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1. INTRODUCTION

We consider the expansion of the operator

@D, 5Dy = ¥ C®,3) DD} (n=0,1,2..). (L)

) &
jtkgn

where

It is evident from (1.1) that C{"}(x, ¥) is a polynomial in x, y with nonnegative
integral coefficients. Moreover, replacing x, y by Ax, Ay, where X is an arbitrary
constant, we infer that C{")(x, y) is a homogeneous polynomial of degree j - k.

Also it is evident that
CO@y) =1, Cox) =0 (n>0) (1.2)

and
Cinx, ) = C(3, %) (1.3)

Generalizing (1.1), we take

(axD, +byDy» == ¥ C%(x,v|a,b) DD, (1.4)

JHkgn

where a, b are constants. Replacing x, y by Ax, uy, where A, u are constants,
(1.4) becomes

(@D, + B\ YuyD ) = Y C(x, py | @, b) XD D F. (1.5)

J+kgn
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582 L. CARLITZ

Since the left-hand side of (1.5) is equal to

Y C(x, | au, b ) DD,

j+kgn

it follows that
Cin(Ax, py | a, b) = Np*C(x, y | adp=?, bA~p). (1.6)
In particular, if we take A2 = &, u? = a, (1.6) becomes
CW0x, wy | a,b) = alPRBLBC(x, | (ab)2, (ab)V/2)
= gl/2mpL 2D O (x, g | 1, 1) (1.7)
I b b .
— a1/2‘k+”)b1/2‘f+”’Cf’;c’(x y)
A
Thus there is no real loss in generality in restricting the discussion to the case

a=b=1
In the next place put

(ny +wa)n xrys — z fj(n)(r, S) x'r+n—2jys—n+2i' (18)
=0

As we shall see below, the coefficients f{"(r, s) are polynomials in 7, 5; indeed if »
and s are nonnegative integers then the f{")(r, s) are also non-negative integers.
We define the polynomial F{")(x, y) by means of
n
Fos,3) = 3 S0, ) arsn-tiysnss (19)

=0

The polynomials C{")(x, y) and F{")(x, y) are closely related. Indeed

» q
g 3) = 3 3 (—1yrrers (B) (Y wrrye (s, ) (110)

r=0 8=0 §
and
» q
Fowmn =3 3 (7) (§) ey ). (1.11)

The relations (1.10), (1.11) are equivalent to
D q
P9y im0 =3 3 (1 (B) (D) pmr ) (112)
7=0 8=0

and

0= EE O (memsnr

r=0 $=0
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where the coefficients ¢,(x, p, g) are defined by
(n) . sy p+a—k 'k 1 14
Cpo®,y) = z cln, p q) % y- (1.14)

=0

We shall show that the polynomials C{")(x, ), F{")(x, ¥) satisfy the generating
relations

1

> 5T G, y) wok = exp{(au + o) (cosh s — 1) + (5o - yusinh =)
n=0 """ jtkgn (115)
and

Y %:—1 Y Fi")(x, y) = exp{(xu + yv) cosh z - (¥0 + yu) sinh 2}, (1.16)

n=0 """ r,5=0

respectively.

The generating functions (1.15), (1.16) imply the following combinatorial
results. Let A(n, j, k) denote the number of partitions of the set 2, = {1, 2,..., n}
into j -- £ nonempty blocks of which j have even cardinality and & have odd
cardinality, Then we have

cln, j+ &, 0) = An, j, k), (n, 0,7 -+ k) = A(n, k, ). (117
Moreover

mpg) = Y (’r‘) A(r, p — a,a) A(s, b, g — ). (1.18)

a+hr=Fk
r4+3=n
Next let D(n, 7, 5) denote the number of ways of putting » numbered objecs
into » 4 s numbered boxes so that each of any r boxes contains an even number
of objects while each of the remaining s boxes contains an odd number of
objects; 1t is to be understood that all selections of the first  boxes are counted.
Then we have

fP0,0) = D(n, 7 + n — 2, 2f —n), £(0,s) = D(n, n — 2j, s — n +2§)
(1.19)

and

o5 = ¥ (Z) Dia,r -+ a— 2,2 — a)D(b, b — 2j,s — b + 2j). (1.20)
ik
A number of related questions are suggested by (1.1). For example it would
be of interest to determine the coefficients B, (%, y) in the expansion

(axE, + byEy" — Y BW(x, y) EJE F, (1.21)

Jtkgn
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where the operators E,,, E, are defined by

Ezf(x’y) =f(x + l’y)’ Euf(x’y) =f(x:y +1).

Similar questions can be posed for other families of linear operators. Also one
may seek the operators L, , L, such that

(&L, + L) = 3 CRixy)LLY, (1.22)
itkgn

where the C{")(x, y) are the same as the coefficients in (1.1). This question was
suggested by a recent paper by Al-Salam and Ismail [1] concerning the opera-

tional formula
= my nl
ACYy = —C(C—1)(C—Ek+1)4r,
(Ay = 3 () 57 €€ =1 ( )

where 4, C are operators satisfying
AC —CA = A. (1.23)

Since the coefficients of C{")(x, y) and F{™)(x, y) are integers it is natural to
look for arithmetic properties. It can for example be shown that, if p is an odd
prime, then

Y C(x, y) w0 = S(n, p) (u?y® + oPx%)  (mod p), (1.24)
r+8=p

where S(n, p) denotes a Stirling number of the second kind.
For F{")(x,y) we have the congruence of Kummer’s type (compare [4,
Ch. 14])

s
Y (— 1P FHe i 5) =0 (mod ), (1.25)
j=0

where p is an arbitrary primeand 2 2> ¢ 2> 1.

We shall however not include the derivation of such results in the present

paper.

2. PRELIMINARIES

As above put
(®D, +yDy* = 3, Ci"(x,y)D/jD/} r=0,1,2,.). 2.1)
J+kgn

As noted, C{") = C{"(x, y) is homogeneous of degree j -+ & in x, y and has non-
negative integral coefficients,
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If we multiply both sides of (2.1) on the left by xD, -+ yD, we get

(*D, +yD y#t = (xD, +yD,) Y C®DJD}*

y+kgn
Z {(D,C™ + CmC ) + (D, C) + CWD N} DD F.
J+k=n
It follows that
Ci? = (3Dy + yDg) O + &C3y + yCi 2.2)

Similarly, multiplying (2.1) on the right by D, -+ yD,,, we get
C = 20l + 90+ G+ D) Clp + R+ D . (23)
Comparison of (2.3) with (2.2) gives
G+ D Gl + (D) Ol = Dy +3D) 7. (2.4)
If we make use of the translation operators E;, E; defined by

B R)=f(G+ LA,  Ef(j, k) =f(j,k+1),
(2.2), (2.3), (2.4) become

Cn? = (¥D, + yD, + *E;* + yEiY) €, (2.5)

OtV = (Bg* + yE* + (j + ) EET + (k + ) EF'E) G 36
*Dy + yD,) C = (7 + 1) EE;* + (k 4 1) E7'Ey) €7, 52.'7)
respectively.

The first few values of C{") can be computed either directly from (2.1) or by
using one of the recurrences. We find that

(xDy + yD,)* = D, + yD, + x*D,% + 2xyD,D, -+ y*D,2,
(xDy + yD,)* = xDy, + yD, + 3xyD,? + 3(x® 4 %) DD, -+ 3xyD,?
+ 28D 2 + 3x*yD,D,2 4 3xy2D 2D, -} ¥3D 3.

These special results suggest that

CM =", P =a" (2.8)
and
C"™ —x  (neven)
—y  (nodd), (2:9)

Cii=y  (neven)
=x (n odd). (2.10)
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Formula (2.8) follows at once from (2.6) while (2.9) and (2.10) are implied by

(2.2).
We have also by induction, using (2.2),

C = (Z) Y (0 <k < n) @2.11)

3. Tue PoLynoMIALs F{")(x, y)
We define the polynomial F{")(x, y) and the coefficients f{™(r,s) by means of

F ;’:’s)(x, ¥) = (D, + yD )" &7y*
(3.1

— i fj(n)(f, S) xr+n—-27'ys—'n+2j'
j=0

That the extreme right member has the stated appearance follows by induction.
Moreover we get the recurrence

£, 5) = (s — 4+ 2070, 8) + ¢ +n— 2 + D s). (3.2)
Also, taking
(D, + yDg)r+t = (2D, + yD,)" (xDy + yDy),
we get
£, 5) = of P + 1,5 — 1) + 1f50 — 1,5 + 1), (3.3)

The first few values of f{™(r, 5), with 7, s fixed, follow.

7, 5| 1 s r

2 ss— 1) 2rs +r+s rir— 1)

3 [s(s — 1) (s — 2){s(37s -+ 3s — 2)r(3rs + 3r —2)r(r — 1) (r — 2)
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Clearly f{™(r, s) is a polynomial of degree 7 in 7, s with rational coefficients and

O, ) = "6 (0 << ) (3.4)
Also it follows from (3.3) that
(n) . - e (e
fO (r’ S) - S(S 1) (S n 1)7 (35)

I, ) =r(r — 1) = (r — n + 1)

In the next place, by (3.3),
n+1 ( ) n ) n )
IR GRS WAL GRS WES VD W A G RO X
j=0 j=0 i=0

Since
(1) (1) —
o (71, 8) H i (rs) =71+,

we get
FO1L 1) =Y f®(r,s) = (r +s  (n=0,1,2,..). (3.6)
j=0
By (3.1) and (3.3), we have
Fi"fl)(ac, y) — z {Sf}_(n)(r 1,5 — ]) + 7‘f7~(_n,)(7 — 1,5 = 1)} xr+n+1—2j:,vs—n—l—2j’
J=0

which yields
FIiw, y) = sED oo ) - TF (%, 9). 3.7
Iteration of (3.7) gives
Finid(x, y) = s(s — ) F iﬁ;"“z(x, ¥) + Q2rs + 7 + ) F®(x, y)

_;. r(r —_ 1)F§ﬁ)2,s+2(x’ y)’

F(x, p) == s(s — 1) (s — 2) F{s oo, 3) + s(Brs = 35 — 2) F 1, 9)
Lr(Brs 4 3r — 2FP, (2 y) £ — 1) (0 — 2 F, alm ).

These results suggest that

Frme, y) = Y £, Y F g omans(%, ). (3.8)

i=0

The proof of (3.8) is by induction on m and will be omitted.

409/62/3-10
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A formula equivalent to (3.8) is
Fe, ) = z £ ) FE + m— 24,5 — m + 24). (3.9)
It follows from (2.1} and (3.1) that

Fiwyn= Y Gy g= ]). sl

J+kgn

s!
AT ariysk, (3.10)
Multiply both sides of (3.10) by
(_ 1):o+q—r—s (f) (q) xPTy—s

§

and sum over 7, s. Since

i i (—1)p+a-r-s (Ir’) (Z) arryes . Y ikl (;) (k) Cim(x, y) ar-iys*

r=0 §=0 jtkgn

=

M
M"‘

- JiRLep=iyakCi )z, 3) - 3. (—1yr (¢ )(;—);Zk(—l)“'s () G

0 r=j

I
o

j=0 %k

= plgICT(x, y),

it follows that

PaC ) = 3 ¥, (=i (B) (D wrrybimiey). (D)

r=0 =0

In particular, for y = x, we get using (3.6),

PlgIC ™ (x, x) = T3 (1 e )(Z) (r + s)» x7+a,

r=0 =0
Since
= O0=0
and

Z (= 1y () kr = miS(n, m), (3.12)
where S(n, m) is a Stirling number of the second kind, we get

cga 5 = (7 j ?) Sn,p + ) 27. (3.13)
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Since C{)(x, y) is homogeneous of degree p + ¢ in x, y, we may put
p+a
Cim®, y) = 2, c(m p, g) xPH71y%, (3.14)

k=0

where the ¢,(n, p, q) are nonnegative integers. Thus by (3.11) and (3.14), we get

P'g e nsai(s pr @) = é };0 (e (2 J(O) 5909 ©<j<n.G19)

An equivalent result is

n[\/je

(p, 9) 2 's'( )() Comam,7,8) (0 j<n).  (3.16)

4. EvALUATION OF C{)(x, v)

Consider functions F = F(x, y) such that
(xD, +yD)F =F. 4.hH
The general solution of this differential equation is given by

F=(x+5)$(x* — 37, (4.2)

where ¢(2) is an arbitrary function of 2. More generally, the general solution of

(xD, 4 yDx) F = AF, (4.3)
where A is constant, is given by
F = (v + ) (s — 1) (44)
where again ¢ is arbitrary.
We first take
F=(x-+9y)? (p=012.) (4.5)

Since
(xDy + yD,) (x + )" = p(x + )",
it follows that
(2D, + yD.)" (x + y)" = p"(x + y)". (4.6)
On the other hand,

!
(n) in k P o.— (n) P oy JEF A
2, DD = b =Y
» P'

G T L O

m=0 (p J+k=m
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so that

PUCE ) U NN SR SO @

m=0 (P - m)' J+k=m

Multiplying both sides of (4.7) by

7
— 1\r—p r—p
(=172 (7) (e +)
and summing over p, we get, after a little manipulation,

Y Cnxy) = (x +y) S(n, 1), (4.8)

Jk=r

where, as in (3.13), S(n, r) is a Stirling number of the second kind.
To improve this result we take

= (*+2)"(x =), (4.9)
where p, ¢ are nonnegative integers. It is easily verified that
(XDy +yD)" (x +9)" (x =)' =(p — @' (x + )" (x —p)*.  (4.10)
Also

DD Hx + y)P (x — y)°

! !
=D Z“”%)@ i+wwiw“+”HM“”W”

k k P! q!
=X () i

Loy (p—k+b) (g — b)! itean s
2()(p_]_k+a THig—a—p T (x — )

It follows that

(p— " (x+ 37 (x— )"

— ¥ ey ¥ () (4

j+kgn a=0 b=0

. P! q! p—i-k+a+b . y)a—a-db
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Let

= Y =17 () (};) , (4.12)

a+b=m

so that (4.11) becomes
(P — g (x ) (x =)

: ! q! .
= Yy C"(x,y) Y, F e (g —m)t a,(j, k) (413)

J+kgn mj+k (P —J]—

. (x 4 y)l?ﬂi'»k#m (x . y)q—m.

Now multiply both sides of (4.13) by

(=yrerea () () (6 2y G — e

LN
and sum over p, ¢. We get

S 1y () (o) Gk e — e

p! q! .
. Cin) Y - - Lk
jgg‘gn Lk(x ))mg‘-m (p—Jj— k 4 m)! (g — m)! “ (] )
. (’C - y)zl~j—k+m (x . y)q—m
= Y Cnxy) Y (j+k—mlmlal(jk)
J+kgn mgi+k
Ax e pY—i-Etm . S—im 1Yy r P o T\s— N /9
(59775 (= 9y L (1) ()2 b T () ().

(4.14)

The inner sums on the extreme right vanish unless j - 2 — m =r and s = m.

Thus the right side of (4.14) reduces to

rist Y afj, k) C(x, )

jek=r+s8
and therefore
r s s g r s e N
Ty e () o=t s
=kt ) el B O ). (4.15)

Jtk=r+s
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It follows from (4.12) that
p+aq

Y alp, ¢) w50 = (u + v)? (u — o). (4.16)

8=0

Thus (4.15) yields

mt Y Cin(x, y) (u + vy (u — o)

Jt+k=m

= Z (:ﬂ) urts—mgm Z Z (_I)H—s—p—q (p _ q)n (x +y)r (x _ y)s

r8=m p=0 ¢=0
= 2 (=t (p—gr (@ +y)Px— )
pHagm

m!
' X + y) P (x — y)y9urys
r+§=m plglr — Pt (s — @)} ( e ¥) v

!
= ) (=l mm*%—:zy(ﬁ — @ (v +3)* (x — y)? ufon
pHegm 1 °
S R T e
TH8=m

We have therefore

m T GOy (u+ o) (u— o

itk~m
= 3 U g (e — ey
‘(x4 y) u + (x — y) O)n-re, @1
We now put
u=u-+9, T=u—9,
so that
u = }@t + 9), v = }(if — 7).

Then (4.17) becomes (after dropping bars)

ml Y C(x, y) wok

Jtk=m

= T (o= Py @9)

pHagm (m

< 27P~%u + v)? (u — v) (xu + yoy"P-e,
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Comparing coefficients of w/v* on both sides of (4.18), we get the explicit

formula

m‘Cm % V)
~P—q A___ﬂ'_____ — n v — U]
S (e s (P P ) (19)

progm

k — —_
.2-v-q Z (m IP Q) dk«z(P, ‘]) xm»z)—qqyt.

5. GENERATING FUNCTIONS

In first defining C{%)(x, y) we have j 4 & <n. We now change our point of
view and define C{")(, ¥) by means of (4.18). It will soon be apparent, with this

definition, that
C}f}c’(x,y) =0 (j+ &k =>mn), (5.1)

so that the new definition is in fact in agreement with the old.
It follows from (4.18) that

MY L e

jt+k=m

1
,,,,, z (—l)m - qp_m_ﬂ.__?).!_ e P03 (x 4 y)» (x — vy

LM
- 277Uy 4 )P (u — v)? (xu L yoyoPe
)771

2 NETE v — !
(x —») > XU — yo|

— (e e ) 3t — %) — ] + ofdsle — ) +3(et + e — M.

We have therefore

Z —z—' > C‘"’(x ) wiok

Y itk=m

“]‘f {u[x(cosh  — 1) 4+ v sinh 2] + o[x sinh & + y(cosh 2 — D)}
) (5.2)

The expansion of the right hand side of (5.2) begins with the term
(yu + xv)™[m!, which evidently implies (5.1). Hence, as remarked above, the

two definitions of C{")(x, y) are equivalent.
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Summing over m, (5.2) gives

n

o
2 .
2T e
3. k=0

nMB

= exp{u[x(cosh z — 1) + y sinh 2] 4 [ y(cosh 2 — 1) + xsinh 2]}. (5.3)

Thus we have obtained a generating function for C{")(x, y).
If we take u = v =1 in (5.2), we get

n 1 .
YE Y i y) = —{(s + ) (cosh 7 — 1 + sinh z))

n=0 j+k=m
1

Hence

Y Cx, ) = (x 4 y)™ S(n, m), (5.4)

Jt+k=m

in agreement with (4.8).
For u = 1, v = —1, (5.2) reduces to

@K

S5 Y (1 Cpes)

T grk=m

= TrltT {x(cosh ¥ — 1 — sinh 2) + y(sinh 2 — cosh z + 1)}™

_ ‘”1,—‘ (v — y)" (e — 1)m.

It follows that

Y (=1F O, y) = (—1)" (x — )" S(n, m). (5.5)

j+k=m
Foru=1,v=0andu =0,v = 1, we get
2 — Cffo( x,y) = —-{x(cosh z — 1) 4 y sinh 2}™ (5.6)

n~0

and

i fT COwy) = — { y(cosh  — 1) + x sinh 2)™, (5.7)
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respectively. It accordingly follows that

o

) = 5 2 0o 3 2 cien
N ¥l
(5.8)
Z — Cf’ﬁ(x, Z 5 C(S)U(\ x).
Hence
Chis ) = % (7) Chixy) Clim )
ris=n
5.9
. (r} , C(s ( )
= Z . Cﬂ ol%, ) .00 x).
In terms of the ¢(n, p, q) defined by
( ) D+ .
Czﬁq(x»}’) = Z el P, q) xnﬂm 5
k=0
(5.9) gives
amp ) = Y (1) edr 2,0} afs0,9) (5.10)
athek
T+3=7

Turning next to the polynomial
F(n) x x') — Z f(n)(, 5) rn— 2J¥‘? n+2f

we recall that, by (3.10),

r! s! A
F::’::(‘x? y) = Z C("‘)(Y, y) ( ])! (S . k)‘ xTH‘Jy& h'

it+kgn

Thus we have

o 2 u'y

2= 2 )
o=

X7 ys—k

— (s — &)

— i i Z C"”(v J’) Z ot

n=0 "% j+kgn HO

. if_ ¥ C””(x ¥) ek Z &*Q:_GTXEX

n=0 """ jtkgn
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Hence, by (5.3),

M8
il“:

go F;';’( y) r's'

n=0 r

== exp{u(x cosh z -+ y sinh 2) 4+ (y cosh 2 + sinh 2)}.

In particular we have

"

T Z Fi")(x, y) 1:—' = exp{u(x cosh z + y sinh 2)},

||M8

Z 0 z F{m(x y) = exp{o(y cosh 2 4+ «x sinh 2)}.
n=0

It therefore follows from (5.11), (5.12) and (5.13) that
Fn — ™ pw F®
@) = Y, () Fate ) FE ).
J+k=n
Moreover we have

r

Fs ) =27 3 () ¢ — 20 (s 490 e — 37,

P ) = 20 3 (<1 (1) 6 = 2007 (5 + 99 (s = o)

and

‘ .
F:‘ns)(x’ -y) =27 Z rl]i‘ (] k)n as(j’ k) (x + y)] (x - y)k’

7'+k=r+s
where
itk
(u -+ o) (u — o) = ayj, k) u+*—sos,
8=0

It follows from (5.14) that

e = 3 (0)10,0£°0 9.

at+r=k
r+s=n

This result may be compared with (5.10).

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)
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6. COMBINATORIAL INTERPRETATION

Put

o

exp{x(cosh ¥ — 1) + ysinh 2} = Y zi' z A(n, j, k) ©iv¥, 6.1)
n=0 """ J.k
Then A(n, j, k) is equal to the number of partitions of the set 2, = {1, 2,..., n}
into j + k& non-vacuous blocks of which j are of even cardinality and % of odd
cardinality. The enumerant A(n, j, &) is discussed in some detail in [2]; see also
[5, Chap. 4].
It follows from (6.1) that
oo zn

1 . . )
g {x(cosh 2 — 1) 4+ y sinh 2}" = Z T Z A(n, j, k) xiy*

n=0 "7 jik=m

On the other hand, by (5.6),

1 . m < n
P {x(cosh 2 — 1) 4 y sinh 2} = Z C,(,, Yol ¥).

nO

Hence we have

CIx,») = Y Aln, j, k) &'y (6.2)

j+k=m

Since

m

CiMx, ¥) = Y culm, m, 0) a™ 5%,

k=0
it follows that
c(n, j + k,0) = A(n, j, k). (6.3)
Similarly
ce(n, 0,7 + k) = A(n, &, ). (6.4)

Thus we have simple combinatorial interpretations of ¢, (n, m, 0) and
Ck(n, 0, m).
By (5.10), (6.3) and (6.4) we have

amp, )= ¥ (1) Atr,p— a,a) A, b, — b). (6.5)

a+r=k
r4-8=n

We can also express f{(r, 5) in terms of A(n, p, ¢). We find that

£, 0) = z (r spA(,n— 2+ 1, —=n +2)) (6.6)
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and

20, 9) —z o A(n n—2j, —n 4 2j + ). (6.7)

Applying (5.18) we can then evaluate f{(r, s).
A simpler interpretation of f{™(r, 0) and f{"(0, s) will now be obtained. Put

exp(x cosh 2 + y sinh 2) = Z T2 D(n, j, k) ‘k‘ . (6.8)
oo M5

Then D(n, j, k) is the number of ways of putting » numbered objects into 7 + s
numbered boxes so that each of the first » boxes contains an even number of
objects and each of the remaining s boxes contains an odd number of objects.
(For a detailed discussion of similar enumerants see [3, Vol. I; 5, Chap. 5].)

We now define D(n, r, ) as the number of ways of putting » numbered objects
into 7 - s numbered boxes so that each of any 7 boxes contains an even number
of objects while each of remaining s boxes contains an odd number of objects.
It follows at once that

D, r,5) = (" ) D, 7, ). 6.9)

By (5.11) we have

1 L om N n
TnT(xcoshz—]~y51nhz) :Zn ) (%, ¥)

n=0

and

7”1—! (y cosh z 4 x sinh 2)™ = 2 Fg",’n(x ).

Hence, by comparison with (6.8), we get

1

a7 Fhs,3) = X D, B S (6.10)
° ik
and
L g — Y Dn, b, j) 52 6.11
ml O’W(x’y)_]z;:c (m, ,])‘ﬁ};!*- (6.11)
Since

F(no(x y) sz(n)(m, 0) xm+n—2ky~—n+2k,
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it follows that
(n) m ) —_
S (m, 0) = (2k n) D(n,m +n — 2k, 2k — n).

In view of (6.9), this gives

£ m, 0) = D(n, m + n — 2k, 2k — n) (6.12)

and similarly
£50, m) = D(n, n — 2k, m — n -+ 2K). (6.13)

Finally, by (5.18),

0,9y = Y (2) Dl p + v — 24,2 — p) Dls, s — 2b,g — 5 +2b). (6.14)
a+h=k
rs=n
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