Expansion of a Special Operator*

L. Carlitz
Department of Mathematics, Duke University, Durham, North Carolina 27706
Submitted by R. P. Boas

1. Introduction

We consider the expansion of the operator

$$
\begin{equation*}
\left(x D_{y}+y D_{x}\right)^{n}=\sum_{j+k \leqslant n} C_{j, k}^{(n)}(x, y) D_{x}{ }^{j} D_{y}{ }^{k} \quad(n=0,1,2, \ldots) . \tag{1.1}
\end{equation*}
$$

where

$$
D_{x}=\frac{\partial}{\partial x}, \quad D_{y}=\frac{\partial}{\partial y} .
$$

It is evident from (1.1) that $C_{j, k}^{(x)}(x, y)$ is a polynomial in x, y with nonnegative integral coefficients. Moreover, replacing x, y by $\lambda x, \lambda y$, where λ is an arbitrary constant, we infer that $C_{j, k}^{(n)}(x, y)$ is a homogeneous polynomial of degree $j+k$. Also it is evident that

$$
\begin{equation*}
C_{\mathbf{0 . 0}}^{(0)}(x, y)=1, \quad C_{0.0}^{(n)}(x, y)=0 \quad(n>0) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{j, k}^{(n)}(x, y)=C_{k, j}^{(n)}(y, x) . \tag{1.3}
\end{equation*}
$$

Generalizing (1.1), we take

$$
\begin{equation*}
\left(a x D_{y}+b y D_{x}\right)^{n}=\sum_{j+k \leqslant n} C_{i, k}^{(n)}(x, y \mid a, b) D_{x}{ }^{j} D_{y}{ }^{k} \tag{1.4}
\end{equation*}
$$

where a, b are constants. Replacing x, y by $\lambda x, \mu y$, where λ, μ are constants, (1.4) becomes

$$
\begin{equation*}
\left(a \lambda \mu^{-1} x D_{y}+b \lambda^{-1} \mu y D_{x}\right)^{n}=\sum_{j+k \leqslant n} C_{j, k}^{(n)}(\lambda x, \mu y \mid a, b) \lambda^{-j} \mu^{-k} D_{x}{ }^{j} D_{y}{ }^{k} . \tag{1.5}
\end{equation*}
$$

[^0]Since the left-hand side of (1.5) is equal to

$$
\sum_{j+k \leqslant n} C_{j, k}^{(n)}\left(x, y \mid a \lambda \mu^{-1}, b \lambda^{-1} \mu\right) D_{x}^{j} D_{y}{ }^{k}
$$

it follows that

$$
\begin{equation*}
C_{j, k}^{(n)}(\lambda x, \mu y \mid a, b)=\lambda^{j} \mu^{k} C_{j, k}^{(n)}\left(x, y \mid a \lambda \mu^{-1}, b \lambda^{-1} \mu\right) \tag{1.6}
\end{equation*}
$$

In particular, if we take $\lambda^{2}=b, \mu^{2}=a$, (1.6) becomes

$$
\begin{align*}
C_{j, k}^{(n)}(\lambda x, \mu y \mid a, b) & =a^{1 / 2 k} b^{1 / 2 j} C_{j, k}^{(n)}\left(x, y \mid(a b)^{1 / 2},(a b)^{1 / 2}\right) \\
& =a^{1 / 2(k+n)} b^{1 / 2(j+n)} C_{j, k}^{(n)}(x, y \mid 1,1) \tag{1.7}\\
& =a^{1 / 2(k+n)} b^{1 / 2(j+n)} C_{j, k}^{(n)}(x, y)
\end{align*}
$$

Thus there is no real loss in generality in restricting the discussion to the case $a=b=1$.

In the next place put

$$
\begin{equation*}
\left(x D_{y}+y D_{x}\right)^{n} x^{r} y^{s}=\sum_{j=0}^{n} f_{j}^{(n)}(r, s) x^{r+n-2 j} y^{s-n+2 j} \tag{1.8}
\end{equation*}
$$

As we shall see below, the coefficients $f_{j}^{(n)}(r, s)$ are polynomials in r, s; indeed if r and s are nonnegative integers then the $f_{j}^{(n)}(r, s)$ are also non-negative integers. We define the polynomial $F_{r, 8}^{(n)}(x, y)$ by means of

$$
\begin{equation*}
F_{r, s}^{(n)}(x, y)=\sum_{j=0}^{n} f^{(n)}(r, s) x^{r \mid n 2^{2 j} y^{s-n \vdash 2 j}} \tag{1.9}
\end{equation*}
$$

The polynomials $C_{j, k}^{(n)}(x, y)$ and $F_{r, s}^{(n)}(x, y)$ are closely related. Indeed

$$
\begin{equation*}
p!q!C_{p, q}^{(n)}(x, y)=\sum_{r=0}^{p} \sum_{s=0}^{q}(-1)^{p+q-r-s}\binom{p}{r}\binom{q}{s} x^{p-r} y^{q-s} F_{r, s}^{(n)}(x, y) \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{p, q}^{(n)}(x, y)=\sum_{r=0}^{p} \sum_{s=0}^{q}\binom{p}{r}\binom{q}{s} r!s!x^{p-r} y^{q-s} C_{r, s}^{(n)}(x, y) \tag{1.11}
\end{equation*}
$$

The relations (1.10), (1.11) are equivalent to

$$
\begin{equation*}
p!q!c_{q-n+2 j}(n, p, q)=\sum_{r=0}^{p} \sum_{s=0}^{q}(-1)^{p+q-r-s}\binom{p}{r}\binom{q}{s} f_{j}^{(n)}(r, s) \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{j}^{(n)}(p, q)=\sum_{r=0}^{p} \sum_{s=0}^{q}\binom{p}{r}\binom{q}{s} r!s!c_{s-n+2 j}(n, r, s) \tag{1.13}
\end{equation*}
$$

where the coefficients $c_{k}(n, p, q)$ are defined by

$$
\begin{equation*}
C_{p, q}^{(n)}(x, y)=\sum_{k=0}^{p+q} c_{k}(n, p, q) x^{p+q-k} y^{k} \tag{1.14}
\end{equation*}
$$

We shall show that the polynomials $C_{j, k}^{(n)}(x, y), F_{r, s}^{(n)}(x, y)$ satisfy the generating relations

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \sum_{j+k \leqslant n} C_{j, k}^{(n)}(x, y) u^{j} v^{k}=\exp \{(x u+y v)(\cosh z-1)+(x v+y u \sinh z\} \tag{1.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \sum_{r, s=0}^{\infty} F_{r, s}^{(n)}(x, y)=\exp \{(x u+y v) \cosh z+(x v+y u) \sinh z\} \tag{1.16}
\end{equation*}
$$

respectively.
The generating functions (1.15), (1.16) imply the following combinatorial results. Let $A(n, j, k)$ denote the number of partitions of the set $z_{n}=\{1,2, \ldots, n\}$ into $j+k$ nonempty blocks of which j have even cardinality and k have odd cardinality. Then we have

$$
\begin{equation*}
c_{k}(n, j+k, 0)=A(n, j, k), \quad c_{k}(n, 0, j+k)=A(n, k, j) \tag{1.17}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
c_{k}(n, p, q)=\sum_{\substack{a+m=k \\ r+s=n}}\binom{n}{r} A(r, p-a, a) A(s, b, q-s) . \tag{1.18}
\end{equation*}
$$

Next let $D(n, r, s)$ denote the number of ways of putting n numbered objecs into $r+s$ numbered boxes so that each of any r boxes contains an even number of objects while each of the remaining s boxes contains an odd number of objects; it is to be understood that all selections of the first r boxes are counted. Then we have
$f_{j}^{(n)}(r, 0)=D(n, r+n-2 j, 2 j-n), \quad f_{j}^{(n)}(0, s)=D(n, n-2 j, s-n+2 j)$
and
$f_{l i}^{(n)}(r, s)=\sum_{\substack{a+k=n \\ i+j=k}}\binom{n}{a} D(a, r+a-2 i, 2 i-a) D(b, b-2 j, s-b+2 j)$.
A number of related questions are suggested by (1.1). For example it would be of interest to determine the coefficients $B_{j, k}(x, y)$ in the expansion

$$
\begin{equation*}
\left(a x E_{y}+b y E_{x}\right)^{n}=\sum_{j+k \leqslant n} B_{j, k}^{(n)}(x, y) E_{x}^{j} E_{y}^{k}, \tag{1.21}
\end{equation*}
$$

where the operators E_{x}, E_{y} are defined by

$$
E_{x} f(x, y)=f(x+1, y), \quad E_{y} f(x, y)=f(x, y+1)
$$

Similar questions can be posed for other families of linear operators. Also one may seek the operators L_{x}, L_{y} such that

$$
\begin{equation*}
\left(x L_{y}+y L_{x}\right)^{n}=\sum_{j+k \leqslant n} C_{j, k}^{(n)}(x, y) L_{x}^{j} L_{y}^{k}, \tag{1.22}
\end{equation*}
$$

where the $C_{j, k}^{(n)}(x, y)$ are the same as the coefficients in (1.1). This question was suggested by a recent paper by Al-Salam and Ismail [1] concerning the operational formula

$$
(A C)^{n}=\sum_{k=0}^{n}\binom{n}{k} \frac{n!}{k!} C(C-1) \cdots(C-k+1) A^{n}
$$

where A, C are operators satisfying

$$
\begin{equation*}
A C-C A=A \tag{1.23}
\end{equation*}
$$

Since the coefficients of $C_{r, s}^{(n)}(x, y)$ and $F_{r, s}^{(n)}(x, y)$ are integers it is natural to look for arithmetic properties. It can for example be shown that, if p is an odd prime, then

$$
\begin{equation*}
\sum_{r+s=p} C_{r, s}^{(n)}(x, y) u_{r} v^{s} \equiv S(n, p)\left(u^{p} y^{p}+v^{p} x^{p}\right) \quad(\bmod p) \tag{1.24}
\end{equation*}
$$

where $S(n, p)$ denotes a Stirling number of the second kind.
For $F_{r, s}^{(n)}(x, y)$ we have the congruence of Kummer's type (compare [4, Ch. 14])

$$
\begin{equation*}
\sum_{j=0}^{t}(-1)^{j^{t}} F_{r, s}^{(n+j(p-1))}(x, y) \equiv 0 \quad\left(\bmod p^{t}\right) \tag{1.25}
\end{equation*}
$$

where p is an arbitrary prime and $n \geqslant t \geqslant 1$.
We shall however not include the derivation of such results in the present paper.

2. Preliminaries

As above put

$$
\begin{equation*}
\left(x D_{y}+y D_{x}\right)^{n}=\sum_{j+k \leqslant n} C_{j, k}^{(n)}(x, y) D_{x}^{j} D_{y}^{k} \quad(n=0,1,2, \ldots) \tag{2.1}
\end{equation*}
$$

As noted, $C_{j, k}^{(n)}=C_{j, k}^{n)}(x, y)$ is homogeneous of degree $j+k$ in x, y and has nonnegative integral coefficients.

If we multiply both sides of (2.1) on the left by $x D_{y}+y D_{x}$ we get

$$
\begin{aligned}
\left(x D_{y}+y D_{x}\right)^{n+1} & =\left(x D_{y}+y D_{x}\right) \sum_{y+k \leqslant n} C_{j, k}^{(n)} D_{x}{ }^{j} D_{y}{ }^{k} \\
& =\sum_{j+k=n}\left\{x\left(D_{y} C_{j, k}^{(n)}+C_{j, k}^{(n)} C_{y}\right)+y\left(D_{x} C_{j, k}^{(n)}+C_{j, k}^{(n)} D_{x}\right)\right\} D_{x}{ }^{j} D_{y}{ }^{k} .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
C_{j, k}^{(n+1)}=\left(x D_{y}+y D_{x}\right) C_{j, k}^{(n)}+x C_{j, k-1}^{(n)}+y C_{j-1, k}^{(n)} \tag{2.2}
\end{equation*}
$$

Similarly, multiplying (2.1) on the right by $x D_{y}+y D_{x}$, we get

$$
\begin{equation*}
C_{j, k}^{(n+1)}=x C_{j, k-1}^{(n)}+y C_{j-1, k}^{(n)}+(j+1) C_{j+1, k-1}^{(n)}+(k+1) C_{j-1, k+1}^{(n)} . \tag{2.3}
\end{equation*}
$$

Comparison of (2.3) with (2.2) gives

$$
\begin{equation*}
(j+1) C_{j+1, k-1}^{(n)}+(k+1) C_{j-1, k+1}^{(n)}=\left(x D_{y}+y D_{x}\right) C_{j, k}^{(n)} \tag{2.4}
\end{equation*}
$$

If we make use of the translation operators E_{j}, E_{k} defined by

$$
E_{j} f(j, k)=f(j+1, k), \quad E_{k} f(j, k)=f(j, k+1)
$$

(2.2), (2.3), (2.4) become

$$
\begin{align*}
C_{j, k}^{(n+1)} & =\left(x D_{y}+y D_{x}+x E_{k}^{-1}+y E_{j}^{-1}\right) C_{j, k}^{(n)}, \tag{2.5}\\
C_{j, k}^{(n+1)} & =\left(x E_{k}^{-1}+y E_{j}^{-1}+(j+1) E_{j} E_{k}^{-1}+(k+1) E_{j}^{-1} E_{k}\right) C_{j, k}^{n)}, \tag{2.7}\\
\left(x D_{y}+y D_{x}\right) C_{j, k}^{(n)} & =\left((j+1) E_{j} E_{k}^{-1}+(k+1) E_{j}^{-1} E_{k}\right) C_{j, k}^{(n)}, \tag{2.6}
\end{align*}
$$

respectively.
The first few values of $C_{j, k}^{(n)}$ can be computed either directly from (2.1) or by using one of the recurrences. We find that

$$
\begin{aligned}
\left(x D_{y}+y D_{x}\right)^{2}= & x D_{x}+y D_{y}+x^{2} D_{y}^{2}+2 x y D_{x} D_{y}+y^{2} D_{x}^{2} \\
\left(x D_{y}+y D_{x}\right)^{3}= & x D_{y}+y D_{x}+3 x y D_{y}^{2}+3\left(x^{2}+y^{2}\right) D_{x} D_{y}+3 x y D_{x}^{2} \\
& +x^{3} D_{y}^{3}+3 x^{2} y D_{x} D_{y}^{2}+3 x y^{2} D_{x}^{2} D_{y}+y^{3} D_{x}^{3}
\end{aligned}
$$

These special results suggest that

$$
\begin{equation*}
C_{n, 0}^{(n)}=y^{n}, \quad C_{0, n}^{(n)}=x^{n} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{align*}
C_{1,0}^{(n)} & =x & & (n \text { even }) \\
& =y & & (n \text { odd }) \tag{2.9}\\
C_{0,1}^{(n)} & =y & & (n \text { even }) \tag{2.10}\\
& =x & & (n \text { odd }) .
\end{align*}
$$

Formula (2.8) follows at once from (2.6) while (2.9) and (2.10) are implied by (2.2).

We have also by induction, using (2.2),

$$
\begin{equation*}
C_{n-k, k}^{(n)}=\binom{n}{k} x^{k} y^{n-k} \quad(0 \leqslant k \leqslant n) \tag{2.11}
\end{equation*}
$$

3. The Polynomials $F_{r, s}^{(n)}(x, y)$

We define the polynomial $F_{r, s}^{(n)}(x, y)$ and the coefficients $f_{j}^{(n)}(r, s)$ by means of

$$
\begin{align*}
F_{r, s}^{(n)}(x, y) & \equiv\left(x D_{y}+y D_{x}\right)^{n} x^{r} y^{s} \tag{3.1}\\
& =\sum_{j=0}^{n} f_{j}^{(n)}(r, s) x^{r+n-2 j} y^{s-n+2 j}
\end{align*}
$$

That the extreme right member has the stated appearance follows by induction. Moreover we get the recurrence

$$
\begin{equation*}
f_{j}^{(n+1)}(r, s)=(s-n+2 j) f_{j}^{(n)}(r, s)+(r+n-2 j+2) f_{j-1}^{(n)}(r, s) \tag{3.2}
\end{equation*}
$$

Also, taking

$$
\left(x D_{y}+y D_{x}\right)^{n+1}=\left(x D_{y}+y D_{x}\right)^{n}\left(x D_{y}+y D_{x}\right)
$$

we get

$$
\begin{equation*}
f_{j}^{(n+1)}(r, s)=s f_{j}^{(n)}(r+1, s-1)+r f_{j-1}^{(n)}(r-1, s+1) \tag{3.3}
\end{equation*}
$$

The first few values of $f_{j}^{(n)}(r, s)$, with r, s fixed, follow.

$f_{j}^{(n)}(r, s):$| n | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | | | |
| 1 | s | r | | |
| 2 | $s(s-1)$ | $2 r s+r+s$ | $r(r-1)$ | |
| 3 | $s(s-1)(s-2)$ | $s(3 r s+3 s-2)$ | $r(3 r s+3 r-2)$ | $r(r-1)(r-2)$ |

Clearly $f_{j}^{(n)}(r, s)$ is a polynomial of degree n in r, s with rational coefficients and

$$
\begin{equation*}
f_{n-j}^{(n)}(r, s)=f_{j}^{(n)}(s, r) \quad(0 \leqslant j \leqslant n) \tag{3.4}
\end{equation*}
$$

Also it follows from (3.3) that

$$
\begin{align*}
& f_{0}^{(n)}(r, s)=s(s-1) \cdots(s-n+1) \tag{3.5}\\
& f_{n}^{(n)}(r, s)=r(r-1) \cdots(r-n+1)
\end{align*}
$$

In the next place, by (3.3),

$$
\sum_{j=0}^{n+1} f_{j}^{(n+1)}(r, s)=s \sum_{j=0}^{n} f_{j}^{(n)}(r+1, s-1)+r \sum_{j=0}^{n} f_{j}^{(r)}(r-1, s+1)
$$

Since

$$
f_{0}^{(1)}(r, s)+f_{1}^{(1)}(r, s)=r+s
$$

we get

$$
\begin{equation*}
F_{r, s}^{(n)}(1,1)=\sum_{j=0}^{n} f_{j}^{(n)}(r, s)=(r+s)^{n} \quad(n=0,1,2, \ldots) \tag{3.6}
\end{equation*}
$$

By (3.1) and (3.3), we have

$$
F_{r, s}^{(n+1)}(x, y)=\sum_{j=0}^{n}\left\{s f_{j}^{(n)}(r+1, s-1)+r f_{j-1}^{(n)}(r-1, s+1)\right\} x^{r+n+1-2 j} y^{s-n-1-2 j},
$$

which yields

$$
\begin{equation*}
F_{r, s}^{(n+1)}(x, y)=s F_{r+1, s-1}^{(n)}(x, y)+r F_{r-1, s+1}^{(n)}(x, y) \tag{3.7}
\end{equation*}
$$

Iteration of (3.7) gives

$$
\begin{aligned}
F_{r, s}^{(n+2)}(x, y)= & s(s-1) F_{r+2, s-2}^{(n)}(x, y)+(2 r s+r+s) F_{r, s}^{(n)}(x, y) \\
& +r(r-1) F_{r-2, s+2}^{(n)}(x, y) \\
F_{r, s}^{(n+3)}(x, y)== & s(s-1)(s-2) F_{r+3, s-3}^{(n)}(x, y)+s(3 r s+3 s-2) F_{r+1, s-1}^{(n)}(x, y) \\
& +r(3 r s+3 r-2) F_{r-1, s+1}^{(n)}(x, y)+r(r-1)(r-2) F_{r-3, s+3}^{(n)}(x, y) .
\end{aligned}
$$

These results suggest that

$$
\begin{equation*}
F_{r, s}^{(m+n)}(x, y)=\sum_{j=0}^{m} f_{j}^{(m)}(r, s) F_{r+m-2 j, s-m+2 j}^{(n)}(x, y) \tag{3.8}
\end{equation*}
$$

The proof of (3.8) is by induction on m and will be omitted.

A formula equivalent to (3.8) is

$$
\begin{equation*}
f_{k}^{(m+n)}(r, s)=\sum_{j=0}^{n} f_{j}^{(m)}(r, s) f_{k-j}^{(n)}(r+m-2 j, s-m+2 j) \tag{3.9}
\end{equation*}
$$

It follows from (2.1) and (3.1) that

$$
\begin{equation*}
F_{r, s}^{(n)}(x, y)=\sum_{j+k \leqslant n} C_{j, k}^{(n)}(x, y) \frac{r!}{(r-j)!} \frac{s!}{(s-k)!} x^{r-j} y^{s-k} \tag{3.10}
\end{equation*}
$$

Multiply both sides of (3.10) by

$$
(-1)^{p+q-r-s}\binom{p}{r}\binom{q}{s} x^{p-r} y^{q-s}
$$

and sum over r, s. Since

$$
\begin{aligned}
& \sum_{r=0}^{p} \sum_{s=0}^{q}(-1)^{p+q-r-s}\binom{p}{r}\binom{q}{s} x^{p-r} y^{q-s} \cdot \sum_{j+k \leqslant n} j!k!\binom{r}{j}\binom{s}{k} C_{j, k}^{(n)}(x, y) x^{r-j} y^{s-k} \\
& \quad=\sum_{j=0}^{p} \sum_{k=0}^{q} j!k!x^{p-j} y^{q-k} C_{j . k}^{(n)}(x, y) \cdot \sum_{r=j}^{p}(-1)^{p-r}\binom{p}{r}\binom{r}{j} \sum_{s=k}^{q}(-1)^{q-s}\binom{q}{s}\binom{s}{k} \\
& \quad=p!q!C_{p, a}^{(n)}(x, y)
\end{aligned}
$$

it follows that

$$
\begin{equation*}
p!q!C_{p, q}^{(n)}(x, y)=\sum_{r=0}^{p} \sum_{s=0}^{q}(-1)^{p+q-r-s}\binom{p}{r}\binom{q}{s} x^{p-r} y^{q-s} F_{r, s}^{(n)}(x, y) \tag{3.11}
\end{equation*}
$$

In particular, for $y=x$, we get using (3.6),

$$
p!q!C_{p, q}^{(n)}(x, x)=\sum_{r=0}^{y} \sum_{s=0}^{\sigma}(-1)^{p+q-r-s}\binom{p}{r}\binom{q}{s}(r+s)^{n} x^{p+q} .
$$

Since

$$
\sum_{r+s=k}\binom{p}{r}\binom{q}{s}=\binom{p+q}{k}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k} k^{n}=m!S(n, m) \tag{3.12}
\end{equation*}
$$

where $S(n, m)$ is a Stirling number of the second kind, we get

$$
\begin{equation*}
C_{p, q}^{(n)}(x, x)=\binom{p+q}{p} S(n, p+q) x^{p+q} \tag{3.13}
\end{equation*}
$$

Since $C_{p, q}^{(n)}(x, y)$ is homogeneous of degree $p+q$ in x, y, we may put

$$
\begin{equation*}
C_{p, q}^{(n)}(x, y)=\sum_{k=0}^{p+q} c_{k}(n, p, q) x^{p+q-k} y^{k}, \tag{3.14}
\end{equation*}
$$

where the $c_{k}(n, p, q)$ are nonnegative integers. Thus by (3.11) and (3.14), we get $p!q!c_{q-n+2 j}(n, p, q)=\sum_{r=0}^{p} \sum_{s=0}^{a}(-1)^{p+q-r-s}\binom{p}{r}\binom{q}{s} f_{j}^{(n)}(r, s) \quad(0 \leqslant j \leqslant n)$.

An equivalent result is

$$
\begin{equation*}
f_{j}^{(n)}(p, q)=\sum_{r=0}^{p} \sum_{s=0}^{q} r!s!\binom{p}{r}\binom{q}{s} c_{s-n+2 j}(n, r, s) \quad(0 \leqslant j \leqslant n) . \tag{3.16}
\end{equation*}
$$

4. Evaluation of $C_{j, k}^{(\mu)}(x, y)$

Consider functions $F=F(x, y)$ such that

$$
\begin{equation*}
\left(x D_{y}+y D_{x}\right) F=F \tag{4.I}
\end{equation*}
$$

'The general solution of this differential equation is given by

$$
\begin{equation*}
F=(x+y) \phi\left(x^{2}-y^{2}\right) \tag{4.2}
\end{equation*}
$$

where $\phi(z)$ is an arbitrary function of z. More generally, the general solution of

$$
\begin{equation*}
\left(x D_{y}+y D x\right) F-\lambda F \tag{4.3}
\end{equation*}
$$

where λ is constant, is given by

$$
\begin{equation*}
F-(x+y)^{\lambda} \phi\left(x^{2}-y^{2}\right) \tag{4.4}
\end{equation*}
$$

where again ϕ is arbitrary.
We first take

$$
\begin{equation*}
F=(x+y)^{p} \quad(p=0,1,2, \ldots) \tag{4.5}
\end{equation*}
$$

Since

$$
\left(x D_{y}+y D_{x}\right)(x+y)^{p}=p(x+y)^{u}
$$

it follows that

$$
\begin{equation*}
\left(x D_{y}+y D_{x}\right)^{n}(x+y)^{\prime}=p^{n}(x+y)^{p} . \tag{4.6}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\sum_{j+k \leqslant n} C_{j, k}^{(n)} D_{x}^{j} D_{y}^{k}(x+y)^{p} & =\sum_{j+k \leqslant n} C_{j, k}^{(n)} \frac{p!}{(p-j-k)!}(x+y)^{p-j \cdots k} \\
& =\sum_{m=0}^{p} \frac{p!}{(p-m)!}(x+y)^{y-m} \sum_{j+k=m} C_{j, k}^{(n)}
\end{aligned}
$$

so that

$$
\begin{equation*}
p^{n}(x+y)^{p}=\sum_{m=0}^{p} \frac{p!}{(p-m)!}(x+y)^{p-m} \sum_{j+k=m} C_{j, k}^{(n)} \tag{4.7}
\end{equation*}
$$

Multiplying both sides of (4.7) by

$$
(-1)^{r-p}\binom{r}{p}(x+y)^{r-p}
$$

and summing over p, we get, after a little manipulation,

$$
\begin{equation*}
\sum_{j+k=r} C_{j, k}^{(n)}(x, y)=(x+y)^{r} S(n, r) \tag{4.8}
\end{equation*}
$$

where, as in (3.13), $S(n, r)$ is a Stirling number of the second kind.
To improve this result we take

$$
\begin{equation*}
F=(x+y)^{p}(x-y)^{q}, \tag{4.9}
\end{equation*}
$$

where p, q are nonnegative integers. It is easily verified that

$$
\begin{equation*}
\left(X D_{y}+y D_{x}\right)^{n}(x+y)^{p}(x-y)^{q}=(p-q)^{n}(x+y)^{p}(x-y)^{q} . \tag{4.10}
\end{equation*}
$$

Also

$$
\begin{aligned}
& D_{x}{ }^{j} D_{y}^{k}(x+y)^{y}(x-y)^{q} \\
& =D_{x}^{j} \sum_{b=0}^{k}(-1)^{b}\binom{k}{b} \frac{p!}{(p-k+b)!} \frac{q!}{(q-b)!}(x+y)^{p-k+b}(x-y)^{q-b} \\
& =\sum_{b=0}^{k}(-1)^{b}\binom{k}{b} \frac{p!}{(p-k+b)!} \frac{q!}{(q-b)!} \\
& \quad \cdot \sum_{a=0}^{j}\binom{j}{a} \frac{(p-k+b)!}{(p-j-k+a+b)!} \frac{(q-b)!}{(q-a-b)!}(x+y)^{p-j-k+a+b}(x-y)^{q-a-b} .
\end{aligned}
$$

It follows that

$$
\begin{align*}
&(p-q)^{n}(x+y)^{p}(x-y)^{q} \\
&= \sum_{j+k \leqslant n} C_{j, k}^{(n)}(x, y) \sum_{a=0}^{j} \sum_{b=0}^{k}(-1)^{b}\binom{j}{a}\binom{k}{b} \\
& \cdot \frac{p!}{(p-j-k+a+b)!} \frac{q!}{(q-a-b)!}(x+y)^{p-j-k+a+b}(x-y)^{q-a-b} . \tag{4.11}
\end{align*}
$$

Let

$$
\begin{equation*}
a_{m}(j, k)=\sum_{a+b=m}(-1)^{b}\binom{j}{a}\binom{k}{b}, \tag{4.12}
\end{equation*}
$$

so that (4.11) becomes

$$
\begin{align*}
&(p-q)^{n}(x+y)^{p}(x-y)^{q} \\
&= \sum_{j+k \leqslant n} C_{j, k}^{(n)}(x, y) \sum_{m \leqslant j+k} \frac{p!}{(p-j-k+m)!} \frac{q!}{(q-m)!} a_{m}(j, k) \tag{4.13}\\
& \cdot(x+y)^{p-j-k+m}(x-y)^{q-m} .
\end{align*}
$$

Now multiply both sides of (4.13) by

$$
(-1)^{r+s-p-q}\binom{r}{p}\binom{s}{q}(x+y)^{r-p}(x-y)^{s-q}
$$

and sum over p, q. We get

$$
\begin{align*}
& \sum_{p, q}(-1)^{r+s-q}\binom{r}{p}\binom{s}{q}(x+y)^{r-p}(x-y)^{s-q} \\
& \quad \cdot \sum_{j+k \leqslant n} C_{j, k}^{(n)}(x, y) \sum_{m \leqslant j+k} \frac{p!}{(p-j-k+m)!} \frac{q!}{(q-m)!} a_{m}(j, k) \\
& \cdot(x+y)^{p-j-k+m}(x-y)^{\alpha-m} \\
& =\sum_{j+k \leqslant n} C_{j, k}^{(n)}(x, y) \sum_{m \leqslant j+k}(j+k-m)!m!a_{m}(j, k) \\
& \quad \cdot(x+y)^{r-j-k+m}(x-y)^{3-m} \sum_{p}(-1)^{r-p}\binom{r}{p}\binom{p}{j+k-m} \sum_{q}(-1)^{s-q}\binom{s}{q}\binom{q}{m} . \tag{4.14}
\end{align*}
$$

The inner sums on the extreme right vanish unless $j+k-m=r$ and $s=m$. Thus the right side of (4.14) reduces to

$$
r!s!\sum_{j+k=r+s} a_{s}(j, k) C_{j, k}^{(n)}(x, y)
$$

and therefore

$$
\begin{gather*}
\sum_{p=0}^{r} \sum_{q=0}^{s}(-1)^{r+s-p-q}\binom{r}{p}\binom{s}{q}(p-q)^{n}(x+y)^{r}(x-y)^{s} \\
==r!s!\sum_{j+k=r+s} a_{s}(j, k) C_{j, k}^{(n)}(x, y) . \tag{4.15}
\end{gather*}
$$

It follows from (4.12) that

$$
\begin{equation*}
\sum_{s=0}^{p+a} a_{s}(p, q) u^{p+q-s} v^{s}=(u+v)^{p}(u-v)^{q} \tag{4.16}
\end{equation*}
$$

Thus (4.15) yields

$$
\begin{aligned}
& m!\sum_{j+k=m} C_{j, k}^{(n)}(x, y)(u+v)^{j}(u-v)^{k} \\
& \quad=\sum_{r+s=m}\binom{m}{s} u^{r+s-m} v^{m} \sum_{p=0}^{r} \sum_{q=0}^{s}(-1)^{r+s-p-q}(p-q)^{n}(x+y)^{r}(x-y)^{s} \\
& = \\
& \quad \sum_{p+q \leqslant m}(-1)^{m-p-q}(p-q)^{n}(x+y)^{p}(x-)^{q} \\
& \quad \cdot \sum_{r+s=m} \frac{m!}{p!q!(r-p)!(s-q)!}(x+y)^{r-p}(x-y)^{s-q} u^{r} v^{s} \\
& = \\
& \sum_{p+q \leqslant m}(-1)^{m-p-q} \frac{m!}{p!q!(m-p-q)!}(p-q)^{n}(x+y)^{p}(x-y)^{q} u^{q_{v^{q}}} \\
& \quad \cdot \sum_{r+s=m}\binom{m \quad p-q}{s-q}(x+y)^{r-p}(x-y)^{s-q} u^{r-p} v^{s-q} .
\end{aligned}
$$

We have therefore

$$
\begin{align*}
& m!\sum_{j+k=m} C_{j, k}^{(n)}(x, y)(u+v)^{j}(u-v)^{k} \\
& =\sum_{p+q \leqslant m}(-1)^{m-p-q} \frac{m!}{p!q!(m-p-q)!}(p-q)^{n}(x+y)^{p}(x-y)^{q} p^{p^{p} q} \\
& \quad \cdot((x+y) u+(x-y) v)^{m-p-q} \tag{4.17}
\end{align*}
$$

We now put

$$
\bar{u}=u+v, \quad \bar{v}=u-v,
$$

so that

$$
u=\frac{1}{2}(\bar{u}+\bar{v}), \quad v=\frac{1}{2}(\bar{u}-\bar{v}) .
$$

Then (4.17) becomes (after dropping bars)

$$
\begin{align*}
& m!\sum_{j+k=m} C_{j, k}^{(n)}(x, y) u^{j} v^{k} \\
& \quad=\sum_{p+q \leqslant m}(-1)^{m-p-q} \frac{m!}{(m-p-q)!}(p-q)^{n}(x+y)^{p}(x-y)^{q} \tag{4.18}\\
& \quad \cdot 2^{-p-q}(u+v)^{p}(u-v)^{q}(x u+y v)^{m-p-q}
\end{align*}
$$

Comparing coefficients of $u^{j} \mathcal{V}^{k}$ on both sides of (4.18), we get the explicit formula

$$
\begin{align*}
& m!C_{m-k, k}^{(n)}(x, y) \\
& =\sum_{p+a \leqslant m}(--1)^{m-p-q} \frac{m!}{p!q!(m-p-q)!}(p-q)^{n}(x+y)^{p}(x-y)^{q} \tag{4.19}\\
& \quad \cdot 2^{-p-q} \sum_{t=0}^{k}\binom{m-p-q}{t} a_{k-i}(p, q) x^{m-p-q-t} y^{t} .
\end{align*}
$$

5. Generating Functions

In first defining $C_{j, k}^{(n)}(x, y)$ we have $j+k \leqslant n$. We now change our point of view and define $C_{j, k}^{(n)}(x, y)$ by means of (4.18). It will soon be apparent, with this definition, that

$$
\begin{equation*}
C_{j, k}^{(n)}(x, y)=0 \quad(j+k>n) \tag{5.1}
\end{equation*}
$$

so that the new definition is in fact in agreement with the old.
It follows from (4.18) that

$$
\begin{aligned}
& m!\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \sum_{j+k=m} C_{j, k}^{(n)}(x, y) u^{j} v^{k} \\
& =\sum_{p+q \leqslant m}(-1)^{m-p-q} \frac{m!}{p!q!(m-p-q)!} e^{(p-q) z}(x+y)^{p}(x-y)^{q} \\
& \cdot 2^{-p-q}(u+v)^{p}(u-v)^{q}(x u+y v)^{m-p-q} \\
& =\left\{e^{z}(x+y) \frac{u+v}{2}+e^{-z}(x-y) \frac{u-z}{2}-x u-y v\right\}^{m} \\
& =\left\{u\left[\frac{1}{2} x\left(e^{z}+e^{-z}\right)+y\left(e^{z}-e^{-z}\right)-x\right]+v\left[\frac{1}{2} x\left(e^{z}-e^{-z}\right)+y\left(e^{z}+e^{-z}-y\right)\right]\right\}^{m} .
\end{aligned}
$$

We have therefore

$$
\begin{align*}
\sum_{n=0}^{\infty} & \frac{z^{n}}{n!} \sum_{j+k=m} C_{j, k}^{(n)}(x, y) u^{j} v^{k} \\
& =\frac{1}{m!}\{u[x(\cosh z-1)+y \sinh z]+v[x \sinh z+y(\cosh z-1)]\}^{m} \tag{5.2}
\end{align*}
$$

The expansion of the right hand side of (5.2) begins with the term $(y u+x v)^{m} / m!$, which evidently implies (5.1). Hence, as remarked above, the two definitions of $C_{j, k}^{(n)}(x, y)$ are equivalent.

Summing over m, (5.2) gives

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{z^{n}}{n!} \sum_{j, k=0}^{\infty} C_{j, k}^{(n)}(x, y) u^{j} v^{k} \\
& \quad=\exp \{u[x(\cosh z-1)+y \sinh z]+v[y(\cosh z-1)+x \sinh z]\} \tag{5.3}
\end{align*}
$$

Thus we have obtained a generating function for $C_{j, k}^{(n)}(x, y)$.
If we take $u==v=1$ in (5.2), we get

$$
\begin{aligned}
\sum_{n=0} \frac{z^{n}}{n!} \sum_{j+k=m} C_{j, k}^{(n)}(x, y) & =\frac{1}{m!}\{(x+y)(\cosh z-1+\sinh z)\}^{m} \\
& =\frac{1}{m!}(x+y)^{m}\left(e^{x}-1\right)^{m}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\sum_{j+k=m} C_{j, h}^{(n)}(x, y)=(x+y)^{m} S(n, m) \tag{5.4}
\end{equation*}
$$

in agreement with (4.8).
For $u=1, v=-1$, (5.2) reduces to

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{z^{n}}{n!} \sum_{j+k=m}(-1)^{n} C_{j, k}^{(n)}(x, y) \\
& \quad=\frac{1}{m!}\{x(\cosh z-1-\sinh z)+y(\sinh z-\cosh z+1)\}^{m} \\
& \quad=\frac{1}{m!}(x-y)^{m}\left(e^{-z}-1\right)^{m}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\sum_{j+k=m}(-1)^{k} C_{j . k}^{(n)}(x, y)=(-1)^{n}(x-y)^{m} S(n, m) \tag{5.5}
\end{equation*}
$$

For $u=1, v=0$ and $u=0, v=1$, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{z^{n}}{n!} C_{m, 0}^{(n)}(x, y)=\frac{1}{m!}\{x(\cosh z-1)+y \sinh z\}^{m} \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{z^{n}}{n!} C_{0, m}^{(n)}(x, y)=\frac{1}{m!}\{y(\cosh z-1)+x \sinh z\}^{m} \tag{5.7}
\end{equation*}
$$

respectively. It accordingly follows that

$$
\begin{align*}
\sum_{n=0}^{\infty} \frac{z^{n}}{n!} C_{j, k}^{(n)}(x, y) & =\sum_{r=0}^{\infty} \frac{z^{r}}{r!} C_{j, 0}^{(r)}(x, y) \sum_{s=0}^{\infty} \frac{z^{s}}{s!} C_{\mathbf{n}, k}^{(s)}(x, y) \\
& =\sum_{r=0}^{\infty} \frac{z^{r}}{r!} C_{j, 0}^{(r)}(x, y) \sum_{s=0}^{\infty} \frac{z^{s}}{s!} C_{k, 0}^{(s)}(y, x) . \tag{5.8}
\end{align*}
$$

Hence

$$
\begin{align*}
C_{p, q}^{(n)}(x, y) & =\sum_{r+s=n}\binom{n}{r} C_{p, 0}^{(r)}(x, y) C_{0, q}^{(s)}(x, y) \\
& =\sum_{r+s=n}\binom{n}{r} C_{p, 0}^{(r)}(x, y) C_{q, 0}^{(s)}(y, x) . \tag{5.9}
\end{align*}
$$

In terms of the $c_{k}(n, p, q)$ defined by

$$
\mathrm{C}_{p, 2}^{(n)}(x, y)=\sum_{k=0}^{p+q} c_{k}(n, p, q) x^{n+q-k} y^{k},
$$

(5.9) gives

$$
\begin{equation*}
c_{k}(n, p, q)=\sum_{\substack{a+h=k \\ r+s=k}}\binom{n}{r} c_{k}(r, p, 0) c_{b}(s, 0, q) . \tag{5.10}
\end{equation*}
$$

Turning next to the polynomial

$$
F_{r, s}^{(n)}(x, y)=\sum_{j=0}^{n} f_{j}^{(n)}(r, s) x^{r+n-2 j} y^{s-n+2 j}
$$

we recall that, by (3.10),

$$
F_{r, s}^{(n)}(x, y)=\sum_{j+k<n} C_{j, k}^{(n)}(x, y) \frac{r!}{(r-j)!} \frac{s!}{(s-k)!} x^{r-j} y^{s-k} .
$$

Thus we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} & \frac{z^{r}}{n!} \sum_{r, s=0}^{\infty} F_{r, s}^{(n)}(x, y) \frac{u^{r} v^{a}}{r!s!} \\
& =\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \sum_{j+k \leqslant n} C_{j, k}^{(n)}(x, y) \sum_{r, s=0}^{\infty} \frac{x^{r-j} y^{s-k}}{(r-j)(s-k)!} u^{r} v^{s} \\
& =\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \sum_{j+b \xi^{n}} C_{j, k}^{(n)}(x, y) u^{i} v^{k} \sum_{r, s=0}^{\infty} \frac{(x u)^{r}(y w)^{n}}{r!s!}
\end{aligned}
$$

Hence, by (5.3),

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{z^{n}}{n!} \sum_{r, s=0}^{\infty} F_{r, s}^{(n)}(x, y) \frac{u^{r} v^{s}}{r!s!} \\
& \quad=\exp \{u(x \cosh z+y \sinh z)+v(y \cosh z+\sinh z)\} \tag{5.11}
\end{align*}
$$

In particular we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{z^{n}}{n!} \sum_{r=0}^{\infty} F_{r, 0}^{(n)}(x, y) \frac{u^{r}}{r!}=\exp \{u(x \cosh z+y \sinh z)\} \tag{5.12}\\
& \sum_{n=0}^{\infty} \frac{z^{n}}{n!} \sum_{s=0}^{\infty} F_{0, s}^{(n)}(x, y) \frac{v^{s}}{s!}=\exp \{v(y \cosh z+x \sinh z)\} \tag{5.13}
\end{align*}
$$

It therefore follows from (5.11), (5.12) and (5.13) that

$$
\begin{equation*}
F_{r, s}^{(n)}(x, y)=\sum_{j+k=n}\binom{n}{k} F_{r, 0}^{(j)}(x, y) F_{0,8}^{(k)}(x, y) \tag{5.14}
\end{equation*}
$$

Moreover we have

$$
\begin{align*}
& F_{r .0}^{(n)}(x, y)=2^{-r} \sum_{j=0}^{r}\binom{r}{j}(r-2 j)^{n}(x+y)^{r-j}(x-y)^{j} \tag{5.15}\\
& F_{0 . s}^{(n)}(x, y)=2^{-s} \sum_{k=0}^{s}(-1)^{k}\binom{s}{k}(s-2 k)^{n}(x+y)^{s-k}(x-y)^{k} \tag{5.16}
\end{align*}
$$

and

$$
\begin{equation*}
F_{r, s}^{(n)}(x, y)=2^{-r-s} \sum_{j+k=r+s} \frac{r!s!}{j!k!}(j-k)^{n} a_{s}(j, k)(x+y)^{j}(x-y)^{n} \tag{5.17}
\end{equation*}
$$

where

$$
(u+v)^{j}(u-v)^{k}=\sum_{s=0}^{j+k} a_{s}(j, k) u^{j+k-s} v^{s}
$$

It follows from (5.14) that

$$
\begin{equation*}
f_{k}^{(n)}(p, q)=\sum_{\substack{a+k=k \\ r+s=n}}\binom{n}{r} f_{a}^{(r)}(p, 0) f_{b}^{(s)}(0, q) \tag{5.18}
\end{equation*}
$$

This result may be compared with (5.10).

6. Combinatorial Interpretation

Put

$$
\begin{equation*}
\exp \{x(\cosh z-1)+y \sinh z\}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \sum_{j, k} A(n, j, k) x^{j} y^{k} \tag{6.1}
\end{equation*}
$$

Then $A(n, j, k)$ is equal to the number of partitions of the set $z_{n}=\{1,2, \ldots, n\}$ into $j+k$ non-vacuous blocks of which j are of even cardinality and k of odd cardinality. The enumerant $A(n, j, k)$ is discussed in some detail in [2]; see also [5, Chap. 4].

It follows from (6.1) that

$$
\frac{1}{m!}\{x(\cosh z-1)+y \sinh z\}^{m}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \sum_{j+k=n!} A(n, j, k) x^{j} y^{k} .
$$

On the other hand, by (5.6),

$$
\frac{1}{m!}\{x(\cosh z-1)+y \sinh z\}^{m}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} C_{m, 0}^{(n)}(x, y)
$$

Hence we have

$$
\begin{equation*}
C_{m, 0}^{(n)}(x, y)=\sum_{j_{1}=m} A(n, j, k) x^{j} y^{k} \tag{6.2}
\end{equation*}
$$

Since

$$
C_{m, 0}^{(n)}(x, y)=\sum_{k=0}^{m} c_{k}(n, m, 0) x^{m-k} y^{k},
$$

it follows that

$$
\begin{equation*}
c_{k}(n, j+k, 0)=A(n, j, k) \tag{6.3}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
c_{k}(n, 0, j+k)=A(n, k, j) \tag{6.4}
\end{equation*}
$$

Thus we have simple combinatorial interpretations of $c_{k}(n, m, 0)$ and $c_{k}(n, 0, m)$.

By (5.10), (6.3) and (6.4) we have

$$
\begin{equation*}
c_{k}(n, p, q)=\sum_{\substack{a+k=k \\ r+b=n}}\binom{n}{r} A(r, p-a, a) A(s, b, q-b) \tag{6.5}
\end{equation*}
$$

We can also express $f_{k}^{(n)}(r, s)$ in terms of $A(n, p, q)$. We find that

$$
\begin{equation*}
f_{j}^{(n)}(r, 0)=\sum_{t} \frac{r!}{(r-t)!} A(n, n-2 j+t,-n+2 j) \tag{6.6}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{j}^{(n)}(0, s)=\sum_{t} \frac{s!}{(s-t)!} A(n, n-2 j,-n+2 j+t) \tag{6.7}
\end{equation*}
$$

Applying (5.18) we can then evaluate $f_{k}^{(n)}(r, s)$.
A simpler interpretation of $f_{j}^{(n)}(r, 0)$ and $f_{j}^{(n)}(0, s)$ will now be obtained. Put

$$
\begin{equation*}
\exp (x \cosh z+y \sinh z)=\sum_{n=0}^{\infty} \frac{z_{n}}{n!} \sum_{j, k} \bar{D}(n, j, k) \frac{x_{j} y^{k}}{j!k!} \tag{6.8}
\end{equation*}
$$

Then $\bar{D}(n, j, k)$ is the number of ways of putting n numbered objects into $r+s$ numbered boxes so that each of the first r boxes contains an even number of objects and each of the remaining s boxes contains an odd number of objects. (For a detailed discussion of similar enumerants see [3, Vol. I; 5, Chap. 5].)

We now define $D(n, r, s)$ as the number of ways of putting n numbered objects into $r+s$ numbered boxes so that each of any r boxes contains an even number of objects while each of remaining s boxes contains an odd number of objects. It follows at once that

$$
\begin{equation*}
D(n, r, s)=\binom{r+s}{r} \bar{D}(n, r, s) \tag{6.9}
\end{equation*}
$$

By (5.11) we have

$$
\frac{1}{m!}(x \cosh z+y \sinh z)^{m}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} F_{m, 0}^{(n)}(x, y)
$$

and

$$
\frac{1}{m!}(y \cosh z+x \sinh z)^{m}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} F_{0, m}^{(n)}(x, y)
$$

Hence, by comparison with (6.8), we get

$$
\begin{equation*}
\frac{1}{m!} F_{m, 0}^{(n)}(x, y)=\sum_{j, k} \bar{D}(n, j, k) \frac{x^{j} y^{k}}{j!k!} \tag{6.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{m!} F_{0, m}^{(n)}(x, y)=\sum_{j, k} \bar{D}(n, k, j) \frac{x^{j} y^{k}}{j!k!} . \tag{6.11}
\end{equation*}
$$

Since

$$
F_{m .0}^{(n)}(x, y)=\sum f_{k}^{(n)}(m, 0) x^{m+n-2 k} y^{-n+2 k}
$$

it follows that

$$
f_{k}^{(n)}(m, 0)=\binom{m}{2 k-n} \bar{D}(n, m+n-2 k, 2 k-n) .
$$

In view of (6.9), this gives

$$
\begin{equation*}
f_{k}^{(n)}(m, 0)=D(n, m+n-2 k, 2 k-n) \tag{6.12}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
f_{k}^{(n)}(0, m)=D(n, n-2 k, m-n+2 k) \tag{6.13}
\end{equation*}
$$

Finally, by (5.18),

$$
\begin{equation*}
f_{k}^{(n)}(p, q)=\sum_{\substack{a+k=k \\ r+s=n}}\binom{n}{r} D(r, p+r-2 a, 2 a-p) D(s, s-2 b, q-s+2 b) \tag{6.14}
\end{equation*}
$$

References

1. W. A. Al-Salam and M. E. H. Ismall, Some operational formulas, J. Math. Anal. Appl. 51 (1975), 208-218.
2. L. Carlitz, Set partitions, Fibonacci Quart. 14 (1976), 327-342.
3. P. A. M. MacMahon, "Combinatorial Analysis," Vol. 1, Cambridge Univ. Press, Cambridge, 1915.
4. N. Niflsen, Traité élémentaire des Nombres de Bernoulli, Gauthier-Villars, Paris 1923.
5. J. Riordan, "An Introduction to Combinatorial Analysis," Wiley, New York, 1958.

[^0]: * Supported in part by NSF Grant GP-37924X.

