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Female exposure to phenols and
phthalates and time to pregnancy:
the Maternal-Infant Research
on Environmental Chemicals
(MIREC) Study
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Objective: To assess the potential effect of bisphenol A (BPA), triclosan (TCS), and phthalates on women's fecundity, as measured by
time to pregnancy (TTP).
Design: Pregnancy-based retrospective TTP study.
Setting: Not applicable.
Patient(s): A total of 2,001 women during the first trimester of pregnancy recruited between 2008 and 2011 (the Maternal-Infant
Research on Environmental Chemicals (MIREC) Study), with 1,742 women included in the BPA analysis, 1,699 in the TCS analysis,
and 1,597 in the phthalates analysis.
Intervention(s): None.
Main Outcome Measure(s): Fecundability odds ratios (FORs) estimated using the Cox model modified for discrete time data.
Result(s): The BPA concentrations were not statistically significantly associated with diminished fecundity either in crude or adjusted
models. Women in the highest quartile of TCS (>72 ng/mL) had evidence of decreased fecundity (FOR 0.84; 95% confidence interval,
0.72–0.97) compared with the three lower quartiles as the reference group. Exposure to phthalates was suggestive of a shorter TTP, as
indicated by FORs greater than 1, although the 95% confidence interval always included 1.
Conclusion(s): Elevated TCS exposure may be associated with diminished fecundity. BPA and phthalates showed no negative impact;
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on the contrary, some phthalates might be associated with a shorter time to pregnancy. A major
limitation of the study was that only one measurement of exposure was available for each
woman after conception. Further research is necessary to test these findings. (Fertil Steril�
2015;103:1011–20. �2015 by American Society for Reproductive Medicine.)
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E ndocrine-disrupting chemicals
(EDCs) have the potential to inter-
fere with hormone functions.

Their ubiquitous presence in the envi-
ronment coupled with the detection of
several EDCs in large biomonitoring sur-
veys (1, 2) has raised concern about their
possible adverse health effects. Because
the endocrine system is essential for
sexual development and reproductive
functions, research is emerging about
the effect of EDCs on human fecundity,
defined as the biologic capacity for
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ORIGINAL ARTICLE: ENVIRONMENT AND EPIDEMIOLOGY
reproduction (3). Some of these chemicals have long half-lives,
allowing bioaccumulation and persistence in the environment.
On the opposite end of the spectrum are those chemicals with
short elimination half-lives, considered nonpersistent, though
their high-volume production makes them a common source
of human exposure. Bisphenol A (BPA), triclosan (TCS), and
phthalates belong in this latter group.

Exposure to BPA is common, with more than 90% of the
populations of the United States and Canada having detect-
able urinary concentrations (1, 2). Although BPA has
recognized endocrine disrupting properties in animals (4),
there is limited information regarding the effect of BPA
exposure on human fecundity. Several studies conducted in
infertile couples seeking assisted reproductive technology
(ART) have suggested reproductive effects (5–7), but only
one study has assessed the impact of BPA on couple
fecundity in a population-based setting, the U.S. LIFE Study
(8). This prospective cohort of 501 couples, recruited upon dis-
continuing contraception to become pregnant, reported no
association between female or male BPA urinary concentra-
tions and time to pregnancy (TTP), an epidemiologic metric
widely used for the study of human fecundity (9).

Triclosan, a broad-spectrum phenolic biocide with activity
against bacteria and fungi, is used in personal care products
(10). Triclosan was detectable in about 75% of the urine sam-
ples collected as part of NHANES survey of the U.S. population
(11, 12) and the 2009–2011 Canadian Health Measures Survey
(2). It has a similar structure to known EDCs, including
polychlorinated biphenyls (PCBs), polybrominated diphenyl
ethers (PBDEs), and BPA, and to thyroid hormones (13).
These structural similitudes, coupled with some limited
evidence from experimental studies of effects on diverse
hormones, suggest that TCS may influence endocrine
function and possibly the reproductive axis (13).
Epidemiologic studies on TCS have been scarce. Two studies
reported no significant impact of prenatal exposure to TCS
on birth size (14, 15). A recent analysis of urine samples from
NHANES 2003–2008, reported a positive association between
TCS and body mass index (BMI) (16). No studies assessing the
effect of TCS on TTP have been conducted to date.

There is evidence suggesting that several phthalates may
be endocrine disruptors (17) and may affect development and
reproduction (18, 19). A large number of phthalate
metabolites are detectable in more than 95% of the
populations in the United States and Canada (2, 20), and in
women of reproductive age (21). Nonetheless, there is a
paucity of studies assessing the effect of phthalates on
women's fecundity. In Generation R, a large pregnancy
cohort study conducted in the Netherlands, occupational
exposure to phthalates was assessed using a job-exposure
matrix, and was reported to be suggestive of longer TTP
(22, 23). In Italy, concentrations of several phthalate
metabolites were assessed in 56 infertile couples from an
ART center, and they were found to be significantly higher
than in the control group of fertile couples (24). Recently, in
the LIFE Study, no phthalate metabolite in female urine was
statistically associated with a longer TTP, although one
metabolite [mono (3-carboxypropyl) phthalate] was associ-
ated with a shorter TTP. In men, urinary concentrations of
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monomethyl, mono-n-butyl, and monobenzyl phthalates
were associated with a longer TTP (8). Of note, although
most of the literature assessing the adverse health effects
of phthalates has been focused on the effect of individual me-
tabolites; some studies have suggested that simultaneous
exposure to multiple phthalates may have a cumulative
impact (25).

There is limited research exploring the effects of nonper-
sistent EDCs on TTP. Most studies to date have focused on
ART outcomes and male exposures, despite the fact that fe-
male reproductive function is also susceptible to hormonally
active chemicals (26). To this end, data from the Maternal-
Infant Research on Environmental Chemicals (MIREC) Study,
a Canadian pregnancy and birth cohort, was analyzed to
assess the effect of BPA, TCS, and phthalates on women's
fecundity, as measured by TTP.
MATERIALS AND METHODS
Population and Study Design

The MIREC Study is a pregnancy cohort of 2,001 women re-
cruited in 10 cities across Canada between 2008 and 2011
(27). Women were approached during the first trimester of
pregnancy at participating hospitals and clinics and were
observed for a total of five visits up to 10 weeks postpartum.
A detailed questionnaire was administered during the first
study visit (<14 weeks' gestation) that included information
on demographics, present medical and obstetric history, and
lifestyle characteristics.

To determine the TTP, women were asked, ‘‘How long did
it take you to get pregnant with this pregnancy?’’ (in months).
Women were further asked about the last type of birth control
method the couple had used before this pregnancy. Those who
had used some method (75% of the cohort) were asked if they
had stopped it before the index pregnancy (89%) or if the
pregnancy was the result of a birth control failure (11%). In
this way, we assumed that if it was not a birth control failure
the index pregnancy was from unprotected intercourse.

The exclusion criteria were as follows. Eighteen partici-
pants withdrew from the study, and all their data and samples
were destroyed. We excluded women who had missing data
for the specific compound/group studied (46 for BPA, 96 for
TCS, and 211 for phthalates), TTP (14 for BPA and TCS, and
15 for phthalates), or specific gravity (n ¼ 3). We also
excluded women who required egg donation (n ¼ 4) or re-
ported male factor infertility (n ¼ 26), as well as women
whose index pregnancy was the result of a birth control fail-
ure (148 for BPA, 141 for TCS, and 154 for phthalates). Thus,
1,742 women were included in our BPA analysis, 1,699 in the
TCS analysis, and 1,597 in the phthalates analysis.

The study was approved by ethics committees at Health
Canada and Sainte-Justine University Hospital Center, as
well as the hospitals affiliated to the study across Canada.
Written informed consent was obtained from all participants.
Analytic Methods

As part of the biomonitoring component of MIREC, a spot
urine sample was collected in polypropylene cups during
VOL. 103 NO. 4 / APRIL 2015
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the first trimester visit. These samples were aliquotted into
30-mL Nalgene tubes, frozen at �20�C within 2 hours of
collection, and shipped on dry ice to the MIREC coordinating
center in Montreal where they were stored at �30�C. Urine
samples were shipped in batches to the laboratory for anal-
ysis. Chemical analyses were performed by the Toxicology
Laboratory located in the Institut national de sant�e publique
du Qu�ebec (http://www.inspq.qc.ca/ctqenglish/), which is ac-
credited by the Standards Council of Canada under ISO 17025
and CAN-P-43. The accuracy and precision of the analyses
are evaluated on a regular basis through the laboratory's
participation in external quality assessment programs (27).

As part of the initial MIREC protocol, urine samples were
analyzed for bisphenol A (BPA) and 11 phthalate metabolites
(those for which the laboratory had a method available at the
time of the study design): low molecular weight [mono-n-
butyl phthalate (MnBP), mono-ethyl phthalate (MEP),
mono-benzyl phthalate (MBzP), mono-methyl phthalate
(MMP)]; intermediate molecular weight [mono-cyclo-hexyl
phthalate (MCHP)]; and high molecular weight [mono-
isononyl phthalate (MiNP), mono-n-octyl phthalate (MnOP),
mono-(3-carboxypropyl) phthalate (MCPP), mono-(2-
ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-oxo-hexyl)
phthalate (MEOHP), and mono-(2-ethyl-5-hydroxy-hexyl)
phthalate (MEHHP)] (28). Subsequently, additional research
funds were obtained for the triclosan (TCS) analysis as part
of formative research for the U.S. National Children's Study.
This analysis was restricted to those women who agreed to
participate in the MIREC Biobank (98% of the cohort).

Urinary total BPA (free plus conjugated) concentrations
were quantified using an established protocol. Samples were
analyzed by gas chromatography coupled with tandem
mass spectrometry (GC-MS/MS) (INSPQ method E-454) (28).
Phthalate metabolites were analyzed by liquid chromatog-
raphy coupled with tandem mass spectrometry (LC-MS/MS)
with ultra-performance liquid chromatography coupled
with tandem mass spectrometry (UPLC-MS/MS) (INSPQ
method E-453). Further details are described in Arbuckle
et al. (28).

For the TCS analysis, sensitive LC-MS/MS methods were
developed for the analysis of free and conjugated forms TCS
in urine. Detailed quality assurance/quality control (QA/QC)
procedures are described in Provencher et al. (29). To account
for urine dilution, the specific gravity was measured in
thawed urine samples by a refractometer (UG-1, Atago
3461; Atago U.S.A.).

Field blanks were included to assess the potential
contamination from the material used for collection and stor-
age of urine samples as well as from the environment of
collection sites. Results did not show any evidence of contam-
ination (28, 30).
Statistical Analysis

Descriptive statistics, including the percentage detected, the
median, and the geometric mean, were computed for all
chemicals. Concentrations below the limit of detection
(LOD) were set to the LOD divided by 2. The total TCS was
calculated by summing the free and conjugated forms. We
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considered the effect of total BPA, total TCS, and each indi-
vidual phthalate metabolite independently. In the case of
phthalate metabolites, we also categorized them into low
and high molecular weight (LMW and HMW) and calculated
the sum of their molecular weights in each category as a mea-
sure of total LMW and HMW phthalates. In addition, we
calculated the estrogenicity equivalency factor (EEF) as pro-
posed by Braun et al. (31).

We also considered different alternatives for modeling
exposure. First, biomarker concentrations were log trans-
formed and divided by its standard deviation (32). Second,
concentrations were categorized a priori into quartiles.

Fecundability odds ratios (FORs) were estimated using the
Cox model modified for discrete time data, which allows for a
cycle-varying intercept (33). The FORs estimate the odds of
becoming pregnant each cycle, given exposure to the specific
compound conditional on not being pregnant in the previous
cycle. A FOR <1 denotes a reduction in fecundity or longer
TTP, and a FOR >1 denotes a shorter TTP. The TTP was
censored at month 13. Linearity and proportional hazard as-
sumptions were verified (33).

The potential confounders were maternal age, smoking,
education, and household income, which have been identified
as predictors of exposure to BPA, TCS, and phthalates in the
MIREC cohort (28, 30). In addition to the covariates that also
impact fecundity, body mass index (BMI) was included in the
adjusted models (3). Maternal and paternal age were highly
correlated (r ¼ 0.73), which precluded the inclusion of
paternal age into the model. We did not include parity in our
model because its adjustment can induce overadjustment
bias (34).

To account for urine dilution, specific gravity was
included as a covariate in the regression model (35). We
also evaluated the possible interactions between specific
gravity and the time of urine collection, as was evidenced
in previous analyses conducted by our group (28). Nonethe-
less, we did not include interactions in our final models
because none were observed. Statistical analysis was per-
formed using STATA 10.0 (Stata Corporation), and SAS 9.3
(Statistical Analysis System) specifically for the discrete-
time Cox proportional models.
RESULTS
The characteristics of the study population are presented in
Table 1. The distributions of demographic and lifestyle char-
acteristics were similar for the three compounds/group stud-
ied (i.e., BPA, TCS, and phthalate metabolites). The mean
maternal age was 32.8 years (standard deviation [SD] � 5.0)
years, and themean paternal age was 34.7 (SD� 5.6). Theme-
dian gestational age at interview was 12 weeks, ranging from
6 to 14 weeks. Most participants included in the analysis
(81%) were born in Canada; about two-thirds had a university
degree, and more than one-third reported a household income
higher than $100,000 CAD. More than half the women had
had at least one prior pregnancy with a live birth, and about
15% were obese or active smokers during the preconception
period. Maternal and paternal age, parity, and prepregnancy
BMI were associated with TTP.
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http://www.inspq.qc.ca/ctqenglish/


TABLE 1

Association of study population characteristics with TTP by chemical measured: the MIREC Study.

Characteristic

BPA (n [ 1,742) TCS (n [ 1,699) Phthalates (n [ 1,597)

N (%)a P valueb N (%)a P valueb N (%)a P valueb

Maternal age (y), mean (SD) 32.84 (4.95) < .001 32.84 (4.91) < .001 32.85 (4.96) < .001
Paternal age (y), mean (SD)c 34.76 (5.68) < .001 34.74 (5.58) < .001 34.74 (5.69) < .001
Gestational age (wk), median (min–max)d 12 (6–14) .04 12 (6–14) .03 12 (6–14) .05
Education .38 .31 .40

Some college or less 237 (13.6) 229 (13.5) 211 (13.2)
College diploma 398 (22.8) 389 (22.9) 365 (22.9)
Undergraduate 644 (37.0) 631 (37.1) 591 (37.0)
Graduate (M.Sc., Ph.D.) 463 (26.6) 450 (26.5) 430 (26.9)

Country of birth .92 .93 .81
Canada 1,408 (80.8) 1,376 (81.0) 1,294 (81.0)
United States 27 (1.6) 27 (1.6) 24 (1.5)
Mexico 8 (0.5) 8 (0.4) 6 (0.4)
China 16 (0.9) 15 (0.9) 16 (1.0)
Other 283 (16.2) 273 (16.1) 257 (16.1)

Household income .18 .16 .21
<$60,000 363 (20.8) 353 (20.8) 327 (20.5)
$60,001–100,000 614 (35.3) 602 (35.4) 566 (35.4)
>$100,000 685 (39.3) 671 (39.5) 633 (39.6)
No response 80 (4.6) 73 (4.3) 71 (4.5)

Parity conditional on gravidity < .001 .002 .001
No prior pregnancy 499 (28.7) 485 (28.5) 459 (28.6)
Prior pregnancy

Without live birth(s) 270 (15.5) 266 (15.7) 253 (16.0)
With live birth (s) 972 (55.8) 947 (55.8) 884 (55.4)

Maternal smoking .77 .78 .54
Never 1,078 (61.9) 1,049 (61.8) 993 (62.2)
Former 398 (22.9) 390 (23.0) 360 (22.6)
Currente 264 (15.2) 258 (15.2) 242 (15.2)

Prepregnancy BMI .01 .01 .01
<24.9 1,031 (63.5) 1003 (63.3) 960 (64.4)
25–29.9 354 (21.8) 346 (21.9) 326 (21.8)
>30 238 (14.7) 234 (14.8) 205 (13.8)

Paternal smoking 1.00 1.00 .98
No 1,219 (83.0) 1,191 (83.0) 1,117 (82.7)
Yes 249 (17.0) 244 (17.0) 233 (17.3)

Note: BMI ¼ body mass index.
a Values are n (%), unless otherwise stated.
b P values for the association with time to pregnancy: likelihood ratio for continuous variables, log rank test for categorical variables.
c Paternal age was missing in 234, 224, and 210 participants for BPA, TCS, and phthalates, respectively.
d Gestational age was missing in two participants.
e Includes women who quit smoking during pregnancy or 1 y before.
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The distribution of TTP was similar across chemicals, with
a median time of 2 months for the three compounds/group,
and a 25th percentile of 1 month. Although the 75th percen-
tile was 5 months in the case of BPA and TCS, it was 4 months
in the case of phthalates. Detectable urinary concentrations of
total BPA were found in 87% of the samples, and total TCS
was detectable in more than 99% (Table 2). As for phthalates,
six metabolites were detectable in more than 98% of the sam-
ples (MnBP, MEP, MBzP, MEHP, MEOHP, and MEHHP), and
MCPP was detectable in 82%. However, four metabolites
(MMP, MCHP, MiNP, and MnOP) were detectable in fewer
than 14% of the samples, and for this reason they were
excluded from further analyses.

As Table 3 reflects, BPA concentrations were not signifi-
cantly associated with diminished fecundity either in crude or
adjusted models, independent of the way in which concentra-
tions were considered (i.e., continuous, quartiles of BPA, or
comparing the highest quartile with the three lower quartiles).
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As for TCS, 1 standard deviation increase in the log trans-
formed concentrations of TCS was associated with longer
TTP, but the 95% confidence interval (CI) included 1 (FOR
0.94; 95% CI, 0.88–1.01). The same pattern was observed
for the highest TCS quartile of exposure compared with the
lowest quartile (FOR 0.89; 95% CI, 0.74–1.07). It is note-
worthy that when we considered the three lower quartiles as
the reference group, women in the highest quartile of TCS
(>72 ng/mL) had evidence of decreased fecundity (FOR
0.84; 95% CI, 0.72–0.97) (Fig. 1; Table 3).

All phthalate metabolites had a similar pattern of associ-
ation with TTP independent of the variable transformation or
the variables included in the statistical models. In general,
exposure to phthalates was suggestive of a shorter TTP, as
indicated by FOR >1, although the 95% CI always included
1 (Table 3; Supplemental Table 1, available online). Total
LMW and HMW metabolites were positively associated with
TTP, although the values were not statistically significant
VOL. 103 NO. 4 / APRIL 2015



TABLE 2

Bisphenol A, triclosan, and phthalate metabolites (ng/mL) in maternal urine.

Analyte LOD <LOD, n (%) Median Minimum Maximum GM (95% CI)

Bisphenol A (BPA), n ¼ 1,742 0.2 226 (13) 0.8 <LOD 130 0.78 (0.73–0.82)
Triclosan (TCS), n ¼ 1,699 0.12 20 (0.1) 8.3 <LOD 6,784 11.93 (10.67–13.34)
Phthalate metabolites (n ¼ 1,597)

Low molecular weight
Mono-n-butyl phthalate (MnBP) 0.20 4 (0.25) 12 <LOD 3,100 11.44 (10.78–12.15)
Mono-ethyl phthalate (MEP) 0.50 2 (0.13) 28 <LOD 13,000 32.09 (29.67–34.70)
Mono-benzyl phthalate (MBzP) 0.20 10 (0.63) 5 <LOD 420 5.10 (4.79–5.44)
Mono-methyl phthalate (MMP) 5.0 1,375 (86.1) 2.5 <LOD 1,000 3.03 (2.95–3.11)

Intermediate molecular weight
Mono-cyclo-hexyl phthalate (MCHP) 0.20 1,482 (92.8) 0.1 <LOD 77 0.12 (0.11–0.12)

High molecular weight
Mono-isononyl phthalate (MiNP) 0.40 1,574 (98.6) 0.2 <LOD 6.2 0.21 (0.20–0.21)
Mono-n-octyl phthalate (MnOP) 0.70 1,568 (98.2) 0.35 <LOD 7.9 0.36 (0.36–0.36)
Mono-(3-carboxypropyl) phthalate (MCPP) 0.20 290 (18.2) 0.93 <LOD 370 0.87 (0.81–0.93)
Mono-(2-ethylhexyl) phthalate (MEHP) 0.20 24 (1.5) 2.2 <LOD 340 2.27 (2.14–2.40)
Mono-(2-ethyl-5-oxo-hexyl) phthalate (MEOHP) 0.20 5 (0.31) 6.5 <LOD 980 6.42 (6.06–6.81)
Mono-(2-ethyl-5-hydroxy-hexyl)phthalate (MEHHP) 0.40 14 (0.88) 9.4 <LOD 1,200 9.21 (8.65–8.79)

Note: CI ¼ confidence interval; GM ¼ geometric mean; LOD ¼ limit of detection.

V�elez. Phenols, phthalates, and fecundity. Fertil Steril 2015.
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(Supplemental Table 2, available online). Moreover, their
FORs were of similar magnitude to those of the individual me-
tabolites. The FORs according to the EEF were also of similar
magnitude (data not shown).

We conducted a sensitivity analysis including the women
with birth control failure. In the case of BPA, the concentra-
tions were higher in women with birth control failures. The
mean difference for the log transformed concentrations was
statistically significant (P¼ .02). Including these women in
the analysis did not change our results (adjusted FOR ¼
1.00; 95% CI, 0.93–1.07). In the case of TCS, concentrations
were similar between women with birth control failures
versus those without (P¼ .92), leading to similar results using
the continuous (adjusted FOR¼ 0.96; 95% CI, 0.91–1.02) and
dichotomized transformations (adjusted FOR ¼ 0.85; 95% CI,
0.75–0.98). As for phthalate metabolites, concentrations were
higher in women with birth control failures, reaching the sta-
tistical significance in the case of MBP and MBzP (P¼ .03).
Including these women in the analyses did not change our re-
sults (MBP: adjusted FOR ¼ 1.04; 95% CI, 0.96–1.14; MBzP:
FOR ¼ 1.04; 95% CI, 0.96–1.12).
DISCUSSION
The MIREC Study is the largest study to have assessed the ef-
fect of ubiquitous plasticizers such as BPA and phthalates on
women's fecundity as measured by TTP, and it is the first to
examine the potential effect of TCS. We found that urinary
concentrations of TCS at the highest quartile of exposure
were associated with a 16% reduction in fecundity. In addi-
tion, although BPA was not associated with TTP, it is note-
worthy that in the case of phthalates the FORs were almost
universally >1, suggesting a shorter TTP, although the 95%
CI included 1.

Compared with the few studies available worldwide that
have assessed concentrations of TCS in pregnant women,
VOL. 103 NO. 4 / APRIL 2015
MIREC reported the highest urinary concentration of TCS
(6,784 mg/L) but had considerably lower median concentra-
tions than the other international studies (30). Higher socio-
economic class and older age were determinants of TCS
exposure in the MIREC cohort (30). The MIREC population
tended to be more highly educated than the population of
women giving birth in Canada (27). Higher education may
be associated with postponed childbirth, hence increasing
age at the time of pregnancy attempt. Despite accounting
for all these factors in our statistical models, decreased fecun-
dity at the highest quartile of TCS exposure was maintained.
Indeed, maternal and paternal age and smoking status, recog-
nized determinants of fecundity, were similar through the
quartiles of TCS exposure (data not shown).

Because this is the first study conducted at the population
level assessing the impact of TCS on TTP, interpreting our
findings in the context of the available literature is difficult.
As recently reviewed by Dann and Hontela (13), TCS may
have endocrine-disrupting effects. Several in vitro human
cell-based assays have demonstrated the potential for TCS
to act as an antiestrogen and/or antiandrogen (36–38).
Animal studies with male rats (39, 40) have shown that TCS
decreases serum levels of testosterone and the activity of
several important steroidogenic enzymes. In addition, TCS
has been shown to be a powerful inhibitor of estrogen
sulfonation in sheep placental tissue (41), which could
impair the maintenance of pregnancy.

Finally, the homeostasis of thyroid hormones, critical for
reproductive success (42, 43), might also be a target of TCS.
The structural similarity of TCS to thyroid hormones has
prompted experimental studies on this domain (13). In vitro,
TCS was capable of inhibiting sulfation of thyroid
hormones (44). In animals, TCS exposure was associated
with decreased levels of thyroxine (T4) in female (45) and
male rats (39). However, the human relevance of the rat
thyroid studies has been questioned in the Health Canada
1015



TABLE 3

Fecundability odds ratios (95% confidence intervals) for bisphenol A, triclosan, and phthalate metabolites.

Compound Na Unadjusted Adjustedb Adjustedc

Bisphenol A (BPA)
BPA (ng/mL)d 1,742 0.99 (0.93–1.05) 0.99 (0.92 1.06) 1.0 (0.92–1.07)
BPA quartiles (ng/mL)

0.1–0.3 436 1 1 1
0.4–0.8 448 0.99 (0.84–1.17) 0.98 (0.83–1.16) 0.98 (0.82–1.18)
0.81–1.7 450 1.02 (0.87–1.20) 1.00 (0.83–1.21) 0.96 (0.79–1.17)
R1.8 408 0.93 (0.79–1.10) 0.91 (0.74–1.12) 0.95 (0.77–1.17)

BPA dichotomized (ng/mL)e

<1.8 1,334 1 1 1
R1.8 408 0.93 (0.81–1.07) 0.92 (0.79 1.07) 0.97 (0.83–1.14)

Triclosan (TCS)
TCS (ng/mL)d 1,699 0.96 (0.91–1.02) 0.96 (0.90–1.02) 0.94 (0.88–1.01)
TCS quartiles (ng/mL)

0.01–2.14 425 1 1 1
2.14–8.28 425 1.16 (0.98–1.37) 1.16 (0.98–1.39) 1.10 (0.91–1.31)
8.33–71.6 425 1.13 (0.95–1.33) 1.14 (0.95–1.36) 1.10 (0.92–1.32)
R71.7 424 0.94 (0.79–1.11) 0.95 (0.79–1.13) 0.89 (0.74–1.07)

TCS dichotomized (ng/mL)e

<71.7 1,275 1 1 1
R71.7 424 0.86 (0.75–0.99) 0.86 (0.75–0.99) 0.84 (0.72–0.97)

Phthalate metabolites
Continuous (ng/mL)d 1,597

Mono-n-butyl phthalate (MnBP) 1.04 (0.97–1.10) 1.04 (0.95–1.14) 1.02 (0.93–1.12)
Mono-ethyl phthalate (MEP) 1.02 (0.96–1.08) 1.01 (0.94–1.08) 1.00 (0.93–1.08)
Mono-benzyl phthalate (MBzP) 1.05 (0.99–1.12) 1.06 (0.98–1.14) 1.02 (0.94–1.11)
Mono-(3-carboxypropyl) phthalate (MCPP) 1.04 (0.98–1.11) 1.05 (0.97–1.13) 1.08 (0.99–1.18)
Mono-(2-ethylhexyl) phthalate (MEHP) 1.04 (0.98–1.10) 1.04 (0.97–1.13) 1.04 (0.96–1.13)
Mono-(2-ethyl-5-oxo-hexyl) phthalate (MEOHP) 1.04 (0.98–1.10) 1.04 (0.96–1.13) 1.07 (0.98–1.17)
Mono-(2-ethyl-5-hydroxy-hexyl) phthalate (MEHHP) 1.03 (0.97–1.09) 1.02 (0.94–1.11) 1.06 (0.97–1.16)

Quartiles (ng/mL)
Mono-n-butyl phthalate (MnBP)
0.1–5.1 405 1 1 1
5.2–12 409 1.02 (0.86–1.21) 1.02 (0.85–1.22) 1.01 (0.84–1.22)
13–25 397 1.06 (0.89–1.26) 1.06 (0.86–1.31) 1.08 (0.87–1.35)
R26 386 1.08 (0.91–1.28) 1.08 (0.84–1.38) 1.03 (0.80–1.33)

Mono-ethyl phthalate (MEP)
0.25–11 416 1 1 1
12–28 388 0.93 (0.79–1.11) 0.92 (0.76–1.10) 0.89 (0.74–1.08)
29–89 397 0.95 (0.80–1.13) 0.93 (0.77–1.12) 0.88 (0.72–1.07)
R90 396 1.09 (0.92–1.30) 1.06 (0.87–1.29) 1.01 (0.82–1.24)

Mono-benzyl phthalate (MBzP)
0.1–2.2 402 1 1 1
2.3–5.0 403 0.98 (0.83–1.17) 0.99 (0.83–1.19) 0.90 (0.75–1.09)
5.1–12 405 1.10 (0.93–1.31) 1.11 (0.91–1.36) 1.03 (0.84–1.26)
R13 387 1.10 (0.93–1.31) 1.12 (0.90–1.39) 1.00 (0.80–1.26)

Mono-(3-carboxypropyl) phthalate (MCPP)
0.1–0.3 404 1 1 1
0.31–0.92 394 1.13 (0.95–1.35) 1.13 (0.94–1.35) 1.09 (0.91–1.31)
0.93–2.1 400 1.12 (0.94–1.33) 1.11 (0.91–1.35) 1.08 (0.88–1.33)
R2.2 399 1.09 (0.92–1.29) 1.07 (0.86–1.34) 1.10 (0.87–1.38)

Mono-(2-ethylhexyl) phthalate (MEHP)
0.1–1.0 402 1 1 1
1.1–2.2 414 1.08 (0.91–1.28) 1.08 (0.91–1.30) 1.07 (0.89–1.29)
2.3–4.4 386 1.08 (0.90–1.28) 1.09 (0.88–1.34) 1.06 (0.86–1.32)
R4.5 395 1.13 (0.95–1.35) 1.15 (0.92–1.43) 1.13 (0.90–1.43)

Mono-(2-ethyl-5-oxo-hexyl) phthalate (MEOHP)
0.1–2.9 400 1 1 1
3.0–6.5 418 1.09 (0.92–1.29) 1.08 (0.90–1.30) 1.08 (0.89–1.30)
6.6–13 382 1.04 (0.88–1.25) 1.04 (0.84–1.29) 1.10 (0.87–1.37)
R14 397 1.11 (0.93–1.31) 1.10 (0.86–1.40) 1.18 (0.92–1.53)
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TABLE 3

Continued.

Compound Na Unadjusted Adjustedb Adjustedc

Mono-(2-ethyl-5-hydroxy-hexyl) phthalate (MEHHP)
0.2–4.1 403 1 1 1
4.2–9.4 401 1.07 (0.90–1.27) 1.06 (0.88–1.27) 1.08 (0.89–1.31)
9.5–20 409 1.04 (0.88–1.24) 1.02 (0.82–1.26) 1.09 (0.87–1.36)
R21 384 1.07 (0.90–1.28) 1.04 (0.82–1.33) 1.14 (0.89–1.47)

a Total numbers for unadjusted and specific gravity adjusted models.
b Adjusted for specific gravity.
c Adjusted for specific gravity, maternal age,maternal smoking, education, income, BMI. Due tomissing values in some covariates, the N for BPA, TCS, and phthalatemetaboliteswere 1,623, 1,583,
and 1,491 respectively.
d Log transformed and rescaled by their standard deviation.
e Dichotomized as <75th percentile versus R75th percentile.

V�elez. Phenols, phthalates, and fecundity. Fertil Steril 2015.
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assessment of TCS, which concludes that the overall database
does not currently support effects of triclosan on thyroid
function as a critical effect for risk characterization in
humans (10). Our finding of decreased fecundity warrants
additional epidemiologic studies at the population level as
well as further work related to the possibility of a disrupting
endocrine effect of TCS, as supported by some of these
experimental studies, to elucidate the potential impact of
TCS on human reproduction.

As for BPA, the only study that has assessed the effect of
BPA on couple's fecundity reported similar results to ours.
Neither female nor male BPA concentrations were associated
with TTP (8). Our sample size is almost three times larger than
the LIFE Study, so the lack of an association in the LIFE Study
was likely not due to limited statistical power. However, low
BPA exposure in both studies might explain the absence of
association, if there truly is one. The geometric mean in our
study (0.80 mg/L) and in the LIFE Study (0.63 mg/L) were lower
than those reported in NHANES 2003–2004 for females
R6 years of age (2.41 mg/L) (20) as well as in the Canadian
FIGURE 1

Time-to-pregnancy distribution for the cohort and those womenwith
urinary triclosan concentrations R71.7 mg/L (75th percentile),
adjusting for specific gravity, age, smoking, education, income, and
body mass index.
V�elez. Phenols, phthalates, and fecundity. Fertil Steril 2015.
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Health Measures Surveys (CHMS) of 2007–2009 (1.26 mg/L)
(46) and 2009–2011 (1.2 mg/L) for women 20–39 years of
age (2), although caution should be taken when comparing
these results because the substitution methods for concentra-
tions below the LOD may differ among them. Because animal
studies have suggested that BPA has endocrine-disruption
capacity, additional epidemiologic studies in populations
having higher exposures to BPA should be conducted before
making firm conclusions about the absence of its effect on
fecundity.

Altogether, it is interesting that although the experi-
mental evidence of BPA being an endocrine modulator ap-
pears to be much stronger than for TCS, no effect of BPA
was observed on TTP whereas an effect was observed for
TCS. This finding may suggest another mechanism for
impaired fecundity other than endocrine disruption or that
the experimental models evaluated to date are not a good
reflection of human fecundity. Alternatively, the association
observed with triclosan may not be causal and due to other
unknown factors.

In regards to phthalates, the interpretation of our results is
even more challenging. Most of the FORs exceeded 1, suggest-
ing a shorter TTP, although not statistically significant. In the
LIFE Study, 9 out of the 14metabolites assessed in women had
FOR>1 in the adjusted models, however with the exception of
MCPP, the CI also included 1 (5). Further, men's urinary con-
centrations of MMP, MnBP, and MBzP were associated with a
longer TTP (FOR 0.80; 95% CI, 0.70–0.93; FOR 0.82; 95% CI,
0.70–0.97; and FOR 0.77; 95% CI, 0.65–0.92, respectively).
In general, median phthalate metabolite concentrations in
maternal urine in MIREC were comparable to those reported
for women 20–39 years of age in cycle 2 of the CHMS
(2009–2011) (2). Some phthalates may have estrogenic
activity, although it is weak compared with 17b-estradiol (47).

In addition, experimental studies have reported antian-
drogenic activity of some phthalates in vitro (48, 49) and in
male rats (50). This antiandrogenic effect has been the focus
of recent epidemiologic studies. For example in men, MEHP
and diisononyl phthalate (DiNP) have been associated with
decreased testosterone production (51); in women, MnBP,
mono-isobutyl phthalate, MBzP, and the sum of metabolites
of DEHP and of DiNP have been associated with delayed pu-
barche (52). Furthermore, a recent case control study reported
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a decreased likelihood of polycystic ovary syndrome, a condi-
tion characterized by hyperandrogenemia, in women with
higher concentrations of MBzP and MnBP (53). In pregnant
women, concentrations of DEHP metabolites were associated
with decreased testosterone among all women and between
MnBP and testosterone among women carrying a female
fetus (54). Thus, our finding of a shorter TTP at higher concen-
trations of phthalates is consistent with this previous evidence
of a potential antiandrogenic effect of some of these
compounds.

Our study has important limitations that need to be
considered. Because this is a pregnancy-based TTP study,
women who were infertile and/or did not have access to infer-
tility treatment were excluded by design from our study. Thus,
if BPA or phthalates have a negative impact on TTP, women
with the highest exposures would have been excluded from
our study. In addition, we measured the concentrations of
chemicals only in women, and the process of reproduction in-
volves not only the female and male partner individually, but
also many factors that are couple mediated. Furthermore, we
are assuming that the concentrations measured during the
first trimester of pregnancy represent the concentrations
that were present during the preconception period. In this re-
gard, Braun et al. (55) evaluated the variability of urinary
phthalate metabolites and BPA concentrations before and
during pregnancy in a cohort of women receiving infertility
treatment. The study found that the absolute differences in
urinary concentrations for these chemicals were relatively
small, which according to the authors might suggest that
women did not change their preconception behaviors to
reduce exposure to these chemicals during pregnancy (55).
Nonetheless, using the intraclass correlation coefficients,
the reliability of a spot urine sample to predict exposure
over a few months is limited for repeated measures of BPA
(56, 57) and several phthalate metabolites (55, 58–60). In
regards to TCS, the reliability seems to be better (57, 61, 62).
Another possibility is that concentrations of these chemicals
could be metabolized differently before or during pregnancy
due to the physiologic changes occurring during this period
(63). Braun et al. (55) did not observe a consistent change in
most phthalate metabolites or BPA during pregnancy,
suggesting that urinary concentrations of these compounds
might not be influenced by pregnancy-induced changes in
pharmacokinetics, assuming that sources of exposure re-
mained constant over the pregnancy.

Digit preference reporting is another limitation of
pregnancy-based TTP studies (32); however, it is estimated
that stable estimates of the TTP distribution can be obtained
with approximately 200 values per exposure group (64), a
number that, due to our large sample size, was always at-
tained in the different categories of exposure. Furthermore,
to evaluate whether digit preference had any effect on our re-
sults, we applied the method recently proposed in McLain
et al. (65). We estimated a piecewise exponential model
with three separate knot scenarios, each using seven knots;
the locations for knot scenarios were {1,2,4,9,18,30,N },
{1,2,4,9,15,27,N }, and {1,2,4,10,17,29,N }. The estimates
showed little bias (data not shown), suggesting that digit pref-
erence had little impact in our results.
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Additional potential limitations in the exposure assess-
ment need to be considered. First, no exposure data were
available for 2% of the eligible women for BPA, 5% for
TCS, and 10% for phthalates. It is considered that complete
case analysis is unlikely to introduce bias when the incom-
plete cases are less than about 5% (66). In most of the cases,
there was no laboratory result because the woman did not
provide sufficient urine for all the chemical analyses that
were done. More phthalate results were missing because
they were analyzed in the second aliquot of urine, whereas
BPA was analyzed in the first. We analyzed TCS in the first
aliquot, but we lost 2% of women who did not consent to
further analyses of the biobanked specimens. We consider
that the missing values for phthalates as consequence of be-
ing measured in the second aliquot of urine are independent
of both observed and unobserved data, which is defined
in the literature as ‘‘missing completely at random’’ (MCAR),
in which case, complete case analysis is an acceptable
approach (67).

Another limitation is that concentrations below the LOD
were set to the LOD divided by 2. It has been suggested that
this practice may lead to increased bias and an underestima-
tion of the error variance, which results in lowered power for
statistical hypothesis testing (68, 69). However, simulation
studies using alternative methods to account for exposures
below the LOD, have demonstrated that the LOD divided by
2 worked fairly well in simulations with %50% exposure
data below the LOD (68). Methods have also been proposed
for Cox regression models with covariates subject to a lower
LOD, but they have not provided much improvement over
the LOD divided by 2 (69).

In our study, TCS and five phthalates metabolites (MnBP,
MEP, MBzP, MEHP, MEOHP, and MEHHP), were detected in
more than 98% of the samples, which suggests that the prob-
ability of bias due to our substitution approach is very low for
these particular chemicals. In the case of BPA and MCPP, the
detection rates were also high (87% and 82%, respectively),
which is reassuring. On the other hand, four phthalate metab-
olites were detectable in less than 14% of the samples (MMP,
MCHP, MiNP, and MnOP). These metabolites were excluded
from further analyses, an approach used in large bio-
monitoring surveys when the proportion of results below
the LOD is greater than 40% (20). However, an analysis of
these metabolites as continuous variables showed that the
adjusted FORs were approximately 1, although not statisti-
cally significant for MMP (FOR 1.03; 95% CI, 0.96–1.10),
MiNP (FOR 1.0; 95% CI, 0.94–1.06), and MnOP (FOR 1.02;
95% CI, 0.96–1.09) using the continuous scale. In the case
of MCHP, the FOR was <1, but the 95% CI was large and
not statistically significant (FOR 0.93; 95% CI, 0.72–1.18).

In summary, our data suggest that elevated TCS exposure
(>72 ng/mL) may be associated with diminished fecundity, as
suggested by a longer TTP. In regards to phthalates and BPA,
we found no evidence of a negative impact on TTP and even
some suggestion that exposure to some phthalates might be
associated with a shorter TTP. Further studies are necessary
to test our findings and elucidate the potential impact of
nonpersistent environmental contaminants on human
fecundity.
VOL. 103 NO. 4 / APRIL 2015
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SUPPLEMENTAL TABLE 1

Fecundability odds ratios (95% confidence intervals) for phthalate metabolites (dichotomized).

Quartiles dichotomized (ng/mL)d Na Unadjusted Adjustedb Adjustedc

Mono-n-butyl phthalate (MnBP)
<26 1,211 1 1 1
R26 386 1.05 (0.91–1.21) 1.03 (0.87–1.23) 0.98 (0.82–1.17)

Mono-ethyl phthalate (MEP)
<90 1,201 1 1 1
R90 396 1.14 (0.99–1.31) 1.13 (0.97–1.31) 1.11 (0.95–1.30)

Mono-benzyl phthalate (MBzP)
<13 1,210 1 1 1
R13 387 1.07 (0.93–1.24) 1.06 (0.91–1.24) 1.02 (0.87–1.21)

Mono-(3-carboxypropyl) phthalate (MCPP)
<2.2 1,198 1 1 1
R2.2 399 1.01 (0.87–1.16) 0.98 (0.83–1.15) 1.03 (0.87–1.21)

Mono-(2-ethylhexyl) phthalate (MEHP)
<4.5 1,202 1 1 1
R4.5 395 1.08 (0.93–1.24) 1.07 (0.91–1.25) 1.07 (0.91–1.26)

Mono-(2-ethyl-5-oxo-hexyl) phthalate (MEOHP)
<14 1,200 1 1 1
R14 397 1.06 (0.92–1.22) 1.04 (0.88–1.23) 1.09 (0.92–1.30)

Mono-(2-ethyl-5-hydroxy-hexyl) phthalate (MEHHP)
<21 1,213 1 1 1
R21 384 1.04 (0.90–1.20) 1.01 (0.86–1.20) 1.10 (0.89–1.26)

a Total numbers for unadjusted and specific gravity adjusted models.
b Adjusted for specific gravity.
c Adjusted for specific gravity, maternal age, maternal smoking, education, income, BMI. Due to missing values in some covariates, the N was 1,491.
d Dichotomized as <75th percentile versus R75th percentile.

V�elez. Phenols, phthalates, and fecundity. Fertil Steril 2015.
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SUPPLEMENTAL TABLE 2

Fecundability odd ratios (95% confidence intervals) for total phthalate metabolites (mmol/L).

Variable Na Unadjusted Adjustedb Adjustedc

Continuous variable (mmol/L)d 1,597
Low molecular weight 1.03 (0.97–1.09) 1.02 (0.95–1.10) 1.02 (0.94–1.10)
High molecular weight 1.03 (0.97–1.10) 1.03 (0.95–1.13) 1.07 (0.98–1.17)

Quartiles (mmol/L)
Low molecular weight

0.005–0.12 400 1 1 1
0.12–0.28 399 0.92 (0.77–1.09) 0.90 (0.75–1.08) 0.90 (0.74–1.09)
0.28–0.69 399 0.92 (0.76–1.10) 0.90 (0.73–1.09) 0.86 (0.70–1.06)
R0.69 399 1.06 (0.89–1.27) 1.02 (0.82–1.26) 0.98 (0.78–1.23)

High molecular weight
0.002–0.03 400 1 1 1
0.03–0.07 399 1.03 (0.87–1.23) 1.03 (0.86–1.24) 1.02 (0.85–1.24)
0.07–0.14 399 1.06 (0.89–1.26) 1.05 (0.85–1.31) 1.12 (0.90–1.41)
R0.14 399 1.08 (0.91–1.29) 1.08 (0.85–1.37) 1.17 (0.91–1.51)

Quartiles dichotomized (mmol/L)e

Low molecular weight
<0.69 1,198
R0.69 399 1.13 (0.98–1.30) 1.12 (0.96–1.31) 1.10 (0.94–1.29)

High molecular weight
<0.14 1,198
R0.14 399 1.03 (0.88–1.22) 1.04 (0.88–1.22) 1.08 (0.91–1.29)

a Total numbers for unadjusted and specific gravity adjusted models
b Adjusted for specific gravity.
c Adjusted for specific gravity, maternal age, maternal smoking, education, income, BMI. Due to missing values in some covariates, the N was 1,491.
d Log transformed and rescaled by their standard deviation.
e Dichotomized as <75th percentile versus R75th percentile.
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