
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 62, 581-599 (1978) 

Expansion of a Special Operator* 

L. CARLITZ 

Department of Mathematics, Duke University, Durham, North Carolina 27706 

Submitted by R. P. Boas 

1. INTROUUCTION 

We consider the expansion of the operator 

(xD,, i- y~z,n = C C)T;c’(x, Y) DaiDdk (n - 0, 1, 2 ,... ). (1.1) 
j+k<n 

where 

It is evident from (1.1) that C,!~;(X, y) is a polynomial in x, y  with nonnegative 
integral coefficients. Moreover, replacing X, y  by hx, hy, where h is an arbitrary 
constant, we infer that C$~(X, y) is a homogeneous polynomial of degree j -+ k. 
Also it is evident that 

qp;(%Y> = 1, q"d<x, y) = 0 . (n >, 0) (1.2) 

and 

Cj’“k’(x, y) = qy(y, x). 

Generalizing (1. l), we take 

(1.3) 

where a, b are constants. Replacing x, y  by Ax, py, where A, p are constants, 
( 1.4) becomes 
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582 L. CARLITZ 

Since the left-hand side of (1.5) is equal to 

it follows that 

C$(hx, py 1 a, b) = A~p”C~,‘$x, y 1 a&-l, bh-lp). (1.6) 

In particular, if we take h2 = b, p2 = a, (1.6) becomes 

Ci’n,‘(hx, py 1 a, b) = a1/2kb1/2X’j$x, y 1 (ab)1/2, (ab)““) 

= a1/2(l;+n)bl/Z(j+n)C~~(x, y 1 1, 1) 

= a1/2(l;+n)b1/2(j+n)C~~(x, y)a 

(1.7) 

Thus there is no real loss in generality in restricting the discussion to the case 
a=b=l. 

In the next place put 

(xD, + Y&)~ x’j? = f fS”‘(y, s) ~~+~-~jy’-~+~j. (1.8) 
i=O 

As we shall see below, the coefficientsfT)(r, s) are polynomials in r, s; indeed if r 
and s are nonnegative integers then the fj")(r, s) are also non-negative integers. 
We define the polynomial FzA(x, y) by means of 

FF;(x, y) z f  f(n)(y) s) ~~+~-~5++~j. (1.9) 
i=O 

The polynomials Cjyi(x, y) and F$‘$x, y) are closely related. Indeed 

p!q!C;;(x, y) = f i (- l)p+*-‘r-s (;) (3 ~p,-~y+;;;(x, y) (1 do) 
r=o s=o 

and 

Fg;(x, y) = i i (f) (3) ~!s!x”-~y*-~Cr’;)(x, y). 
r=o s=o 

(1.11) 

The relations (1. IO), (1.11) are equivalent to 

and 

(1.13) 
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where the coefficients c,(n, p, s) are defined by 

(1.14) 

\Ve shall show that the polynomials C$~&X, y), F’,‘~!(x, y) satisfy the generating 
relations 

nEO 5 j,gTL Cjz(x, y) z&’ = exp{(xu + yv) (cash z - 1) + (XV + yu sinh z} 
, (1.15) 

and 

2 c 5 F(n)(x, y) = exp{(xu + YTJ) cash z + 
7L4 n! T.sdl IS8 

(XV + yu) sinh a}, (1.16) 

respectively. 
The generating functions (1.15), (1.16) imply the following combinatorial 

results. Let A(n,j, k) denote the number of partitions of the set z, = {l, 2,..., n> 
into j + k nonempty blocks of which j have even cardinality and k have odd 
cardinality. Then we have 

~(n,j + k 0) = d(?bj, k), c,(n, 0, j -t h) = A(%, kj). (1.17) 

Moreover 

Xext let D(n, r, s) denote the number of ways of putting n numbered objets 
into Y + s numbered boxes so that each of any r boxes contains an even number 
of objects while each of the remaining s boxes contains an odd number of 
objects; it is to be understood that all selections of the first Y boxes are counted. 
Then we have 

f3(n)(r, 0) == D(n, r + n - 2j, 2j - n), fi(x)(O, s) = D(n, n - 2j, s - n +2j) 
(1.19) 

and 

f~?‘(r, s) = c 
a+,~=?% 

(z) D(a, r + a - 2i, 2i - u) D(b, b - 2j, s - b + 2j). (1.20) 

i+j=k 

A number of related questions are suggested by (1.1). For example it would 
be of interest to determine the coefficients Bj,k(~, y) in the expansion 

(axis + byE,>n = 1 B;l”;(x, Y) E3cjEUk, 
f+k<n 

(1.21) 
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where the operators E, , E, are defined by 

&.f(x, Y> = f(x + 1, Y), E%f(% Y) =.h Y + 1). 

Similar questions can be posed for other families of linear operators. Also one 
may seek the operators L, , L, such that 

w, + y&J = c c;p, y>qLyk, 
j+kq 

(1.22) 

where the C$(X,~) are the same as the coefficients in (1.1). This question was 
suggested by a recent paper by Al-Salam and Ismail [I] concerning the opera- 
tional formula 

(AC)” = i (9 g C(C - 1) *+* (C - R + l)LP, 
k=O . 

where A, C are operators satisfying 

AC-CA=A. (1.23) 

Since the coefficients of CKX.z, y) and F$(x, y) are integers it is natural to 
look for arithmetic properties. It can for example be shown that, if p is an odd 
prime, then 

c CE@, y) u@ Ez S(n, p) (ZPyP + VW) (mod PI, (1.24) 
r+s=p 

where S‘(n, p) denotes a Stirling number of the second kind. 
For FgJ(x, y) we have the congruence of Kummer’s type (compare [4, 

Ch. 141) 

i. (- l)j” F~?“-l))(x, y) E 0 (mod p”), (1.25) 

where p is an arbitrary prime and n >, t 3 1. 
We shall however not include the derivation of such results in the present 

paper. 

2. PRELIMINARIES 

As above put 

(xD, + yD,)” = C C;‘$x, y) DsjDyk 
j+kgn 

(?z = 0, 1, 2 ,... ). (2.1) 

As noted, Cj!T;c’ = C$$x, y) is homogeneous of degree j + K in X, y and has non- 
negative integral coefficients. 
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If we multiply both sides of (2.1) on the left by xD, + yD, we get -. 

(xD, + yDJ+l = WY + yDd) c Cjl”,‘DzjDvk 
eHw$ 

Cj(y” = (xD, + yDz) C&j + xCj($, + yCj(_n;,t . 

Similarly, multiplying (2.1) on the right by xD, + yD, , we get 

f$p ) = xcfg, + ycjT!\,, + (j + 1) c;$,,-, + (k + 1) cj(?rlc+r. 

Comparison of (2.3) with (2.2) gives 

(i + 1) C$,-, + @ + 1) C;4’,,,+, = (xD, + yD,) Cj(:j . 

If we make use of the translation operators Ej , Ek defined by 

Eif(j, 4 =f(i + L4, 4Jl.i, 4 =f(j, k + I), 

(2.2) 

(2.3) 

(2.4) 

(2.2), (2.3), (2.4) become 

C;‘j;l) = (xD, + yD, + xE;l + yE;l) Cj(;i , (2.5) 

cj;;+l) = (xE,~ + yEjT1 + (j + 1) EjEal + (k + 1) EylEk) Cj’$, 

(xD, + yD,) C:yj = ((j + 1) EjEg’ + (k + 1) ET’E,) C$ , 
’ (2.6) 

(2.7) 

respectively. 
The first few values of C$ can be computed either directly from (2.1) or by 

using one of the recurrences. We find that 

W, + Y%J~ = xD, + yD, + x2Dv2 + 2xyD,D, + y2Dz2, 

(XD, + yDd3 = xD, + y& + 3xyD,2 + 3(x2 + y”) D&, + 3xyDz2 
+ SDv3 + 3x2yD,Du2 + 3xy2Ds2D, + y3D,3. 

These special results suggest that 

and 

ccl, = y”, c$$ = xn (2.8) 

c”’ zzz x 1.0 (n even) 

==Y (n odd), (2.9) 

c(g = y (n even) 
=X (n odd). 

(2.10) 
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Formula (2.8) follows at once from (2.6) while (2.9) and (2.10) are implied by 
(2.2). 

We have also by induction, using (2.2), 

C$!k k = n 
0 k xkY- (0 < k < n). (2.11) 

3. THE POLYNOMIALS F$'$(x,y) 

We define the polynomial F$(x, y) and the coefficients ffn)(Y, S) by means of 

(3.1) 

= g-p)(y, s) X’+n-2jys-a+2j. 

That the extreme right member has the stated appearance follows by induction. 
Moreover we get the recurrence 

fj(n+l)(r, s) = (s - n + 2j)fj’“‘(r, s) + (Y + n - 2j + 2)fj(_“l(r, s). (3.2) 

Also, taking 

we get 

fi(n+l)(Y, s) = sfjyr + 1, s - 1) + Yjj?{(Y - 1, s + 1). 

The first few values of fj”)(Y, s), with Y, s fixed, follow. 

(3.3) 

fj(n)(Y, s): 

\ i 0 1 2 3 
‘z 
- - 

0 1 

1 S Y 

2 s(s - 1) 2YS + Y + s Y(Y - 1) 
- 

3 s(s - 1) (s - 2) S(3YS + 3s - 2) Y(3YS + 3Y - 2) Y(Y - 1) (Y - 2) 
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Clearlyfjn)(Y, s) is a polynomial of degree n in r, s with rational coefficients and 

jJ$(r, s) =: fjys, Y) (0 < j < n). (3.4) 

Also it follows from (3.3) that 

fp(Y, s) - s(s - 1) *.* (s - n t l), 
(3.5) 

fn(n)(Y, s) = Y(Y - 1) ..* (Y - II + 1). 

In the next place, by (3.3), 

Since 

fo(l)(Y, s) + fi(l)(Y, s) = Y -i s, 

we get 

FyJ( I, 1) = 2 f(jn)(Y, s) = (Y $- s)ll (n = 0, 1, 2 ,... ). (3.6) 
j=O 

By (3.1) and (3.3), we have 

Fjy’(x, y) -= i {sp’(Y + 1, s - 1) + Yfjlnl(Y - 1, s + I)} Xr+~+1-*~ys-~-i--2j* 
j=O 

which yields 

Iteration of (3.7) gives 

qyky) T= s(s - l)F$$-*(X, y) + (2rs + I + s)FyJx,y) 

+ y.(y - 1 )e2.s+*(.% y), 

F;yqx, y) == s(s - 1) (s - 2)FJ”,‘,,,-,(x, y) + s(3rs A 3s - 2) F$&, y) 

4 r(3rs + 3r - 2)Fk\,s+l(x, y) + y(y - 1) (1. - W%s+&w). 

These results suggest that 

The proof of (3.8) is by induction on m and will be omitted. 

409162/3-10 
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A formula equivalent to (3.8) is 

fim+la)(r, s) = f fj(m)(r, s)fi$(r + m - 2j, s - m + 2j). 
i=O 

(3.9) 

It follows from (2.1) and (3.1) that 

qp’Y> = 1 q,~~(%Y> & (+ * 
S+k<n 

. s 
x7-jYs-k (3.10) 

Multiply both sides of (3.10) by 

(-1) p+q--r--S P q xP-ryP-s 
()O r s 

and sum over r, s. Since 

i. go (- l)p+q-5-s (f) (3) xperyq+ * C j!k! (J (3 C&)(x, y) ~‘-jy+-~ 
Sk<?% 

= 9 i j!k!xP-jyq-kC:y,‘(x,y) - i (-l)P-r (f) (i) $k (-1)9+ (4,) (J 
j=O k=O r=j 

= p!q!C~&, y), 

it follows that 

p!q!C’“‘(x, y) = i 2 (-l)Z)fQ--7--S 
P.P ()O 

p q x~-,q-q,ns)(x, y), (3.11) 
r=O s-0 r s 

In particular, for y = x, we get using (3.6), 

p!q!c;;(x, x) = i i (-l)p+q-‘-s (f) (;) (r + S)n @i-g. 
r=o s-0 

Since 

and 

~o(-l)m-k(~) kn =m!S(n,m), 

where S(n, m) is a Stirling number of the second kind, we get 

cgjx, x) = (P ; “) qn, p + q) xp+q. 

(3.12) 

(3.13) 
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Since CEi(x, y) is homogeneous of degree p + Q in x, y, we may put 

CiF$x, y) = c c,(n, p, q) xp+4-1’yk, 
k=O 

(3.14) 

where the c,(n, p, q) are nonnegative integers. Thus by (3.11) and (3.14) we get 

p!q!~~++~~(n,p, q) = i i (-1)1)+g--T--s (f) (:)fp’(r, s) (0 5:: j 5:. n). (3.15) 
r=O s=o 

An equivalent result is 

fj’“‘(p, q) = i f r!s! (f) (s) ~,-,+,~(n, Y, s) (0 -<j + n). (3.16) 
r-0 s=o 

4. EVALUATION OF Cj;;!(x, 3)) 

Consider functions F = F(x, y) such that 

(xD, + yD,) F = F. (4.1) 

The general solution of this differential equation is given by 

F = (x + y) $(x2 - y”), (4.2) 

where d(z) is an arbitrary function of z. More generally, the general solution of 

(xD, + yDx) F = AF, (4.3) 

where h is constant, is given by 

F = (x ~+ y)” r#+” - yp), (4.4) 

where again + is arbitrary. 
We first take 

F = (x -t y)” (p = 0, 1, 2 ,... ). (4.5) 

Since 

it follows that 

(xD, 4~ yD,) (x $ y)” = P(X i- y)“, 

(xDy + yD.J91 (x + y)” = PI&(X +- y)“. 

On the other hand, 

(4.6) 
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P”(X + Y)” = i. (p P!,)! (x + YP” j+gwl c::; ’ 

Multiplying both sides of (4.7) by 

(- l)r-, i;rj (x + yy-p 

and summing over p, we get, after a little manipulation, 

where, as in (3.13), S(n, Y) is a Stirling number of the second kind. 
To improve this result we take 

F= (x +y)“(x -y)“, 

where p, q are nonnegative integers. It is easily verified that 

(X4 + Y&c), (x + Y)” (x -Y)” = (P - 4)” (x + Y)” 6 - YY. 

Also 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

D,jD,“(x $ Y)~ (x - Y)~ 

=W i: (-lJb (;j(, _--pk!+ b)!&l(~ +Y)“-“‘“tx -Y~)U-~ 
b=O 

= i C-l? (i, (P _pk! + b)!&! 
b=O 

. 
(4 - W . i. (3 (p ‘p 1 k” ; a”‘; b)! (q _ a _ b)! @ + Y)p-i-k+a+b (x - Y)q-a-b* 

It follows that 

(P - 4)‘” cx + Y)” (x - YIP 

== jz<n q%hY) Yio fro (-lJb (j (3 -. 
. (p-j _ f+ a + b)! <4- ‘,!- b)! lx + Y)p-‘-“+a+b cx - Y)*;;;lj 
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(4.12) 

so that (4.11) becomes 

(p - q)” (22 + y)” (x - y)” 

Now multiply both sides of (4.13) by 

(-1)+-p--4 (;j (J (,X + y)‘-p (X - y)“-” 

andsum over p, q. We get 

The inner sums on the extreme right vanish unless j +- k - nz = Y and s = m. 
Thus the right side of (4.14) reduces to 

and therefore 

x r!s! c as(j, k) C;l”;(x, y), 
j+h=r+s 

(4.15) 
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It follows from (4.12) that 

PfQ 

.x& %(P, 4) u*++w = (24 + v)” (24 - v)“. 

Thus (4.15) yields 

m! c C~T;c)(x, y) (24 + v>j (24 - v)” 
j+li=m 

(4.16) 

= ,;, (,“) zP+s-mv*L & 2 (- I)r+--Q (p - q)n (x + yy (x - y) 

= p;<n$ (-1P- (P - d” (x + y)P (x - )Q 
\ 

* .;, p!q!(T - ;;! ($ - q)! (X + y)‘-” (x - wg urvs 

= p;<m (- lF-Q P!q!(m “I!* _ q), (P - 4P 6 + Y)’ (x - YjQ df@ 

. r+im (” ,f - 4) (x +y>‘+ (x - y)“-Q u~-%-g. 
P 

We have therefore 

m! c C,‘$(x, y) (u + v>i (24 - v)” 
j+J.km 

= ,g<m’- lP-p-g p!q!(m p!, _ q)!(P - 4)” @ + YP @ - Y)” PPVQ 

* ((x + y) u + (x - y) v)nl-P-Q. (4.17) 

We now put 

ii=u+v, @=u-v, 

so that 

24 = &(a + B), v = &(a - 6). 

Then (4.17) becomes (after dropping bars) 

= p;<m (-lP--p-g (m -“pi- q), (P - 4” (x + Y)” (x - yJg (4.18) 

* 2-“-Q(, + v)” (u - v>” (xu + yvp-p-9. 
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Comparing coefficients of uju7; on both sides of (4.18), we get the explicit 
formula 

m!c$!&, y) 

-::: c (-l)rn-P-Q p!4!(m $ _ *)! (P - 4)” (.y + Y)” (x - Y>” (4.19) 
P+S<m 

. 2-P-9 f (” - f - “) a,-,(p, 4) p-P-Q-tyt. 

t=o 

5. GENERATING FUNCTIONS 

In first defining Cjri(~, y) we have j + k < 71. We now change our point of 
view and define CJyi(z, y) by means of (4.18). It will soon be apparent, with this 
definition, that 

C$x, y) = 0 (j + k > a), (5.1) 

so that the new definition is in fact in agreement with the old. 
It follows from (4.18) that 

I_ c (-l)rn-P-Q m! 

p!q!(m - p - g)! 
e(v-4)z(x + y)J' (x - y)" 

?J'fQ!p 

::= ez(x + y) 
f 

Kg2 + e-z(x _ y) 5-F _ i 
111 

.m. - yc! 
\ 

== {u[$x(ez + ecZ) + y(eZ - e-Z) - .x] + v[*x(eZ - cZ) + y(f? + e-2 - y)])", 

We have therefore 

-= -& (u[x(cosh .z - 1) + y sinh z] + v[x sink z + y(cosh z - 111)“. 

(5.2) 
The expansion of the right hand side of (5.2) begins with the term 

(yu + xv)“/m!, which evidently implies (5.1). Hence, as remarked above, the 
two definitions of C,!:~(X, y) are equivalent. 
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Summing over m, (5.2) gives 

= exp{u[x(cosh z - 1) + y sinh z] + v[y(cosh x - 1) + x sinh ~1). (5.3) 

Thus we have obtained a generating function for Cjr$x, y). 
If we take u = v = 1 in (5.2), we get 

z. $ i+gm C~r)c)(x, r> = $- {(x + Y> (cash z - 1 + sinh 4>” 

= -$ (x + y)” (e* - 1)“. 

Hence 

c c;y$x> y) = (x 4 YJrn m, ml, 
ifk=m 

(5.4) 

in agreement with (4.8). 
For u = 1, u = -1, (5.2) reduces to 

= --& {x(cosh z - 1 - sinh z) + y(sinh a - cash 2 + 1))” 

= -& (x - y)” (e-% - 1)‘“. 

It follows that 

j+jIm C-1)’ Cj$(x, y) = C-1)” (x - Y>” S(n, 4. (5.5) 

For u = 1, z, = 0 and u = 0, v = 1, we get 

f z C$),,(x, y) = -$ (x(cosh z - 1) + y sinh z}” 
n4 n! 

(5*6) 

and 

f “” C$(x, y) = -$ {y(cosh z - 1) + 
n-0 n! 

x sinh x)“, (5.7) 
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respectively. It accordingly follows that 

Hence 

(5-Q 

In terms of the c,Jn, p, q) defined hy 

(5.9) gives 

%h P, 4) = c (“,I Cn(Y, p, 0) c& 0, q). (5.10) 
e*,,=ic 
7+5=11 

Turning next to the polynomial 

we recall that, by (S.IO), 

Thus we have 
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Hence, by (5.3), 

(5.11) 
= exp{u(x cash z + y sinh z) + ~(y cash x + sinh z)}. 

In particular we have 

f E 2 Ftn)(x, y) $ = exp(u(x cash z + y sinh z)}, 
n=O n! r=” r*” . 

(5.12) 

z. 5 i. FE:(X) y) -$ = exp{v(y cash z + x sinh z)}. 

It therefore follows from (5.11), (5.12) and (5.13) that 

(5.13) 

qyx, y) = (5.14) 
jfk=n 

Moreover we have 

FPi(x, y) = 2-r i (Y) (r - 2j)” (x + y)‘j (x - y>j, 
j=o 3 

(5.15) 

F&7x, y) = 2-” i (-1)” (;) (S - 2k)” (x + y)“-k (x - y)” 
k=O 

(5.16) 

and 

FgTx, Y> = P-* j+k;r+s fg (j - v Us(j> 4 (x + Y)j (x - y)“, (5.17) 

where 

(U + w)j (u - w)" = c a,( j, k) d+k-SDS. 
C?=O 

It follows from (5.14) that 

(5.18) 

This result may be compared with (5.10). 
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6. COMBINATORIAL INTERPRETATION 
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Put 

exp{x(cosh z - 1) f y sinh z} = ntO z$ z A(n,j, K) ~jy”. 
’ l,h 

(6.1) 

Then A(n,j, k) is equal to the number of partitions of the set z,~ = {I, 2,..., n} 
into j + k non-vacuous blocks of which j are of even cardinality and k of odd 
cardinality. The enumerant A(n,j, k) is discussed in some detail in [2]; see also 
[5, Chap. 41. 

It follows from (6.1) that 

--& (x(cosh z - 1) + y sinh z>” = VzO 2 ,c A(n, j, k) xjy”. 
. /tk=n< 

On the other hand, by (5.6), 

Hence we have 

Since 

C$&Y, y) = C A(n, j, k) dyk. 
j+k=m 

nL 
C$‘,(x, y) = C c,(n, m, 0) x"-"y", 

k=O 

(6.2) 

it follows that 

Similarly 

ck(% j + k, 0) = &hi 4 (6.3) 

c,(n, 0, i + k) = A@, k, j). (6.4) 

Thus we have simple combinatorial interpretations of c,(n, m, 0) and 

c&, 0, 4. 
By (5.10), (6.3) and (6.4) we have 

ckh P, d = ,+Fck (;) &t P - a, a) A@? 6 4 - b 

s+s=n 

We can also express fp)(~, S) in terms of A(n, p, 4). We find that 

(6.5) 

fj(“)(r, 0) = ; (r 7j q! ---A(& n - 2j + t, --n + 2j) (6.6) 
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and 

fj’“‘(O* 4 = i$- (s ” q ___ A(n, n - 2j, --n + 2j + t). (6.7) 

Applying (5.18) we can then evaluate fr)(r, s). 
A simpler interpretation of fi”)(r, 0) and fj”)(O, S) will now be obtained. Put 

exp(x cash x + y sinh s) = f zs c D(n,j, A) $$ . 
Tl=O ’ 3,k . . (6.8) 

Then D(n, j, k) is the number of ways of putting n numbered objects into r + s 
numbered boxes so that each of the first Y boxes contains an even number of 
objects and each of the remaining s boxes contains an odd number of objects. 
(For a detailed discussion of similar enumerants see [3, Vol. I; 5, Chap. 51.) 

We now define D(n, Y, S) as the number of ways of putting n numbered objects 
into r + s numbered boxes so that each of any r boxes contains an even number 
of objects while each of remaining s boxes contains an odd number of objects. 
It follows at once that 

qn, r, s) = i 1 r ; s qn, Y, s). 

By (5.11) we have 

--& (X cash x + y sinh z)” = i. $&$,(x9 Y> 

and 

-$ (y cash a + x sinh z)~ = 2 q&$(x, y). 
n=O fz* 

Hence, by comparison with (6.8), we get 

and 

Since 

(6.10) 

(6.11) 
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it follows that 

f>)(m, 0) = (,,” .) D(n, m + n - 2k, 2k - n). 

In view of (6.9), this gives 

f,(“)(m, 0) = D(n, m + n - 2k, 2k - n) 

and similarly 

fin’(O, m) = D(n, n - 2k, m - n + 2k). 

Finally, by (5.18), 

f?‘(p, 9) z-z .+F=, (y) W, P + y - 2a, 2a - P) %, s - 2b, 4 

rts=n 
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