EXISTENCE AND REPRESENTATION OF DIOPHANTINE AND MIXED DIOPHANTINE SOLUTIONS TO LINEAR EQUATIONS AND INEQUALITIES*

A. CHARNES

The University of Texas, Austin. Texas 78712. USA
and
F. GRANOT

Department of Mathematics, Dalhousie University, Haiifax, N.S., Canada

Received 5 December 1973
Revised 14 Augus: 1974

In this paper we present necessary and sufficient conditi ns for the existence of solu tions to more general systems of linear diophantine equations and inequalities than have previously been considered. We do this in terms of variants iad extensions of generalized inverse concepts which also permit us to give representation of the set of all solutions t_{0}) the systems. The results are further evtended to mixed integar systems.

1. Introduction

We present in this paper necessary and sufficient conditions for the existence of solutions to the general system of lin ar diophantine equations

$$
\begin{aligned}
& A X B=C \\
& X \quad \text { integer },
\end{aligned}
$$

and to the linear diophantine system of inequalities

$$
\begin{gathered}
D \leqslant A X B \leqslant C, \\
X \text { integer },
\end{gathered}
$$

[^0]where A, B, C and D are matrices of rational numbers. If solvable the parer gives a representation to the set of all solutions of the corresponding systems.

The results of the first part of this paper are then extended to mixed integer systems.

2. Preliminaries and notations

We denote by

\mathbf{R}^{n} the n-dimensional real vector space,
I the identity matrix with dimension as :leeded.
For any two $m \times n$ real matrices A and B,
$A \geqslant B$ denotes $a_{i j} \geqslant b_{i j}, i=1, \ldots, m, j=1, \ldots, n$;
A integer means $a_{i j}$ integer, $i=1, \ldots, m, j=1, \ldots, n$:
A^{T} denotes the transpose of A;
$R(A)$ denotes the range space of A;
$N(A)$ denotes the null space of A.
For a fixed $m \times n$ real matrix A, consider the four matrix equations
(I)

$$
A X A=A,
$$

(2) $X A X=X$.
(3) $(A X)^{\mathrm{T}}=A X$,
$(X A)^{\mathrm{T}}=X A$.
We denote (following the notation of [1]) by $A\{i, j, \ldots, k\}$ the set of $n \times m$ eal matrices X satisfying equations (i), $(j), \ldots,(k)(1 \leqslant i, j, \ldots, k \leqslant 4)$. These sets $A\{i, j, \ldots, k\}(1 \leqslant i, j, \ldots, k \leqslant 4)$ are nonempty because A\{ $\{1,2,3,4\}$ is nonempty [13].

A matrix $X \in A\{i, j, \ldots, k\}$ is called an " $\{i, j, \ldots, k\}$-g.i." (generalized inverse) of A. The $\{1,2,3,4\}$-g.i. of A is unique, and is the Moore--Penrose generalized inverse denoted by A^{+}(see [12,13]).

For many applications a weaker g.i. is sufficient. Thus for solving linear equations "\{1\}-g.i." are sufficient as shown by the following:

Lemma 2.1 (see [4,14]). The linear equations

$$
A x=b
$$

are solvable if and only if for an: $T \in A\{1\}$.

$$
\begin{equation*}
A T b=b \tag{6}
\end{equation*}
$$

in which case the general solution of (5) is

$$
\begin{equation*}
x=T b+(I-T A) y, \quad y \text { arbitrary } \tag{7}
\end{equation*}
$$

The set $A\{1\}$ is represented in terms of one of its elements as follows:

Lemma 2.2 (see [4]). Let R be uny \{1\}-g.i. of A. Then

$$
\begin{equation*}
A\{1\}=\{R A R+Y-R A Y A R: Y \text { arbitrary } n \times m \text { real matrix }\} . \tag{8}
\end{equation*}
$$

3. Existence of se utions to linear diophantine equations

Definition 3.1. If $T \in A\{i . j, \ldots, k\}(1 \leqslant i, j, \ldots, k \leqslant 4)$ and $T A$ is integer. then T is called a "left integer $\{i, j, \ldots, k\}$-g.i." of A and will be denoted $\{i, j, \ldots, k\}-1, i . g . i$ of A. (This generalizes a definition of Bowman and Burdet [7].)

Snce for every matrix A there exists a unique $\{1,2,3,4\}$-g.i., either $A^{+} A$ is integer and then A^{+}is the $\{1,2,3,4\}$-li.g.i. of A, or there is no $\{1,2,3,4\}$-1.i.g.i. of A.

The set of all $\{i, j, \ldots, k\}-1 . i . g . i$ of A will be denoted by $A_{I}^{\mathrm{L}}\{i, j, \ldots, k\}$.
In the same way, we define a ri.g.i. of A to be a matrix S such that $A S$ is integer and S is $\{i, j, \ldots, k\}$. g.i. of A.

The set of all $\{i, j, \ldots, k\}$-ri.i.. of A will be denoted by $A_{1}^{\mathrm{R}}\{i, j \ldots, k\}$.
Theorem 3.2. The linear equations

$$
\left\{\begin{array}{l}
A X B=C \tag{9}\\
X \text { integer }
\end{array}\right.
$$

are solvable if and only if for anv $T \in A_{1}^{\mathrm{L}}(1\}$ and $S \in B_{1}^{\mathrm{R}}\{1\}$.
(i) TCS is integer. and
(ii) $A \operatorname{TCS} B=C$
in which case the general solution of (9) is
(10) $\quad X=T C S+Y-T A Y B S, \quad Y$ integer.

Proof. Suppose X satisfies (9), then

$$
C=A X B=A T A X B S B=A T C S B .
$$

hence (ii) holds, and

$$
T C S=T A X B A
$$

is integer since $T A, X$ and $B S$ are all integer, hence (i) holds.
Conversely. If $C=A T C S B$, then $T C S$ is a particular solution of (9) because of proposition (i). Now in order to get the general solution of (9) we have to solve $A X B=0, X$ integer. But any expression of the form $X=Y-T A Y B S, Y$ integer, satisfies $A X B=0, X$ integer, and conversely if $A X B=0, X$ integer, then $X=X-T A X B S$ which completes the proof.

In order to find a representation for $A_{\mathrm{I}}^{\mathrm{L}}\{1\}$ we consider now that

$$
X \in A_{1}^{\mathrm{L}}\{1\} \Leftrightarrow\left\{\begin{array}{l}
A X A=A \tag{11}\\
X A \quad \text { integer }
\end{array}\right.
$$

Sarstituting
(12) $Y=X A$
in (11), we obtain

$$
\left\{\begin{array}{l}
A Y=A Y I=A, \tag{13}\\
Y \text { integer } .
\end{array}\right.
$$

The systera (13) has a solution (we assume it); hence the general solution of (13) can be written as:

$$
\begin{equation*}
Y=T A R+Z-T A Z I R \tag{14}
\end{equation*}
$$

$$
Z \text { integer , } \quad T \in A_{\|}^{\mathrm{L}}\{1\}, \quad R=I \in I_{\mathbb{1}}^{\mathrm{R}}\{1\}
$$

From (12) and (14) we conclude that in order to find an X which solves (11), we have to solve the following:
(15) $\quad\left\{\begin{array}{l}I X A=T A+Z-T A Z . \\ X \quad \text { integer } .\end{array}\right.$

If we assume again that (15) has a solution, then its e....ral solution can be written as:

$$
\begin{align*}
& X=\{T A+Z-T A Z \mid S+V-V A S \tag{16}\\
& T \in A_{1}^{\mathrm{L}}\{1\}, \quad S \in A_{1}^{\mathrm{R}}\{1\}, \quad Z, V \quad \text { integers },
\end{align*}
$$

or by changing order we obtain

$$
\begin{align*}
& X=T A S+(I-T A) Z S+V(I-A S), \tag{17}\\
& Z . V \text { integers. }
\end{align*}
$$

Lemma 3.3. Given any pair of matrices T and S such that $T \in A_{1}^{\mathrm{L}}\{1\}$. $S \in A_{1}^{\mathrm{R}}\{1\}$, then the set $A_{1}^{\mathrm{L}}\{1\}$ can be expressed as

$$
\begin{gather*}
A_{1}^{\mathrm{L}}\{1\}=\{X: X=T A S+(I-T A) Z S+V(I-A S), \tag{18}\\
Z . V \text { integers }\} .
\end{gather*}
$$

Proof. Follows immediately from the procedure aliove and the fact that

$$
X \in A_{\mathrm{I}}^{\mathrm{L}\{1\}} \Leftrightarrow\left\{\begin{array}{l}
A X A=A \tag{19}\\
X A \text { integers }
\end{array}\right.
$$

In a similar way we can find the represtntation of the set $A_{i}^{\mathrm{R}}\{1\}$ in terms of a given pair $T . S$ satisfying $T \in A_{1}^{\ell}\{1\}$ and $S \in A_{i}^{\mathbf{R}}\{1\}$.

Lemma 3.4. Given any pair of matrices T and S such that $T \in A_{1}^{\mathrm{L}}\{1\}$. $S \in A_{1}^{\mathrm{R}}\{1\}$, then the set $A_{\{ }^{\mathrm{R}}\{1\}$ can be expressed as

$$
\begin{gather*}
A_{1}^{\mathrm{R}}\{1\}=\{X: X=T A S+T Z(I-A S)+(I--T A) V \tag{20}\\
Z, \dot{Y} \text { integers }\} .
\end{gather*}
$$

Proof. Follows in a similar way to Lemma 3.3 above.

Remark 3.5. We ;hall sometimes use A_{1}^{L} and A_{1}^{R} to denote eleinents of $A_{\mathrm{I}}^{\mathrm{L}}\{1\}$ and $A_{1}^{\mathrm{R}}\{1$, respectively.

Corollary 3.6. The general solution of the vector equation
(21) $\quad\left\{\begin{array}{l}\text { Ax } x=b \\ x \\ \text { integer }\end{array}\right.$
is

$$
x=T b+(I-T A) y .
$$

where y is intege: and $T \in A_{1}^{\mathrm{L}}\{1\}$, provided that the system (21) has a soletion.

Corollary 3.7. A necessory and sufficient condition for the equations
(22) $\left\{\begin{array}{l}A X=C, \\ X B=D, \\ X \text { integer }\end{array}\right.$
to have a common solution is that each of the systems
(23) $\left\{\begin{array}{l}A X=C, \\ X \text { integer }\end{array}\right.$
and
(24) $\quad\left\{\begin{array}{l}X B=D, \\ X \quad \text { integer }\end{array}\right.$
will individually have a solution and that

$$
\begin{equation*}
A D=C B . \tag{25}
\end{equation*}
$$

Proof. The condition is obvious y necessary. To show that it is sufficient let us substitute for X in (22) the following:

$$
\begin{equation*}
X=A_{\mathrm{I}}^{\mathrm{L}} C+D B_{\mathrm{I}}^{\mathrm{R}}-A_{1}^{\mathrm{L}} A D B_{1}^{\mathrm{R}} . \tag{26}
\end{equation*}
$$

Using now the required conditions

$$
\begin{cases}A A_{1}^{\mathrm{L} C=C} & (\text { solvability of }(23)) \tag{27}\\ D B_{1}^{\mathrm{R} B=D} & (\text { solvability of }(24)) \\ A D=C B & ((25))\end{cases}
$$

we obtain

$$
\begin{aligned}
A X & =A A_{1}^{\mathrm{L}} C+A D B_{1}^{\mathrm{R}}-A A_{1}^{\dot{1}} A D A_{1}^{\mathrm{R}} \\
& =C+A D B_{1}^{\mathrm{R}}-A D B_{1}^{\mathrm{R}}=C \\
X B & =A_{1}^{1} C B+D B_{1}^{\mathrm{R}} B \quad A_{1}^{\mathrm{L}} A D B_{1}^{\mathrm{R}} B \\
& =A_{1}^{\mathrm{L}} C B+D-A_{1}^{\mathrm{C}}(B=D, \\
X & =A_{1}^{\mathrm{L}} C+D B_{1}^{\mathrm{R}} A_{1}^{\mathrm{L}} A D B_{1}^{\mathrm{R}}
\end{aligned}
$$

is integer as a sum of integer terms, which completes the proof.

4. Existence of solutions to linear diophantine inequalities

We now turn to consideration of systems of linear diophantine inequalities and obtain analogous results to the atove.

Consider the set of inequalities

$$
\begin{equation*}
a \leqslant A x \leqslant b, \tag{28}
\end{equation*}
$$

where A is an $m \times n$ real matrix and a and b are real vectors.
Lemma 4.1. The set of linear inequalities (28) has a solution if and only if there exists a rector $d, a \leqslant d \leqslant h$, such that for $T \in A\{1\}$.

$$
\text { (29) } A T d=d
$$

in which case the set of all solutions to (28) can be expressed as

$$
S=\left\{\begin{array}{l}
x \quad x=T d+(I-T A) y, y \text { arbitrery, } d \text { is any vector such } \tag{30}\\
\text { that } a \leqslant d \leqslant b, \text { and } A T d=d
\end{array}\right\}
$$

Proof. Follows immediately from Lemma 2.1.

Theorem 4.2. The diophuntine set of inequalities

$$
\left\{\begin{array}{l}
D \leqslant A X B \leqslant C \tag{31}\\
X \quad \text { integer }
\end{array}\right.
$$

has a non-empty set of solutions if and only if there exists a matrix E. $D \leqslant E \leqslant C$, su h that for $T \in A_{1}^{1}\{1\}$ and $S=A_{\mathbb{R}}^{\mathrm{R}}\{1\}$.
(i) $T E S$ is integer.
(ii) $A T E S B:=E$.

In which case the set of all solutions to (31) can be expressed as

$$
R=\left\{\begin{array}{l}
X: X=T E S+Y-T A Y B S, Y \text { arbitrary, } \tag{32}\\
D \leqslant E \leqslant C \text { such that (i) and (ii) above are sutisfied }
\end{array}\right\} .
$$

Proof. Similar to that oi Theorem 3.2 hence omitted.

Corollary 4.3. The set of diophantine inequalities

$$
\left\{\begin{array}{l}
a \leqslant A x \leqslant b \tag{33}\\
x \quad \text { integer }
\end{array}\right.
$$

has a non-empty set of solutions if and only if there exists a vector d. $a \leqslant d \leqslant b$, and the system $A x=d, x$ integer, is solvable. in which case the set of all the solutions to (33) is given iay

$$
R=\left\{\begin{array}{l}
x: x=A_{1}^{\mathrm{L}} d+y-A_{\mathrm{1}}^{\mathrm{L}} A y, y \text { arbitrary integer } \tag{3.4}\\
a \leqslant d \leqslant b, A_{\mathrm{1}}^{\mathrm{L}} d \text { integer and } A A_{\mathrm{1}}^{\mathrm{L}} d=d
\end{array}\right\}
$$

5. The set of all solutions represented in terms of special l.i.g.i. and r.i.g.i.

In the foilc wing we shall represent the set of all the solutions to the diopharitine sy stem of inequalities in terms of special l.i.g.i. and r.i.g.i.

Let H be any animodular non-singular integer matrix such that

$$
A H=K=\left(\begin{array}{ll}
K_{1} & 0 \tag{35}\\
K_{2} & 0
\end{array}\right) .
$$

where K_{1} is an $r \times r$ matrix, and r is the rank of A. It is easy to see that

$$
A_{1}^{\mathrm{L}}=H\left(\begin{array}{ll}
K_{1}^{1} & 0 \tag{36}\\
0 & 0
\end{array}\right)
$$

since
(37) $\quad H\left(\begin{array}{ll}K_{1}^{1} & 0 \\ 0 & 0\end{array}\right) K H^{-1}=H\left(\begin{array}{ll}l & \mathrm{C} \\ 0 & 0\end{array}\right) H^{-1}=$ integer
and
(38) \quad I $\left(\begin{array}{ll}K_{1}^{1} & 0 \\ 0 & 0\end{array}\right) \in A\{1\}$.

Similarly let E be a unimodular non-singular integer matrix such that

$$
E A=L=\left(\begin{array}{ll}
L_{1} & L_{2} \tag{39}\\
0 & 0
\end{array}\right)
$$

where L_{1} is an $r \times r$ matrix. Thus

$$
厶_{1}^{\mathrm{R}}=\left(\begin{array}{ll}
L_{1}^{-1} & 0 \tag{40}\\
0 & 0
\end{array}\right) E
$$

Since

$$
A A_{\mathrm{1}}^{\mathrm{R}}=E^{-1} L\left(\begin{array}{ll}
L_{1}^{-1} & 0 \tag{41}\\
0 & 0
\end{array}\right) E=E^{-1}\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right) E \quad \text { is integer } .
$$

and
(42) $\left(\begin{array}{ll}L_{1}^{-1} & 0 \\ 0 & 0\end{array}\right) E \in A\{1\}$.
$A_{1}^{\mathrm{L}}\{1\}$ and $A_{1}^{\mathrm{R}}\{1\}$ can now be expressed in terms of $H . E . K_{1}$ and L_{1}.
Another , epresentation of the set R of all the solutions to (33) can be obtained from (36) and (34). The requirement that $A_{1}^{\mathrm{f}} d$ should be integer turns o.it in this case to be

$$
H\left(\begin{array}{ll}
K_{1}^{-1} & 0 \tag{43}\\
0 & 0
\end{array}\right) d=\text { integer } .
$$

Since H is a unimodular integer matrix, (43) is equivalent to
(44) $\left(\begin{array}{ll}K_{1}^{-1} & 0 \\ 0 & 0\end{array}\right) d=$ integer .

The requirement $A A_{1}^{\mathrm{L}} d=d$ can be written in the above case as
145) $\quad\left(\begin{array}{ll}K_{1} & 0 \\ K_{2} & 0\end{array}\right) H^{-1} H\left(\begin{array}{ll}K_{1}^{-1} & 0 \\ 0 & 0\end{array}\right) d=d$.

If d is partitioned to $d=\binom{d_{1}}{d_{2}}$, where d_{1} is an r column vector, then (45) is equal to
(46) $\quad\left\{\begin{array}{l}d_{1}=d_{1}, \\ K_{2} K_{1}^{11} d_{1}=d_{2}\end{array}\right.$
and hence (34) for the above case can be written as
(47) $R=\left\{\begin{array}{l}x: x=H\left(\begin{array}{ll}K_{1}^{-1} & 0 \\ 0 & 0\end{array}\right) d+y-H\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) H^{-1} y, \\ y \text { arbitrary integer, and } a \leqslant d \leqslant b \text { such that } K_{1}^{-1} d_{1} \\ \text { is integer and } K_{2} K_{1}^{-1} d_{1}=d_{2}\end{array},\right.$.

6. Characterization of solutions to mixed integer systems

Consider the mixed integer system.

$$
\left\{\begin{array}{l}
a \leqslant A x+B y \leqslant b, \tag{48}\\
x \quad \text { integer } .
\end{array}\right.
$$

The set of all the solutions to (48) wili be obtained by solving the sysiem
(49) $\quad\left\{\begin{array}{l}A x+B y=d, \\ x \quad \text { integer , }\end{array}\right.$
fo" any vector d such that

$$
\begin{equation*}
a \leqslant d \leqslant b . \tag{50}
\end{equation*}
$$

Let us denote

(51) $\quad A x=q$
and solve first
(52) $B y=d \quad q$.

If T is any matrix such that $T \in B\{1\}$, then (52) is solvable if and only if (53) $B T(d-q)=d-q$.

Thus for every $a \leqslant d \leqslant h$ only the values of q satisfying

$$
\begin{equation*}
(I B T)_{d}=(I \quad B T) d \tag{54}
\end{equation*}
$$

are acceptable. By substituting (51) in (54), we obtain
(55) $\quad(I-B T) A x=(I-B T) d$.

Thus we conclude:
Lemma 6.1. The mixed integer system (48) has a soluticn if and only if there exists a rector $d . a \leqslant d \leqslant b$, such that the diophantine sistem

$$
\left\{\begin{array}{l}
(I-B T) A x=(I-B T) d \tag{56}\\
x \quad \text { integer }
\end{array}\right.
$$

has a solution, or more precisely, if there exists a vector $d, a \leqslant d \leqslant b$. such that
(i) $\left[\left.(I-B T) A\right|_{1} ^{\mathrm{L}}[I-B T] d\right.$ is integer,
(ii) $(I-B T) A[(I-B T) A]_{\mathrm{L}}^{\mathrm{L}}(I-B T) d=(I-B T) d$, in which case the set of all the solutions to (48) is given by
z arbitrary. w integer and d any vector. $a \leqslant d \leqslant b$, whicil satisfies (i) and (ii)

Proof. Follows from (30) and (3i).
Example 6.2. Consider the systen of mixed integer inequalities:

$$
\left\{\begin{array}{l}
0 \leqslant x_{1}+2 x_{2}+y_{1}+2 y_{2}-y_{3} \leqslant 3 \tag{53}\\
-2 \leqslant x_{1}+x_{3}+y_{1}+y_{3}-y_{4} \leqslant 2 \\
-3 \leqslant x_{2}+2 x_{3}+2 y_{1}+y_{2}-3 y_{3}+y_{4} \leqslant 1 \\
x_{1}, x_{2}, x_{3} \text { integer }
\end{array}\right\} .
$$

Thus
(59) $\quad A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right], \quad B=\left(\begin{array}{rrrr}1 & 2 & -1 & 0 \\ 1 & 0 & 1 & -1 \\ 2 & 1 & -3 & 1\end{array}\right)$
and
(60) $b=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right], \quad a=\left(\begin{array}{r}0 \\ -2 \\ -3\end{array}\right]$.

Let $T \in B\{1\}$. then T can be of the form:
(6!) $\quad T=\left[\left.\begin{array}{rrr}\frac{1}{2} & -\frac{5}{2} & -1 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{3}{2} & -1 \\ 0 & 0 & 0\end{array} \right\rvert\,\right.$
and

$$
\begin{align*}
& B T=\left[\begin{array}{rrrr}
1 & 2 & -1 & 0 \\
-1 & 0 & 1 & -1 \\
2 & 1 & -3 & 1
\end{array}\right]\left[\begin{array}{rrr}
\frac{1}{2} & -\frac{5}{2} & -1 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & -\frac{3}{2} & -1 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \tag{62}\\
& \left.\left.T B=\left[\begin{array}{rrr}
\frac{1}{2} & -\frac{1}{2} & -1 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
1 & -\frac{3}{2} & 1 \\
0 & 0 & 0
\end{array}\right] \right\rvert\, \begin{array}{rrrr}
1 & 2 & -1 & 0 \\
1 & 0 & 1 & -1 \\
2 & 1 & -3 & 1
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 0 & \frac{3}{2} \\
0 & 1 & 0 & -\frac{1}{2} \\
0 & 0 & 1 & \frac{1}{2} \\
0 & 0 & 0 & 0
\end{array}\right] . \tag{63}
\end{align*}
$$

By substituting (62) in (55) we obtain

$$
\begin{equation*}
(I-B T) A x=0=(I-B T) d=0 \tag{64}
\end{equation*}
$$

Hence (55) is always satisfied and the general solution to (58) is (65) $x=w$.
(66)

$$
y=T d \quad(I-B T) z=\left|\begin{array}{cr}
\frac{1}{2} d_{1}-\frac{5}{2} d_{2}-l_{3}+\frac{3}{2} z_{4} \\
\frac{1}{2} d_{1}+\frac{1}{2} d_{2} & -\frac{1}{2} z_{4} \\
\frac{1}{2} d_{1}-\frac{3}{2} d_{2}-d_{3}+\frac{1}{2} z_{4} \\
0 & z_{4}
\end{array}\right|
$$

z_{4} is arbitrary, w integer, d any vector such that

$$
\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right] \leqslant\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right] \leqslant\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

Example 6.3. Consider the system of mixed integer inequalities:
(67) $\left|\begin{array}{l}0 \leqslant 3 x_{1}+x_{2}+x_{3}+y_{1}-y_{2}+y_{3} \leqslant 2 \\ 1 \leqslant r-2 x_{2}-3 x_{3}-y_{1}+2 y_{3}+y_{4} \leqslant 3 \\ 2 \leqslant-5 x_{1}+x_{3}-y_{1}+2 y_{2} \\ x_{1}, x_{2}, x_{3} \text { integers }\end{array}\right|$.

Thus
(68) $\quad A=\left[\begin{array}{rrr}3 & 1 & 1 \\ 0 & 2 & -3 \\ -5 & 0 & 1\end{array}\right], \quad B=\left[\begin{array}{rrrr}1 & -1 & -1 & 0 \\ 1 & 0 & 2 & 1 \\ -1 & 2 & 0 & -1\end{array}\right]$
and
(69) $b=\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right], \quad a=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$.

Let $T \in B\{1\}$, then T can be of the form:
(70)

$$
T=\left|\begin{array}{rrr}
0 & -1 & 0 \\
-1 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right|
$$

and

$$
\begin{align*}
& B T=\left(\begin{array}{rrrr}
1 & -1 & -1 & 0 \\
1 & 0 & 2 & 1 \\
-1 & 2 & 0 & -1
\end{array}\right]\left[\begin{array}{rrr}
0 & -1 & 0 \\
\cdots & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & -1 & 0
\end{array}\right] \tag{71}\\
& T B=\left(\begin{array}{rrr}
0 & -1 & 0 \\
-1 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{align*}
$$

By substituting (71) in (55) we obtain

$$
\begin{align*}
(I \sim B T) A x & =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
2 & 1 & 1
\end{array}\right)\left[\begin{array}{rrr}
3 & 1 & 1 \\
0 & -2 & -3 \\
-5 & 0 & 1
\end{array}\right] x \tag{73}\\
& =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \quad x=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
2 & 1 & 1
\end{array}\right] d .
\end{align*}
$$

A l.i.g.i. of the matrix

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

is
(74) $\quad[(I-B T) A]_{I}^{L}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
and hence the general solution of (67) is:
(75)

$$
x=\left|\begin{array}{c}
2 d_{1}+d_{2}+d_{3} \\
w_{2} \\
v_{3}
\end{array}\right|
$$

$$
\begin{align*}
& y=\left(\begin{array}{c}
-d_{2} \\
2 d_{1}-d_{2} \\
0 \\
0
\end{array}\right)-\left(\begin{array}{c}
2 w_{2}+3 w_{3} \\
w_{2}+w_{3} \\
0 \\
0
\end{array}\right]-\left[\left.\begin{array}{c}
2 z_{3}+z_{4} \\
z_{3}+z_{4} \\
z_{3} \\
z_{4}
\end{array} \right\rvert\,\right. \tag{76}\\
& \left.=\left\lvert\, \begin{array}{rrrrr}
-d_{2}-2 w_{2} & -3 w_{3} & -2 z_{3} & -z_{4} \\
2 d_{1}-d_{2} & w_{2} & 2 w_{3} & & z_{3}
\end{array}-z_{4}\right.\right),
\end{align*}
$$

were z_{3}, z_{4} arbitrary, w_{2}, w_{3} integers, and d_{1}, d_{2}, d_{3} satisfy

$$
\left.\left(\begin{array}{l}
0 \tag{77}\\
1 \\
2
\end{array}\right] \leqslant\left\{\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right] \leqslant \left\lvert\, \begin{array}{l}
2 \\
3 \\
5
\end{array}\right.\right]
$$

and

$$
\begin{equation*}
2 d_{1}+d_{2}+d_{3}=\text { integer } \tag{78}
\end{equation*}
$$

References

[1] A. Ben-Israel, Lectures on generalized inverses, Vorthwestern University, Evanston, Ill. (1967).
[2] A. Ben-Israel and A. Charnes, Contributions to the theory of generalized inverses, J. Soc. Ind. Appl. Math. 11 (1963) 667-699.
[3] A. Ben-Israel and A. Charnes, An explicit solution of a special class of linear programnaing problems, Operations Res. $16(6)$ (1968).
[4] A. Bjerhammer, Applications of calculus of matrices to methods of least squares; with special reference to geodetic calculations, Kungl. Tekn. Hogsk. Handl. 49 (1951); reviewed in Math. Rev. 14, 1127.
[5] A. Bjerhammer, A generalized matrix algebra, Kungl. Tekn. Hogsk. Handl. 124 (1958); reviewed in Math. Rev. 20, 7038.
[6] V.J. Bowman, The structure of integer programs under the hermitian normal form, Working Paper 76-70-1, Graduate School of Industrial Administration, Carnegie-Mellon University. . Pittsburgh, Pa. (1971).
17) V.J. Bowman and C.-A. Burdet, On the general solution to systems of mixed-integer linear equations, Management Sciences Research Report No. 286, Graduate School of Indus:rial Administration, Carnegie-Mellon University, Pittsburgh, Pa. (1972).
18|A. Charnes and W.W. Cooper, Management Models and Industria: Applications of Linear Programming, Vols. I and II (Wiley, New York, 1961).
[9] A. Charnes and M. Kirby, Modular designs, generalized inverses, and convex programming, Operations Res. 13 (1965)836-847.
[10] R.E. Cline, Representations for the generalized inverse of matrices with applications in linear programming, Doctoral Thesis, Purdue University, Lafayette, Ind. (1963).
[11] G.B. Daritzig, Linear Programming and Extensions (Princeton Univ. Press, Princeton, N.J., 1963).
[12] A.G. Fisher, On construction and pronerties of the generalized inverse, SIAM J. Appl. Math. 15 (1967) 269 - 272.
[13] MF. Hunt and C. Ward, A generalized inverse which gives all the integer solutions to a system of linear equations, SIAM J. Appl. Math. 19 (1970) .
[14] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (3) (1955) 406-413.
[15] L.D. Pyle, The generalized inverse in linear programming, Doctoral Thesis, Purdue University, Lafayette, Ind. (196:
[16| P.D. Robers and A. Ben-Israel, A suboptimization method for interval linear programming, new method for linear programming, Linear Algebra and Appl. 3 (1970) 383-405.

[^0]: - This research was partly supported by agrent from the Farah Foundation, ONR Contracts N00014-67-A-0126-0008 and N00014-67-A-0126-0009 with the Center for Cybernetic Studies, The University of Texas.

