asymptotic relation (1.11) for 
the optimal Robbins-Monro stochastic approximation scheme (1.8). 

We have recently shown in [12] that if bounds B 1 and B 2 for/3 are known 

such that 0 < B 1 < / 3  < B 2 < oo and we let b i --  B 2 A (/~i ~ / B 1 ) ,  then the 
stochastic approximation scheme (1.14) with this choice of bi has the 
asymptotic properties (1.9), (1.10), and (1.11) of the optimal Robbins-Monro 
stochastic approximation scheme (1.8). In Section 6, by setting b i in the 
recursive scheme (1.15) equal to a similar truncated least-squares estimate of 
fl, we obtain a modified version of the LSCE rule which also has the 
asymptotic properties (1.9), (1.10), and (1.11). Thus, although the natural 
idea of using the least-squares estimates fi ,  /3t iteratively to replace the 
unknown parameters a,/3 in the optimal level (y* - ~ ) / / 3  does not lead to 
an a.s. convergent rule, a suitable modification of this idea does have the 
desirable convergence properties conjectured by Anderson and Taylor. 

2. COUNTEREXAMPLE TO THE ANDERSON-TAYLOR CONJECTURE 

Consider the linear regression model (I. 1) in which the errors c i are i.i.d. 
N(0, 0 2) random variables with o > 0 and the levels xi are defined recur- 
sively by the LSCE rule (1.4). Note that in this case of normal errors, the 
maximum likelihood estimate of 0 - - ( y * - a ) / f l ,  subject to the bounds 



54  LAI AND ROBBINS 

(1.3), based on the observations x l, Yl, . . .  ,xi, Yi is K 2/~ {/~/-n(y, _ tii) V 
Kl}. Therefore the LSCE rule (1.4) simply uses the maximum likelihood 
estimate of 0 as the choice of the next level xi+ 1. Based on Monte Carlo 
simulations involving normal errors, Anderson and Taylor [1] conjecture 
that the LSCE rule converges a.s. to O and t h a t  nl/E(xn - O) ~ N(O, O2/fl2). 
In this section we give a negative answer to this conjecture by exhibiting an 
event with positive probability in which x,  does not converge to 0. 

Without loss of generality we shall assume that fl > 0, 0 = 0, and 
K 2 = K = - K  L with K >  0. Consider the LSCE rule (1.4) with initial 
values x~ = 0 and x 2 = K. Letting 

{ 25K~ 3 1~ 21 A =  - - ~  / J < % - q < -  Kfl, Kfl < ~2 < - ~  Kfl, and 

n + 4 0  ~ n : 2  } 
64 K f l <  q <  K f l f o r a l l n > 3  , 

i=3  

(2.1) 

it follows from the strong law of large numbers, the independence between 
c2 - ~l and e2, and their independence of {Y'7=3q, n >- 3}, that P(A) > O. 
We now show that 

x~ = K for all n >-- 2 on A. (2.2) 

The proof of (2.2) is by induction and makes repeated use of the following 
algebraic identities: For n - 3, 

i - l ( ~ i -  { i - , )  = i - l ¢ i -  ( i ( i -  1)} 1 2~ 2 + 
i=3  i=3  i=3  j 3 {j 

= n - '  ~ c j - - 2 %  g -- n 
j = 3  

while for n -> 2, 

¢_,) 
' =/3+ 

I 2 

(2.4) 

(cf. [8]). 
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Since K z = K = - K  1 and 0 = 0, the LSCE rule (1.4) can be written as 

x i + , : K A { [ ( 1 - ~ ; ' f l ) . ~ , - ~ ; I ~ i ] V ( - K ) } ,  i - > 2 .  (2.5) 

Since x 1 : 0 and x 2 = K, it follows f rom (2.4) that/~2 = fl + K-1(¢2 - cl), 
and therefore 

- 9B </32 < - ½fl on A. (2.6) 

Not ing  that £z = ½K and that ~z > 0 on A, we then obtain that on A 

(1 -/3z-'fl):~z-/~z-'i2 > ½K(1 - / ~ - l f l )  > K, 

and therefore x 3 = K on A by (2.5). 
Let n > 3 and assume that x i = K for all i = 2 . . . .  ,n on A. Then for 

n >_ i > 2, -xi = i - l (  i - 1)K and x i - -xi-1 = K / ( i  - 1) on A. Therefore 
on A, 

~'1 ?/ 

X i - ' ( i  l ) (x ,  - 2 - -  - -  X i _ l )  • K 2 X  { i ( i  --  1 1 ) - '  = K2(1 -- n - l ) ,  
2 2 

(2.71 
?/ 

~ i - ' ( i  - 1 ) ( x , -  . 2 i _ 1 ) ( ,  i - i i - 1 )  = K ~ i - ' ( ¢ i  - ~i-11 
2 2 

: K { l ( ¢  2 -- '11 +(g ; ,  -- g21}, 

by  (2.3/. 

F r o m  (2.1), it follows that on A 

48 - ~Kf l  < ½(% - f ' l  ) < - -  ~Kfl ,  

(2.8) 

- -  22 19 
- ~ K f l  < ~,, - -  ~2 < - - ~ K f l .  

(2.91 

By (2.4), (2.7), (2.8), and (2.9), we obtain that on A 

L>B- 4 I(1 - . - ' )  > -  - 

< B - n - ' )  < -ht . (2.101 

Since £ ,  = n -  l(n - 1)K > ] K  and g, > - ~K/~ on A, we obtain f rom 
(2.10) that on  A, 

(1 - - /~ - ' f l )Y . - /~ - 'g ,  >(1 + ~ ) ~ K - -  ½K> K, 

and therefore xn+ I = K by (2.5), complet ing the induct ion argument.  
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3. A REPRESENTATION THEOREM FOR THE RECURSION (1.15) 

For any real sequence (a~), let ~,~=ian = 0 if i > k. In view of (1.1) and 
the fact y* = a + flO, the recursion (1.15) can be written as 

x,+, - 0 : (1 - f l b ~ - ' ) ( ~ , -  0) - b~-lii. (3.1) 

The following representation theorem for the recursion (3.1) provides a 
useful tool for analyzing the recursive scheme (1.15), 

THEOREM 1. Let  m be a positive integer, and let {x,),  (%}, {a,}, (en}, 
n >- m,  be sequences of real numbers such that 

xn+ , : (1 - an)X n - Chin, n >-- m.  (3.2) 

Then for n >-- m, 

n-- I  

X n + l  ~- ~ m - - l ,  nXrn - -  (3,3) E fl)ncj~j/(J + 1)  - -  Chin, 
j = m  

where 

finn = 1 , f l n _ l , n  = 1 - - a n ,  

f l j n = ( 1 - a , )  f i  (1 - -  a k _ l / k ) ,  
k=j+2  

n -->j + 2. (3.4) 

We preface the proof of Theorem 1 by the following 

LEMMA 1. Let N,  m be positive integers such that N > m, and let 
(an),  (dn}, m <- n <- N,  be two sequences of  real numbers. Suppose that 
d m = 1. Then the following statements are equivalent: 

d,+ 1 = (1 - a n ) n - '  ~ di, N -  1 >- n >- m; (3.5) 
i=n7 

n ' a , = m - '  II l V _ > n > m ;  (3.6) 
i = m  k = m + l  

n--I 

din+ 1 = m-l (1  -- a, ,) ,  d ,  = m-l (1  -- a , _ l )  II  (1 - a k _ l / k )  
k = m + l  

f o r N - - > n > m +  1. (3.7) 

Proof. Simple algebra shows (3 .6)~  (3.7), and both the implications 
(3.5) ~ (3.6) and (3.7) ~ (3.5) can easily be proved by induction on N. [] 



I T E R A T E D  L E A S T  S Q U A R E S  57 

Proof of Theorem 1. We prove (3.3) by induct ion on n. Since/3m--l, m = 1 
- am, (3.3) obviously holds for n = m. Assume that (3.3) holds for  all n 
with m -< n < N - 1. Then  by (3.2), 

( ) XN+ 1 = (1 -- aN) m~,~ + xi+ l / N - -  CN~ N 
i 

- - - N - ' ( 1 - - a  n m +  E flm-,,i Xm -- E E fljicj~j/ (J + 1) 
i=m i=m j=m 

N--l=_m } -- X Ciii -- CNi ~, by induction hypothesis, 
i 

= U - m + X - -  C N - - I i N - - ,  

i = m + l  

- £ ~ + ( j +  1) c . f i J ( j +  1) - -Cug N- 
j=rn i--j+ l 

(3.8) 
Put d r = m -  1/3,._ I, ~- l for i > m and d m = 1 in Lemma 1 and note  that (3.4) 
implies that (3.7) holds with a t -- a t. Hence we obtain from (3.5) that 

N - l ( 1  -- aN) m + E /3rn--l,i--, = m(1 -- aN)N - l  E ai 
i m + l  i=m 

= md~v+ 1 = tim--l, N" (3.9) 

Likewise, put t ing d" t = ( j  + 1)-l/3j, i-1 for i -->j + 2 and d~+ 1 = 1 in Lemma 
1, we obtain from (3.5) that 

N - ' ( 1 - a l v  ) /3j,, , + ( j +  1) = ( j +  1 ) ( 1 - - a N ) N  ' E a'~ 
i=j+ 2 i=j+ 1 

= ( j  + 1)d;,+. = g^,.  (3.10) 

Moreover,  by (3.4), 

N - l (  1 -- aN) = / 3 J v - I , N / { ( N - -  1) + 1}. (3.11) 

F rom (3.8)-(3.11) it follows that (3.3) also holds for n = N, complet ing the 
induct ion proof.  [] 

It is of interest to compare  Theorem 1 with the corresponding result for 
the stochastic approximat ion scheme (1.14) which, in view of (1.1), can be 
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rewrit ten as 

Xi+ 1 - -  O = (1 - j S b 7 1 / i ) ( x , -  O) - bT ' e i / i .  (3.12) 

The  following lemma (cf. [10, p. 1202]) provides the analog of the represen- 
tat ion (3.3) for the recursion (3.12). 

LEMMA 2. Let  m be a positive integer, and let {x,}, (%}, {an}, {c,}, n > 
m, be sequences of  real numbers such that 

Then for n >- m 

where 

xn+ , = (1 -- a J n ) x  n -- cn%/n .  (3.13) 

Xn+ 1 = l~n_l,nXrn -- ~ ~ n C j ' j / j ,  (3 .14)  
j=m 

f l~n= 1,f l j 'n= [I  ( 1 - a k / k )  f o r n - > j +  1. (3.15) 
k = j + l  

For  the special case c, -- c and a n = tic for all n, it follows f rom (3.15) 
that for n >-_j + 1, 

~;nCj/j -- j~ ;+ l ,nCj+l / ( j  "~ 1) = c(1 - ] ~ ¢ ) / ~ ; + l , n / { J ( J  "~ 1)} 

= cfljn / { j ( j  + 1)) ,  (3.16) 

where fljn is as defined in (3.4). In view of (3.16) and the fact that/3~, =/30n , 
applicat ion of partial  summat ion to (3.14) in the case m = 1 then reduces it 
to the representat ion (3.3). This shows the equivalence of (3.3) and (3.14) in 
the special case m = 1 and c n = e, a n = tic. However,  when a n and c n are 
changing with n, (3.3) and (3.14) are no longer equivalent. 

4. CONVERGENCE PROPERTIES or  THE RECURSIVE SCHEME 

x i + l  = x i  - (Y i  - - Y * ) / b i  

In the counterexample  of Section 2 on the LSCE rule, (2.6) and (2.10) 
show that/3n and fl are of different signs on the event A. When  the sign of fl 
is known, we should therefore choose b n i n  the recursive scheme (1.15) to be 
of the same sign as ft. Throughout  the sequel we shall assume that  fl > 0 
and that b n > 0 for all n. The following theorem shows that the recursive 
scheme (1.15) converges a.s. to 0 under  very weak assumptions on b n. 

THEOREM 2. Let  c, el, £2,-- '  be i.i .d, random variables with Ee = 0 and 
Ec 2-= 0 2 <  oo, and let (bn} be a sequence of  positive random variables. 
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Consider the linear regression model 

y?1 = y* + fl(x?1 - O) + 'n,  (4.1) 

where fl > O, y* and 0 are constants, and x?1 are random variables defined 
recursively by (1.15). 

o o  

(i) On (inf b, > 0 and ]~(nb?1) -1 -- ~ ) ,  x ,  ~ 0 a.s. 
1 

(ii) Suppose that there exist positive random variables U?1 such that with 
probability 1 

o o  

lim /,7, -- oo, ~ (nU,)  -1 = o o ,  (4.2) 

U, >-- b, for all large n, (4.3) 
and 

71 

lim sup (log b . - 1 ) / ~  (iU~) -1 < ft. (4.4) 
n ~o0 l 

0 a.s. In particular, x ,  --, 0 a.s. if there exist p > 0 and 0 < ~ < 1 Then x n 
such that with probability 1 

(log n )-P ~ b n _< (log n )s for all large n. (4.5) 

Proof From (3.1) and Theorem 1, it follows that for n -> m 

n--1 

Xn+ 1 - -  0 = t i m - l ,  n(Xrn - -  O)  - -  2 f l j n ~ j /  ((J + 1)bj)- ~?1/b,,, ( 4 . 6 )  
j = m  

where flj, is as defined in (3.4) with a k = flb~ 1. To prove (ii), since 
E~(iU/)-1 = o(log n) a.s. by (4.2), it follows from (4.4) that l im,~  ~nb n_ 1 = 
oo a.s. In view of this and (4.3), with probability 1 we can choose m 
sufficiently large such that 

1 - f l / ( n b , _ ,  ) >- ½ and U, -> b, for all n --> m. (4.7) 

F rom (3.4), (4.7), and the inequality 1 - x < e -x for x > 0, it follows that 
with probability 1, for n > j -> m, 

[flj, I <- (1 + Bib.)exp ( i ~ _ , )  -1 

-< (1 + f l / b . ) e x p  (iU~_1) -~ exp B Y~ ( iU~- i ) - '  . 
1 i ~ m + l  

(4.8) 
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n i - 1  n -  S i n c e  Y~m+l(U,-I) ~ Y~n l(iU/) -1, we obtain from (4.4) that 

b~-lexp(--/3 ~ ( i U / _ , ) - ' ) ~ 0 a . s .  (4.9) 
i = m + l  

By the law of the iterated logarithm, 

ij = 0 ( j - ' /Z ( log log  j ) , /2)  a.s. (4.10) 

Since E;+li:m+ l(igi_l) -1 = o(log j )  a.s., it follows from (4.9) and (4.10) that 

i n / b  n --, 0 and 

{ ( j + l ) b j ) - ~ l g j l e x p  /3 2 (iU~-I) -1 < ~  a.s. (4.11) 
j=rn i = m + l  

From (4.6), (4.8), (4.9), and (4.11), we obtain that x , - ,  0 a.s. A similar 
argument proves (i). [] 

We now study the rate of convergence of x,  to 0 in the following 

THEOREM 3. With the same notations and assumptions as in Theorem 2, 
let b* = l imsup,_~b, .  

(i) On {infb, > 0, b* < 2/3}, x,  - 0 = O ( n - l / 2 ( l o g l o g n )  1/2) a.s. 
(ii) For ~ > 2/3, x n - 0 = o(n - IUx)  a.s. on (inf bn > 0, b* < )~}. 

Proof. To prove (ii), let ~ > ~ > 2/8 and let Ay, = {inf b, > 0 and b n _< 5, 
for all large n}. On A~, we have for n > j  >_ m (sufficiently large), 

,/3,,,_< ( l + / 3 / b , ) e x p ( - ( / 3 / ~ )  ~ i -1} .  (4.12) 
i = j +  2 

Since inf b, > 0 on A~ and/3/) t  < ½, it then follows from (4.6), (4.10), and 
(4.12) that with probability 1, x~ - 0 = O(n - a / x )  : o(n - ~ / ~ )  on A~. Part 
(i) is an immediate corollary of Theorem 4 below. [] 

The following theorem, which is a refinement of Theorem 2(i), says that 
with probability 1, a sufficiently long string of b, not exceeding (2 - ~)/3 
leads to a corresponding string of x,  differing from 0 by less than a constant 
times n-I/2(log log n)W2. An analogous result for the stochastic approxima- 
tion scheme (1.14) was recently established in [11] under additional assump- 
tions on b i. 

THEOREM 4. With the same notations and assumptions as in Theorem 2, 
assume that inf b, > 0 a:s. Then there exists an event f~o with P(f]o) = 1 such 
that all sample points ~o E f~o have the following property: For every given 
0 < ~1 < 2, there exist C > 0 andposi t ive  integers N, k (depending on to and 
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~1) such that at o~, for all m >- N and l >_ m k, 

max b. --< (2 -- r/)fl 
m ~ n ~ l  

=1Xn -- 0 I <- C n - l / Z ( l o g l o g  n) '/2 

I~ ,  -- 0 I~  C n - ' / 2 ( l o g l o g  n)  1/2 

for all m k <_ n <_ l, and 

for all m k <- n <- l + l  1/2 . 

(4.13) 

Proof The assumpt ion  inf b, > 0 a.s. implies that  sup,_<j_<,< ~o I flj, I < oo 
a.s., and therefore in view of (4.6) and (4.10), x ,  = 0(1) a.s. This in turn 
implies that  with probabi l i ty  1 

sup I~ml< oo, ~ Ix,-Ol=O(P/2). (4.14) 
m l ~ i < 1 + l l / 2  

Let  ~2 0 be the event in which (4.14) holds and 

b ,  = infb ,  > 0 ,  I ~ j l = o ( j - 1 / : ( l o g l o g j ) ' / 2 ) .  
n 

(4.15) 

Let  ~ E f~o and let 0 < ~ /<  2. Choosing m o large enough such that  
f l / ( i b i_ l )  < 1 for i --> m o, we have  at ~0 

max  b, -< (2 - ~)fl  and m -> m o 
m<~n<_l 

~=j+2 ~ (2 rl)i 

f o r l e n > j > - _ m ,  (4.16) 

where 

i = m  o 

1 Dn-1 / (2 - , )  
(2 - 7/)i ] 

for  some D > 0. Lett ing k >- 2 such that  (1 - k - l ) / ( 2  -- ~) > ½, we obtain  
f rom (4.16) that  at ~0, for m -> m 1 (sufficiently large) and l ___ m k, 

max  b i _< (2 - a7)fl -~1 & - , , ,  I -< n-~/2 
m<~i.<l 

f o r m  k - < n - < l .  (4.17) 

Making  use of (4.6) and (4.14)-(4.17), we obtain  the desired conclusion 
(4.13) on x n - O by  choosing C a n d N  sufficiently large; this and (4.14) then 
provide  the desired conclusion on Yn - 0 by  choosing k sufficiently large. 
[] 
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The estimates of the rate of convergence 
[inf bo > 0, sup b, < oo } given by Theorem 3 
following precise estimates on the events 

of x~ to 0 on the event 
are sharp, in view of the 

E = (b, converges to a finite positive limit}, 

E, = { i n f b i > 0 ,  sup ]b i - b , ] : O ( ( l o g n )  - ° )  f o r s o m e p >  1} C E, 
i i > n  

E2= { in fb i>O,  s u p [ b i - - b n l = O ( ( l o g n ) - ° ) f o r s o m e o >  3} C E  x. 
i i > n  

(4.18) 

THEOREM 5. 

define the events E, E 1, E 2 by (4.18) and let b = l im ,o~  b n on E. 
(i) On E N (b < 2/3}, 

lim sup ( n / 2  log log n )'/2 ] x ,  - 01 = ( o / / 3 ) f ' / 2  (b//3) ~ a.s., 
r / ~ o O  

With the same notations and assumptions as in Theorem 2, 

(4.191 

where 

f ( t )  = 1 / ( t ( 2  - t)},  0 < t -#  2. (4.20) 

(ii) O n E  2N (b=2/3} ,  

l imsupn l /Z lx  . - 0 l /{2( log  n)(logloglog n)} i/2 = o/2f l  a.s. 
n ~ O Q  

(4.211 

(iii) On E I O {b > 2fl}, na/O(x, - O) converges a.s. Moreover, on 
E I fq {b > 2/3} fq {lim,_ = na/b(x, - 0) = 0}, 

lim sup ( n / 2  loglog n)' /2 lx .  - 01= (o/B)If(b/~3)I  ' /2 
n ~ c ~  

where f is as defined in (4.20). 

a . s . ~  

(4.221 

To prove Theorem 5, we make use of the properties of slowly varying 
sequences; a sequence of positive numbers L(n)  is said to be slowly varying 
if l im,_ooL([cn])/L(n) = 1 for all c > 0 (cf. [4]). We also make use of the 
following uniform law of the iterated logarithm for certain integral trans- 
forms of Brownian motion. 
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LEMMA 3. Let w( t ), t >-- 0, be a standard Brownian motion. Then 

(i) P[l im supt_ ~ t ~/2 [ (1 - a)t-f f~s~-2w(s) ds + t - lw( t )  l / ( 2  log log t) ~/2 
= ( 2 a -  1) - l f o r a l l a > ½ ] =  1; 
(ii) P[l im sup,~ oo t~ /21 (1 - a)t-~ft ~ s~- 2w( s ) ds - t -  lw( t ) I/  (210g log t) ~ /2 
= ( 1 - 2 a )  - l f o r a l l a < ½ ] - -  1. 

Proof To prove (ii), let 

f? X, ( t )  = (1 - el)t ' /2-~ s" -2w(s)  ds 

= ( 1  - a ) f t ~ ( s / t ) ~ - 1 / 2 s - V 2 w ( s )  ds, (4.23) 

= / l i m s u p [ X ~ ( t ) - t  l /2w(t)  l / (21oglogt)  1 / 2 = ( 1 - 2 4 ) - I ) .  
k t---~ oo 1 

(4.24) 

P ( N  {a~: a < ½, a i s  rat ional}) = 1. 

For  fixed c < d < ½ with d - c < 1, we obtain from (4.23) that 

sup 
c < : a ~ d  

[ X ~ ( t ) - X ~ ( t ) [ ~  ( ( 1 - c ) [ ( d - c )  ( d - c )  1] + d - c }  

× f'/(a-C)(s/t)c-1/2s-3/ lw(s)lds 
" t  

+2(l-c)j,  rds, 
~(d-c) 

For  every fixed a < ½, 

t~- ' /2(  X~(t) - t -1/2w(t))  = (1 - a) f t°°s"-2w(s) ds - t " - lw( t )  

= s ~-l dw(s) = (1 - 2 a ) - ' k ( t - ¢ - 2 ~ ) ) ,  

(4.25) 

in which ~(t) ,  t -> 0, is a s tandard Brownian motion. By the law of the 
iterated logarithm, 

l imsup  [ ~ ( s ) [ / ( 2 s l o g l o g s )  1/2= 1 a.s. (4.26) 
~ 0 0  

From (4.24), (4.25), and (4.26), it follows that P ( ~ )  = 1 for every a < ½. 
Therefore, 

(4.27) 
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and therefore by the law of the iterated logarithm (4.26) for w(s), 

l i m s u p (  sup I x ~ ( t ) - X a ( t ) l / ( l o g l o g t )  1/2} <--K(c,d) 
t~oo c ~ a ~ d  

a .s .~  

(4.28) 

where lim r ~ 0 K ( d  - r, d )  = 0 uniformly for d belonging to compact subsets 
of ( -  ~ ,  ½). From (4.27) and (4.28), (ii) follows. Part (i) can be proved by a 
similar argument. [] 

Proof of Theorem 5. On E, we can choose m sufficiently large such that 
1 - fl/(ibi_l) >- ½ for all i -> m. Letting ~,, = 1-li"__,,(1 - fl/ibi_l) for n -> m, 
we note that on E, ~/, = n-P/b~" n where (%) is a slowly varying sequence of 
positive numbers (cf. [10, p. 1202]). Since flj, = ( 1 -  flb~l)y,/-/j+l for 
n > j -> m - 1, it then follows that on E 

flj, = (1 - flb, l ) ( ( j  + 1)/n)P/g'rbT~+~ f o r n > j _ > m - -  1. 

(4.29) 

in the event E l C E, since 

flb~ 1 = fib -I + 0((log n)  P) (4.30) 

for some p > 1, we have furthermore that  

sup i %~)+1 _ 11= 0((log j ) - ( p - O ) ,  and 
n > j  

"r = lim % exists and is positive on E 1 . (4.31) 
H~OO 

From (4.6) and (4.29), it follows that on E 

Xn+ l - -  0 = ( 1  - -  f l b ~ l ) ( m / n ) f l / b ' g n ' g m  l ( X  m -- O) --  ~n/bn 

n - - 1  

-- (1 -- flb;l)n-#/b% ~ (J + 1)O/b-lgJ (~+lb j ) .  (4.32) 
j : m  

To prove (i), letting S(0) -- 0 and S(t) =jgj for j - 1 < t _<j, and rede- 
fining the random variables on a new probability space if necessary, there 
exists by the strong invariance principle (cf. [7]) a standard Brownian 
motion w(t) such that 

S(t)  - ow(t) = o((tloglogt) 1/2) a.s. (4.33) 

On E O  ( b < 2 f l } ,  since (4.26) holds (with flb~ 1 ~ f l / b > ½  and (%} 
slowly varying), we obtain (4.19) by using (4.33) and Lemma 3(i) together 
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with an argument similar to that in Theorem 7 of [9] for adaptive stochastic 
approximation schemes. 

To prove (iii), we note from (4.10), (4.31), and (4.32) that on E i fq {½ > 
B/b},  ~ = , , ( j  + 1)~/b-' ] ~j ] /(~+lbj)  < oo a.s. and therefore 

n#/b( xn+ 1 -- O) ~ ~'(1 --/3/b)tmO/a"r m '(-~m -- O) 

- (; + a . s .  
j =  rn 

Moreover, it follows from (4.26) that on E 1 (q {½ > 33/b} f) {mO/%,nl(Ym 
-- O) = Xj~=,n(j + 1)#/6-'gj/('rj+,bj)}, 

x,+,  - 0 --(1 -/3b/ ')n-/~/b'r , ,  ~ ( j  + i)a/b-'~i / (~+,bj) -- ~,,/b,,. 
j = n  

(4.34) 

From (4.31), (4.33), (4.34), and Lemma 3(ii), it then follows that (4.22) holds 
onE ,  A {½ > /3 /b}  A (mP/b 'r~nl(X m --  O) = ~j~-rn(J q- 1)tUb-'gJ(5+,bi)}. 

To prove (ii), we note from (4.30), (4.31), and (4.32) that on E 2 f) (b -= 
2/3}, 

- o = - { 1  + 

n - - I  

-(½+O((logn)-~')) b - ' n - ' / z  E ( J +  1)- ' /z ig(  1 + 0((log J)  -(° ')} 
j = m  

(4.35) 

with to > 3/2. Let ½ > 8 > 2 - to. Making use of the law of the iterated 
logarithm (4.10) and partial summation, we then obtain from (4.35) that on 
E 2A (b=2/3} ,  

x , + , -  0 = - (2/3) 'n - ' / 2  j 1/2~j + o logn)  8 a.s. 
J 

(4.36) 

By the law of the iterated logarithm for the weighted sum ~n j - l / 2 ~ j  j~rn 
2 n j-1 ~o2 whose variance is o Z j=,, log n, 

n 

limsup ~=j-1/2~j / (2(log n)(logloglog n)} ' /2 = o 
n ~ t ~  j 

From (4.36) and (4.37), (4.21) follows. [] 

a.s. (4.37) 



66 LAI AND ROBBINS 

While the law of the iterated logarithm (4.19) for x,  follows from the 
representation (4.32) and the strong invariance principle (4.33), an applica- 
tion of Donsker's invariance principle (cf. [5]) and (4.32) gives the following 
result on the limiting distribution of xn. 

THEOREM 6. With the same  notations and  assumptions as in Theorem 2, 
suppose that there exists a post ive  constant b such that b < 2/3 and  b n ~ b a.s. 
Then 

n l / 2 (  x .  - O) ~® N(O, ( o2/ /32 ) f (  b / /3  ) ), 

where f is def ined in (4.20). 

5. SOME ASYMPTOTIC PROPERTIES OF THE COST ~ , ' { ( X  i - -  0 )  2 

In this section we prove the following theorem on the order of magnitude 
n 

of the cost ~ ( x  i - 0) 2 of the recursive scheme xi+ 1 = xi - (Yi -- Y * ) / b i  in 
1 

the event E = (b, converges to a finite positive limit). 

THEOREM 7. Under the same  assumptions and  notations as in Theorem 5, 

(i) ] ~ ( x  i - 0)2/log n ~ ( o 2 / / 3 2 ) f ( b / / 3 )  a.s. on E ¢q (b < 2/3}; 
(ii) n - - ( l - - 2 f l / b ) ~ ( X i  - -  0) 2 converges a.s. on E~ • {b > 2fl); moreover,  

?l 

on E 1 fq (b > 2/3} N { l im,_~n  -(1 2 f l / b )  2 ( X  i - -  0 )  2 = 0), 
1 

n 

Z (xi - 0)2/l°g n ~ (oz//32) If(b//3) l a.s .;  (5.1) 
1 

(iii) o n E  2 N ( b = 2 / 3 ) ,  

2 0  2 
lim sup ~ ( x  i -- 0 ) 2 /  ((log n)2(logloglog n) ) - ~r 2 /32 

n ~  1 

n 

l iminf ]~ ( x  i - 0)2 /{( log  n)2/ ( logloglog n))  = (4/3)-202 
rt ~ oc~ 1 

a , s .  

(5.2) 

a , s .  

(5.3) 

The proof of Theorem 6 makes use of the following result of [14]. 
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LEMMA 4. Let E, El, E2,... be i.i.d, random variables with Ee : 0 and 
EE 2 = o 2 < o0. Let ~,(a) = n-aY~:l  j~-lej  for a >--- ½, and let ~n(a) : 

- - a  oo " a - - I  n 2 j : . J  e j for a < ½. 

(i) For every b > a > ½, 

P[ ~ g2i ( a ) / l ° g  n ~ ° 2 /  (2a - 1 )  unif°rmly in a <- a <- b] (5.4) 

(ii) For every c < d < ½, 

e -2 )uniformlyi c<_ <_d = 1. (5 .5 )  

(iii) For the case a = ½, 

n 

limsup 2 g ~ ( a ) /  {(logn)2(logloglog n)} = 8o2/Ir 2 a.s., (5.6) 

l i m i n f ~ g 2 i ( ~ ) / { ( l o g n ) 2 / ( l o g l o g l o g n ) } = o 2 / 4  a.s. (5.7) 
Iq ~ ~:~ 1 

(iv) For every r > s > ½ and O < X <_ l, 

l i m s u p l m a x  ~ k-"  ~ j , -1  t s <  a <:r ] ij I / (log n ) 
n ~  oo k =  1 j < - - h k  

_< ( s _  ½ ) - 2 o 2 x 2 s  - , a.s. (5.8) 

Proof of Theorem 7. To prove (i), we first note that Lemma 4(i) imphes 

P k - " ~ J ~ - l e j  o g n ~ o Z / ( 2 a - 1 )  f o r a l l a > ½  = 1 .  
1 j = l  

(5.9) 

By partial summation and the law of the iterated logarithm (4.10), we obtain 
that on E A (b < 2fl} 

k- - I  k 

(1 -- f l b - t ) k - # / b  E J~/b-le-j - + i.k = k -B/b E J ' /b- le j  + o (k  -~/2) 
j = l  j = l  

a . s .  
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and therefore by (5.9), 

i 1 -- f l b - l ) k  -#/6  2 jO/b l~j _[_ ~k / l o g n  ~ o2/(2/3b -1 - 1) 
k=rn j m 

a.s. (5.10) 

Making use of Lemma 4(iv), we then obtain from (5.10) that on E A (b < 
2fl}, 

( , _ ,  }2 
1 - - / 3b ;1 )k  -o/b  E b - l jB /b - | i j  + gk/bk / l o g n  

k=m j=m 

- - , ( o 2 / B z ) f ( b / f l )  a.s. (5.11) 

We note from (4.32) that on E A (b < 2/3}, 

(xk+ , - O) 2 = 1 - f l b ; t ) k  -a/b E bT ' (J  + t) ~jTk/Tj+ 1 
k=m k j=m 

+ (5.12) 

In view of (5.11) and (5.12), it therefore suffices for the proof of (i) to show 
that 

t t 2 k-  l 1)B/b l 
k -e /b  E I b T ' ( J  + Tk/5+' - -b- - ' Ja /b- - ' l l i J l  

k=m t. j=m 

= o(log n) a.s. on E N (b < 2/3). (5.13) 

To prove (5.13), let 8 > 0 be a random variable such that f l /b  - ~ > ½ on 
{b < 2/3}. As indicated in the proof of Theorem 5, (%} is slowly varying on 
E. Therefore on E, we can choose m so large that 

"rk/5+ 1 <_ ( k / ( j  + 1)) 8 for m N j  < k (5.14) 

(cf. [4]). Let 0 < h < 1. Since inf bg > 0 on E, it then follows from (5.14) 
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and Lemma 4(iv) that on E A (b < 2B}, 

{ 12 a / b - i  - b -  ~ j a / a - ,  II gj I 
k = rn m'<j~--)kk 

<_ ~ k p/~+a y~ b71(j+ 1)~/b "-'l~;I 
k = m  j<:,~k 

(z x + o(1))log n a .s . ,  where z x --, 0 as h -+ < O. (5.15) 

Since (%} is slowly varying on E, we also obtain that on E tq {b < 2fl}, 

11 

y= 
k~-m 

k p/b sup 
~.k<--j<k 

k ~ m  

k--1 ) 2 
I bj-l((j + 1 ) / j ) ' 8 / b - l ' r k / ' r j + l  - -  b-ll Y~ ja/b-llgjl 

j = m  

k--1 }2) 
k #/b ~ jO/b--1 [gjl ----- o ( logn )  a.s., by Lemma4( iv) .  

j = r n  

(5.16) 

From (5.15) and (5.16), (5.13) follows. 
To prove (ii), we note by Theorem 5(iii) that on E 1 C/ (b > 2fl}, nB/b(x  n 

- 0) converges a.s. to some random variable z, and therefore 

(x i - 0) 2 ~ (1 -- 2fl/b)-lnl-2#/bz 2 a.s, (5.17) 
1 

Moreover, on E 1 A (b > 2fl} f3 (z = 0}, (4.34) holds, and therefore 

Xk+ , - - 0  = (1 -- ~b;1)k -#/b ~ b}-l(j + 1)a/b-',-}(.rk/.rj+,)- ~k/bk, 
j = k  

= (1 - B b - ' ) b - ' k - ~ / ~  ~ / /~- ' , -+ -- ~ / b  
j = k  

+ O ( k -  ' /2(log k ) - (P - ' ) ( log  log k) l /2)  

= b-lk-a/b ~ jp/b-~c/ + o ( k - l / z )  
j = k  

by (4.34), 

a.s., by (4.10), (4.30), (4.31), 

a.s. (5.18) 
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The last equality above follows from partial summation and (4.10). By 
Lemma 4(ii), 

p k - ,~  j a - l c . j  /logn_~o2/(l_2a) 
k j = k  

1 
for a l l a < ½ [  = 1 .  

.I 

(5.19) 

E 2 t"l {b = 2fl} 

(xk+ , -- 0) 2 = (2fl) -2 k-I j '/2ej 
k = m  k j 

+ o((log k)8)}  2 
a , s . ~  

(5.20) 

where 6 < ½. From (5.20) and Lemma 4(iii), the desired conclusion follows. 
[] 

Noting that ]~'~(x i - y,)2 = E ~ ( x  i _ 0)2 _ n(Y~, - 0) 2, we can combine 
Theorem 7 with Theorem 5 to obtain 

COROLLARY 1. Under  the s a m e  as sumpt ions  a n d  no ta t ions  as in T h e o r e m  

5, 

(i) Y ~ ( x  i - xn)Z/log n ~ ( o 2 / f l 2 ) f ( b / n f l )  a.s. on E N (b < 2fl}; 

(ii) on E 1 71 {b > 2fl), n - O - 2 l U b ) ~ ( x i _  :g,)2 converges  a .s .  to 
1 

( f l / b ) 2 z 2 / ( ( 1  - 2 f l / b ) ( 1  - f l / b ) 2 } ,  where  z = lim,_+~ n P / b ( x ,  --  0); 
moreover ,  on E l N {b > 2fl} • (z = 0), 

n 

E(x,  2 
- -  :g,) / l og  n ~ (02//32) If(b//3) I a . s . ;  (5.21) 

I 

(iii) on E 2 71 {b  = 2/3), 

l imsup ~ (x, _ xn ) _  2 / { ( l o g n ) 2 ( l o g l o g l o g n ) }  _ 2 ,2  a . s .  (5.22) 
7/.2 /32 n ~ o o  1 

lira inf ~ (x i --  f in)z /{  (log n )2 / ( log  log log n) ) = (4/3)-2o2 
n ~ ° O  1 

a . s .  

(5.23) 

From (5.18) and (5.19), it then follows that on E 1 Cl {b > 2fl} A {z = 0), 

~ ( x i - O ) 2 / l o g n  ~ b - 2 o 2 / ( 1 -  2 f lb  - l )  = ( o 2 / f l 2 ) [ f ( b / f l ) [  a.s. 
1 

To prove (iii), since (4.36) holds on E 2 71 (b = 2fl), we have on 
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6. A N  ASYMPTOTICALLY EFFICIENT M O D I F I C A T I O N  OF THE LSCE R U L E  

In this section we assume that positive lower and upper bounds B1 and B 2 
for the slope fl in the linear regression model (3.1) are known. We do not, 
however, assume the knowledge of bounds K~, K 2 on O, as assumed by 
Anderson and Taylor [1]. In ignorance of bounds on 0, we have to set 
K 1 = - o o  and K 2 = oo in the LSCE rule (1.4), and this amounts to the 
recursive scheme (1.15) with b~ =/3t- On the other hand, since upper and 
lower bounds B 2 and B~ on fl are known, it is natural to truncate the least 
squares estimate fli by these bounds and therefore to take b~ -- B 2/~ (/~i k/ 
B1) in (1.15). 

For the case of a fixed design in which xl, x2, . . ,  are nonrandom con- 
stants,/~, is an unbiased estimate of fl and has variance o2/Y:~(xi  - y,)2, 
and the strong consistency of/3, under the sole condition that Y,~(x~ - ~,)2 
--, ~ was recently established in [8]. This condition, however, is not suffi- 
cient to ensure the strong consistency of/~,  when the x~ are sequentially 
determined random variables (cf. [12]). For the recursive scheme (1.15), we 
obtain from Corollary l(i) that on { l im.~oob.  = fl}, 

~ ( x ,  - ~,)2 ~ ( 0 2 / f 1 2 ) l o g  n a.s., (6.1) 
l 

and therefore 

i ° , - 1  (yi f , ) 2  _ y {B(xi - 2 . . . .  c . ) )  o2 a.s. 
1 1 

(6.2) 

2 Let s, = n-11~'~(y~ - )7,) 2. Since fl -< B2, it then follows from (6.1) and (6.2) 
that 

l i m i n f / ( x i  - 2 2 2 { l i m b .  fl}. - x . )  / l o g  n >-- S n / B  2 a . s .  o n  = 
n-~oo 1 n-~oo 

Let (c,} be any sequence of positive constants such that 

(6.3) 

lim inf c, > 0, lim sup c, < 1. (6.4) 
. 4 0 0  

n ~ t ~  

From (6.3), it follows that on (lim,.o~b, = fl}, 

(x, - ~.)2 > (c . s2 /B  2 ) l o g  n (6.5) 
1 
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for all large n, with probability 1. Noting also that the accuracy of the 
least-squares estimate ]~ of/3 is closely related to the magnitude of Y~(x i - 
xn)2, we therefore define bn for the recursive scheme (l. 15) as follows: 

b, = B 2/~ ( /~  V Bt) if (6.5) holds, 

= b,_ 1 otherwise, (6.6) 

where b I is any constant between B t and B 2. We shall call the recursive 
scheme (1.15) with b, defined by (6.6) the modified LSCE rule. 

Making use of the local convergence properties in Corollary 1 and 
Theorem 4 for recursive schemes of the form (1.15) and a general theorem 
on the strong consistency of/~,  in stochastic designs, it can be shown that 
b, ~ / 3  a.s. in the modified LSCE rule. The details of the proof are given in 
[13]. It then follows from Theorems 5(i), 6, and 7(i) that the asymptotic 
properties (1.9), (1.10), and (1.11) for the asymptotically optimal Robbins-  
Monro stochastic approximation scheme (1.8) (or its least-squares equiva- 
lent (1.12)) assuming known/3 still hold for the modified LSCE rule in the 
present case of unknown ft. Hence this modification of the LSCE rule has 
the desirable convergence properties of the Anderson-Taylor conjecture. 
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