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In this paper we present necessary and sufficient conditi 'ns for the exister:ce of solu
tions to more general systems of linear diophantine equatioi:s and inequalities than have
previously been considered. We do this in terms of variants »ad extensions of generalized
inverse concepts which also permit us to give representation- of the set of all solutions to
the systems. The results are further extended to mixed integ-r systems.

1. Introduction

We present in this paper necessary and sufficieni conditions for the
existence of solutions to the gencral system of lin:ar diophantine equa-
tions

AXB=C,
X integer.
and to the linear diophantine system of inequaliti>s
DLAXBLC,
X integer,
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where 4. B, C and D are matrices of rational numbers. If solvable. the
paper gives a representation to the set of all solutions of the correspond-
ing systems.

The results of the first part of this paper are then extended to mixed
integer systems.

2. Preliminaries and notations

We denote by

R” the n-dimensional real vector space,
I the identity matrix with dimension as needed.

For any two m X n real matrices A and B,
A 2 B denotesg;; > b,-j, i=1,..mj=1,..,n;
A integer means a;; integer,i=1,...,m j=1,...m
AT denotes the transpose of 4;
R{A) denotes the range space of A;
N(A) denotes the null space of A.

ror a fixed m X # real matrix A, consider the four matrix equations

(1 AXA=4,
(2) XAX=X,
(3) (AX)T=4X,
(4) (XA = XA .

We denote (following the notation of [1]) by A{i.j. ..., k} the set of
n X m real matrices X satisfying equations (), (j), .... (k) (1<, j. ..., k <4).

These sets A{i,j,.... K} (1< i,j, ..., k < 4) are nonempty because
A{1,2,3.4}is nonempty {13].
A matrix X € 4{i.j, ..., kK}is called an “*{i,j, ..., k}-g.i.” (generalized in-

verse) of 4. The 71, 2, 3,4}-g.i. of A is unique, and is the Moore--Penrose
generalized inverse denoted by A% (see [12,13]).

For many applications a weaker g.i. is sufficient. Thus for solving lincar
equations "{1}-g.i.”" are sufficient as shown by the following:

Lemma 2.1 (see [4,14)). The linear equations
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v

(5) Ax=b

are solvable it and only if foran. T € A1},
(6) ATb=b

in which case the general solution of (5) is

(7N x=Th+([-TA)y, v arbitrary .

The set A{1}is represented in terms of one of its elements as follows:

Lemma 2.2 (see [4]). Let R be any {1}-g.i. of A. Then
(8) A{1}={RAR+Y - RA Y AR: Y arbitrarv n X m real matrix}.

3. Existence of sc'ations to linear diophantine equations

Definition 3.1. If T € A{i.j. ...k} (1 <i,j, ...,k <4} and TA is integer.
then T is called a “left integer {i. J. ..., k}-g.i.”" of A and will be denoted
{i.], ... K}-Li.gi. of A. (This generalizes a definition of Bowman and
Burdet [7].)

S:nce for every matrix A there exists a unique {1, 2, 3.4 }-g.i.. either
A’ A isinteger and then A% is the {1, 2, 3,4}-Li.g.i. of A, or there is no
{1,2,3,4)-Li.gi. of A.

The set of all {i, j, ..., k}-Li.g.i. of A will be denoted by AH{i.j, ... k}.

In the same way, we define a r.i.g.i. of A to be a matrix S such that
AS isintegerand Sis {i,]. ..., k}-g.i. of A.

The setof all {i.j. ... k}-r.i.g... of A will be aenoted by A{"‘{i,j kY.

Theorem 3.2. The linear equcicns

(AXB=C,
(9)
X integer

are solvable if and only if for any T< A1y and S € B}"{ 1},
() TCS is integer, and
(NATCSB=C
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in which case the general solution of (9) is

(10) X=TCS+Y-~TAYBS, Y integer .

Proof. Suppose X satisfies (9), then
C=AXB=ATAXBSB=ATCSB,
hence (i1) holds, and
TCS5=TAXBA

is integer since 7. X and BS are all integer, hence (i) holds.

Conversely. f C=A4 TCSB, then TCS is a particular solution of (9)
because of proposition (i). Now in order to get the general solution of
(9) we have tosolve A X B =0, X integer. But any expression of the
fom X =Y - TAYBS, Yintcger, satisfies 4 X B = 0, X integer, and
conversely if A X B =0, X integer, then X =X — T4 X B S which com-
pletes the proof.

In order to find a representation for A{“{ 1} we consider now that
, AXA=A4,
(i1 XeAt{l} e
XA integer.
Sabstituting
(12 Y=XA4
in (11), we obtain

[AY=4YI=4,
(13)

rr——.

Y integer.

The systera (13 has a solution {we assume it); hence the general solu-
tion of (13) can be written as:

(14) Y=TAR+Z-TAZIR,
Z integer, TeAl{l}, R=Iel}{1}.

From (12) and (14) we conclude that in order to find an X which solves
£11), we have to solve the following:
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IXA=TA+Z - TAZ.
(15)
X integer.

It we assume again that (15) has a solution, then its ~¢._cral solution
can be written as:

(l16) X=|TA+Z -TAZIS+V - VAS,
Te A1}, SeAf{l}, Z V integers,
or by changing order we obtain
(r7n X=TAS+(U-TAYLZS+V(U - AS),
Z V integers.
Lemma 3.3. Given any pair of matrices T and S .s-ﬁch that T € A{“{ 1}.
S e AR{13, then the set A,L{ 1} can be expressed as
(18) AN =(X:X=TAS+(-TAZS+V({ - AS),

Z. Vintegers}.

:E‘
Proof. Foliows immediately from the procedure al.ove and the fact that

| , AXA=4.
(19) XeAf {1}
K A integers.

In a similar way we can find the represcntation of the set AR {1} in
terms of a given pair T, S satisfying T€ A}F{1} and S€ AR{1}.

Lemma 3.4. Given any pair of matrices T and S such that T € A}‘{ 1},
Se AR{1Y, then the ser AR{1} can be expressed as

(20) AR =(X:X=TAS+TZU - ASHY+U - TNV,

Z, ¥V integers}.

Proof. Follows in a similar way to [ emma 3.3 above.
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Remark 3.5. We shall sometimes use A} and AR to denote elements of
A,L{ 1} and A{"{l i, respectively.

Corollary 3.6. Tle general solution of the vector equation

Ax=b,
2D ,

X integer
is

x=Th+11-TA).
where v is intege-and T € A}"{ 1}, provided that the system (21) has a
solution.
Corollary 3.7. A necessory and sufficient condition for the equations
,‘ AX=C,

(22) l XB=D,

X integer

to have a common solution is that each of the systems

AX=C,
(23) !
X integer
and
[ XB=D,
(24)

lX integer
will individually have a soluition and that

(25) J‘iD=C4B-

Proof. The condition is obvious'y necessary. To show that it is sufficient
let us substitute for X in (22) the following:

(26) X=AtC+DBR ~AtADB}R.
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Using row the required conditions
AAFC=C  (solvability of (23)),
(27) ‘ DBRB=D (solvability of (241) .
"AD=CB ((25))
we obtain

AX

]

AAFC+ADBY - AapADAR

C+ADBR - ADBR=C,

XB=ALCB+DBRB A} ADBRZ

=AFCB+D - AFCB=D,

X=atc+DBR AlADBY

is integer as a sum of integer terms, which compietes the proof.

4. Existence of solutions to linear diophantine inequalities

We now turn to consideration of systems of hinear diophantine in-
equalities and obtain analogous results to the atove.
Ceasider the set of inequalities

(28) A< Ax < b,

where 4 is an m X n real matrix and a and b are real vectors.

Lemma 4.1. The set of linear inequalities (28) has a solution if and only
if there exists a vector d, a < d < b, such that for T € A{1},

(29) Ald=d

in which case the set of «ll solutions to (28) can be expressed as

(x x=Td+(I -~ TA)y, y arbitrery, d is any vector such)

E thatas< d< b, and ATd=d

(30 S=



240 A. Charnes, F. Granot [ Dic phantine solutions to linear equations

Proof. Follows immediately from Lemma 2.1.

Theorem 4.2. The diophantine set o} inequalities

‘ D<AXB<LC,
(2)
X integer

has a non-emptyv set of solutions if and only if there exists a matrix E,
D<.<C suhthat for Te A}‘{l} and § < A}‘{]}.

(i) TE S is integer,

(iWATESB=E.
Inwhich case the set of all solutions to (31) can be expressed as

X:X=TES+Y ~-TAYBS, Y arbitrary,

"

(32) “ R )
D < E < Csuch that (i) and (i1} above are s. tisfied

Proof. Similar tc¢ that o Theorem 3.2 hence omitted.

Corollary 4.3. Thie set of diophantine ineq::alities

fa< Ax< b,
(33)
X Iinteger

has a non-empty set of solutions if and only if there exists a vector d,
a< d< b, and the svstem Ax = d, x integer, is solvable, in which case
the set of all the solutions to (33) is given iy

4 R [x:x= A,Ld +yv - A,LAy. v arbitrary integer
(34) = | |
la<d<b. Ald integer and A Atd=d

5. The set of all solutions represented in terms of special Li.g.i. and r.i.g.i.

In the follcwirg we shall represent the set of all the solutions to the
diophartine system of inequalities in terms of special Li.g.i. and r.i.g.i.
Let #/ be any unimodular non-singular integer matrix such that
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35  Au=k= (5 0).

K, O,
where K is an r X r matrix, and r is the rank of A. It is casy to see that

36)  Al=H (gil g)

since

K,' 0 I ¢
3 l - ]= ( ) -A1=. .
(37) H (0 o) KH 1= H 0 0 H integer

and

Kooy
38) o (0 0) € A1}

Similarly let £ be a unimodular non-singular integer matrix such that

(39) EA=L-= (3‘ (L)?) .

where L, is an r X r matrix. Thus

40)  4R= (éf1 g) E

Since

-1
41) AAR=E1L (gl g) E=F"! (6 8) E isinteger .

and

-1
L 0) Ee A{l}.

9]
(42) (0 0)

A1} end AR{1} can now be expressed in terms of H, £, K and L.

Anothe: cepresentation of the set R of all the solutions to (33} can be
obtained from (36) and (34). The requirement that A}d should be in-
teger turns c.it in this case to be

Kitooy
(43) H (0 0) d = integer .
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Since H is a unimodular integer matrix, (43) is equivalent to
K;!

0) P
0 0 d = integer .

(44) (
The requirement AA}d = d can be written in the above case as

L K, 0) 1y (K‘,"' 0) _
o K, I"" I.
145) (Kz 0 H'H 0 0 d=¢

If d is partitioned tod = (i‘:,i), where d; i5 an r colump vector, then (45)
is equal to
(1! = dl N
P
Kz K] dl = (12
and hence (34) for the above case can be written as

ooy (KT 0) (1 0) .,
X:x H(O 0 d+y - H 0 0 H 1]

(47) R = . i el
) y arbitrary integer, and a < d < b such that K, ldl’

is integer and K, K 'd, = d,

6. Characterization of solutions to mixad integer systems

Consider the mixed integer system
) {aQA.\'+B,1’<b_,
{48) _
l.\' integer .

?he set of all the solutions to (48) wili be obtained by solving the
system
; ij+B_1'=d,
(49) i
‘X integer,
for any vector d such that

(56) asd<b.
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Let us denote

(&1D) Ax=gq

and solve first

(52) By=d--¢q.

If T is any matrix such that T € B{1}, then (52) is solvable if and only if
(53) BT(d - q)=d - q.

Thus for every a < d < b only the values of g satisfying

(54) (- BT)y=W- BN

are acceptable. By substituting (51) in (54), we obtain

(55) (!  BTYAx=(I - BT)d.

Thus we conclude:

Lemma 6.1 The mixed integer system (48) has a soluticn if and only if
there exists a vector d. a < d < b, such that the diophantine svstem

/ [~ BT Ax=( - BT)d.
(36)

tx integer

has a solution, or more preciscly, if there exists a vector d, a < d < b.
such that

() [(1 - BTYALVYUI - BT1d is integer,

(i) (/ - BT)A{( - BT)A);(I - BT)d = -- BT)d,
in which case the set of all the solutions to (48) is given by
(:) x= (- BTYALU - B |
© +U-[U- BDAILU - BT Alw.
y=Td - TAIU - BT)AI}U - BT)Ad

S TAU - [0 BTYANU - BTYA v -t TB)z

(57) R =

z arbitrary, w integer and d any vector,

a < d < b, whicit satisfies (1) and (i)
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Proof. Follows from (30) and (3%).

Example 6.2. Consider the system of mixed integer inequalities:

+

y3
vy - va< 2.

<3

o O -

‘ 0< Xy + 2.Y2 + Vi + 2,}’2 -
, | -2<x + Xy ¥y
(53) l -3 Xot+2x,4 2y yy -3yt yy< |
X1, Xy, X3 integer
Thus
I 2 o] 12
(5%) A=11 0 1}, B= -1 0
0t ’_’.l 21
and
3 0
(60) b= 12}, a= |-2
1 -3
Let T € B{1}. then T can be of the form:
boeg -l
1 1
(61) T=|; 2 0
) “'i’ "‘l
0 O
and
1 2 -1 o]y -3
(62) BT= -1 0 1 -1 L n
2 01 -3 1)y -2
0 O
I 4][1 2 -1
L ! of (-1 0 1
{63) TB = é 'y l 5y 1 -3
0 Ol

0
By substituting (62) in (55) we obtain
(64) (I -BT)YAx=0=( - BT)d=0.

OO O =

O -0

(

o -0 0

o O

i

€ P = W
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Hence (55) is always satisfied and the general solution to (58) is
(65) X=w,
(66) y= Td - (- BT)Z = %‘dl - %(12 - 113 +

324

rdy + ¥dy 24
fdy - 3dy - dy+ iz
0 -~ Z4

24 is arbitrary, w integer, d any vector such that

0 (11 3
2 < < |2
-3 dy 1

Example 6.3. Consider the system of mixed integer inequalities:

0 < 3)&'1 + .\.2 + _\'3 + _l'l - _Vz o J’3 < 2
(67) 1 < - 24\'2 : 3.\'3 - ¥ + 2}'3 + Ya <3
2< “'SXI + X3 - ¥y + 2_}'2 — ¥4 <5

Xy, X5, X3 integers

Thus
3 1 ] 1 -1 -1
(68) A= o 2 3 B= 1|1 0 2
-5 0 1 —1 2 0
and
2 0
(69) b= 13}, a= |1
5 2)
Let 7€ B{1}, then T can be of the form:
0O -1 0
-1 1 0
(70) 7= 0 0 0
0 0 0

245
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and
| S B | ¢ 0o 1 0
(71 BT= |-1 0 2 1l -1 ol =
-1 20 -1 O 0 0 L
0 o 0
9 -1 0 1 -1 -1 0
(72) TB=1-1 1 0} -1 o 2 1t =
0 0 ofj{-1 2 o0 -1
0O 00

occCco -

By substituting (71) in (55) we obtain

0 0 O 3 1 1
(73) (I BT)Ax=]0 0 O ¢ -2 -3}«
2 1 1 -5 0 1
0 0 0 0 0 0
=10 0 0) x=1]0 0 0}d
I 0 0 201 1
A Li.g.i. of the matrix
0 ¢ 0
6 0 O
1 G 0]
15
0 0 1
(74) (/- ETYAl¥=]0 C O
N0 0
and hence the general solutica of (67) is:

2d3 +(12 + (1,3
(‘;5 ’ X = W 9

11«'3 ]

o O —
i
s e )

oo o

o0 —0
oo - o
o0 — —
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- dy 2w, + 3w 2z3 +44
oy p= [T At e
. 0 0
0 ]
—dy = 2wy - 3wy - 225 - 24
= 2d, - (12 - Wi 2“’3 - :3 4] |
<3
- 24

v.oere Iy, Zg4 arbitrary, wy, wy integers, and dy, (5. d3 satisfy

0‘ d, 2
N 1 <}d,} < |3
2 dy 5
and
(78) 2dy +d, + dy = integer .
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