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Using the information of the microstructure, this paper presents the development of an incremental con-
stitutive law governing the response of an electro-magneto-thermo-mechanical smart composite. In this
development, different shapes of reinforcements that have magneto-electro-thermo-elastic properties
that differ from the matrix material are considered. Shapes such as ellipsoidal (spherical, prolate and
oblate) particles, elliptical and circular cylindrical fibers, disk and ribbon can be treated provided that
the corresponding Eshelby tensor is used. The debonding of the reinforcements from the matrix is also
a part of the microscopic process considered. The developed incremental constitutive law not only pre-
dicts the macroscopic and microscopic electro-magneto-thermo-mechanical-elastic behavior of compos-
ites while considering the debonding process, but it also characterizes their different macroscopic
effective properties such as permittivity, permeability, stiffness moduli, pyroelectricity, pyromagnitivity
and thermal expansion coefficient in different directions. Moreover, the developed constitutive law is
applicable to porous materials and composites with multiple reinforcements and porosities. In the two
examples considered below, particular attention is devoted to assessing the effects of both the shape
and the concentration of the inclusion and/or porosity and the damage evolution on the multiphysical
microscopic and macroscopic behaviors and the effective properties. The first example sheds light on
obtaining the macroscopic effective properties, taking into account the piezoelectric BaTiO3 continuous
fibers embedded in the piezomagnetic CoFe2O4 matrix. While in the second example, mechanical loading
is considered, epoxy is taken as the matrix material and the response of the composite is presented while
the evolution of damage in terms of debonding is taking place.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction media that exhibit full coupling between stationary elastic, electric
Composite materials consisting of piezoelectric and piezomag-
netic phases have drawn a significant interest due to the rapid
development in adaptive material systems. However, the increased
complexity of the microstructure in these materials complicates
their analysis. One possible route to solve such complexity is to
achieve useful models that calculate the effective material proper-
ties. Therefore, many studies were concerned with the prediction of
the effective or overall properties using various techniques. For
instance, Aboudi (2001) employed a homogenization microme-
chanical method to predict the effective moduli of electro-
magneto-thermo-elastic composites. Results for fibrous and
periodically bilaminated composites were compared with the
generalized method of cells and the Mori–Tanaka predictions. Li
and Dunn (1998b) developed a micromechanical approach to ana-
lyze the average fields and effective properties of heterogeneous
ll rights reserved.
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and magnetic fields. Using the solutions obtained for inclusion and
inhomogeneity problems in an infinite magneto-electro-elastic
medium (Li and Dunn, 1998a), they established exact relations for
the internal field distribution inside a heterogeneous magneto-
electro-elastic solid. In addition, they obtained closed-form expres-
sions for the effective moduli of fibrous and laminated composites
as well as the exact connections between the effective thermal
moduli and the effective magneto-electro-elastic moduli of
two-phase composites. Li (2000) studied the average magneto-
electro-elastic field in a multi-inclusion or an inhomogeneity
embedded in an infinite matrix and developed a numerical algo-
rithm to evaluate the magneto-electro-elastic Eshelby tensors for
the general material symmetry and ellipsoidal inclusion. Based on
the framework of the Variational Asymptotic Method for Unit Cell
Homogenization (VAMUCH), Tang and Yu (2009) developed a
micromechanics approach to predict the effective properties as well
as the local fields of periodic smart materials responsive to fully
coupled electric, magnetic, thermal and mechanical fields.

Voids exist in smart materials and some inclusions may be par-
tially or fully debonded from the matrix. These can be attributed to
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either the manufacturing process or the loading conditions during
the usage of a smart material. Therefore, the effects of defects and
inclusions on the properties of smart materials are important to be
considered. Zhong and Meguid (1997) developed a generalized and
mathematically rigorous model to treat the partially debonded cir-
cular inhomogeneity problem in piezoelectric materials under
anti-plane shear and in-plane electric field using the complex var-
iable method. This enabled the explicit determination of the com-
plex potentials inside the inhomogeneity and the matrix. Deng and
Meguid (1999) dealt with the problem of a partially debonded pie-
zoelectric circular inclusion in a piezoelectric matrix and derived
the closed form complex potentials both inside and outside the
inclusion. They explicitly derived the formulae for the electro-elas-
tic field intensity factors of the interfacial crack. Chung and Ting
(1996) studied the two dimensional problems of an elliptic hole
or inclusion in a solid of an isotropic piezoelectric material. Fang
et al. (2010) presented a theoretical method to study the multiple
scattering of electro-elastic waves resulting from two subsurface
holes in a functionally graded piezoelectric material layer bonded
to a homogeneous piezoelectric material, and also presented the
dynamic stress around the holes.

Based on the above introduction, it is evident that predicting the
response of a smart material while considering its microstructure is
both theoretically challenging and practically important. The need
for estimating the electro-magneto-thermo-mechanical elastic
behavior of smart composite structures while considering damage
evolution and different geometries of the reinforcements has natu-
rally arisen as smart composites are increasingly used in different
engineering applications. Accordingly, the aim of this work is to
present a micromechanically-based model and its corresponding
incremental constitutive law for a smart heterogeneous composite
while considering the damage evolution. The damage evolution is
presented by the debonding of the inclusions from the matrix. This
model incorporates the full coupling of electric, magnetic, thermal
and elastic mechanical behaviors. In addition, the resulting incre-
mental constitutive law is able to calculate the local microscopic
fields in the matrix and in the inclusion as well as the macroscopic
field. Moreover, it can predict the effective properties including the
effective elastic, piezoelectric, piezomagnetic, dielectric, magnetic
permeability and magneto-electric coupling coefficients as well as
the thermal stress coefficients and the associated pyroelectric and
pyromagnetic constants. Taking the debonding process into consid-
eration, this constitutive law is applicable to porous materials and
composites with multiple reinforcements and porosities including
a wide range of inclusion and/or pore geometries ranging from
elliptical cylinder to thin disk to sphere to ribbon provided that
the proper Eshelby tensor is used. To validate the predictions of
the proposed model, the results are compared to those obtained
from the following four approaches: the homogenization theory,
the generalized method of cells and the Mori–Tanaka approach –
all presented by Aboudi (2001) – and the results based on the
VAMUCH of Tang and Yu (2009). Agreements between these five
approaches have been shown to be very good.
2. Properties of the constituent materials

Electro-magneto-thermo-elastic media that exhibit linear, static,
anisotropic coupling between the magnetic, electric, thermal and
elastic fields are considered. In this case, the constitutive equations
for both the matrix and reinforcements can be expressed as follow:

rij ¼ Cijklekl þ eijlð�ElÞ þ qijlð�HlÞ � kij dT

Di ¼ eiklekl � kilð�ElÞ � ailð�HlÞ � pi dT

Bi ¼ qiklekl � ailð�ElÞ � lilð�HlÞ �mi dT

ð1Þ
Here rij and eij are the stress tensor and strain tensor, respectively;
Di and Ei are the electric displacement and electric field; Bi and Hi

are the magnetic flux and field. Cijkl, kil, and lil are the elastic stiff-
ness, the dielectric, and magnetic permeability tensors, respec-
tively. Stress is coupled with the electric and magnetic fields
through the piezoelectric, eijl, and piezomagnetic, qijl, coefficients,
respectively, while electric and magnetic fields are coupled through
the magneto-electric coefficient, ail. Finally, the stress, electric dis-
placement, and magnetic flux are coupled with temperature
changes dT through the thermal stress tensor kij (note that
kij = Cijklakl with akl as the thermal expansion strain tensor), pyro-
electric coefficient pi, and pyromagnetic coefficient mi.

In order for the different multiphysical properties of the smart
materials to be readily computed, the theoretical estimates are
developed using a matrix formulation. Hence, the constitutive
equation (1) is written in matrix form as follows:
r
D

B

264
375 ¼ C e q

eT �k �a

qT �aT �l

264
375 e
�E

�H

264
375� k

p

m

264
375dT ð2Þ
where using the symmetry of the stress and strain tensors, C is a
6 � 6 submatrix for elastic constants, e is a 6 � 3 submatrix for pie-
zoelectric coefficients, q is a 6 � 3 submatrix for piezomagnetic
coefficients. Moreover, k is a 3 � 3 submatrix for dielectric coeffi-
cients, a is a 3 � 3 submatrix for electromagnetic coefficients and
l is a 3 � 3 submatrix for magnetic permeability.

In the following analysis, it is convenient to treat the elastic,
electric, and magnetic fields equally. To this end, the notation
introduced by Barnett and Lothe (1975) for piezoelectric analysis
and then generalized to incorporate magnetic coupling by Alshits
et al. (1992) is utilized. Here, only the matrix formats are consid-
ered, but more details can be found in Li and Dunn (1998b). The
generalized stress R is introduced as a 12 � 1 column matrix con-
taining the global stress, global electric displacement and global
magnetic flux as
R ¼ r11 r22 r33 r23 r31 r12 D1 D2 D3 B1 B2 B3½ �T

ð3Þ
the superscript T denotes the transpose. The generalized strain Z is
defined as a 12 � 1 column matrix containing the global strains and
the electric and magnetic fields as
Z¼ e11 e22 e33 c23 c31 c12 �E1 �E2 �E3 �H1 �H2 �H3½ �T ð4Þ

Taking advantage of the generalized formats defined above, allows
the constitutive Eq. (2) to be written as
R ¼ LZ �WdT ¼ LðZ �PdTÞ ð5Þ
where L is a 12 � 12 effective material matrix containing the
effective multiphysics material properties and W is a 12 � 1
matrix containing the second-order thermal stress tensor k, the
vector of pyroelectric p and the vector of pyromagnetic m. In addi-
tion, P equals L�1 W and the superscript -1 is used to denote
inversion.

For a transversely isotropic piezoelectric-piezomagnetic com-
posite with axis of symmetry oriented in the 3-direction, the mate-
rial matrix L takes the following form where the coefficients are
labeled according to Aboudi (2001) to facilitate an easy comparison
with results of other studies in the literature.



Y.M. Shabana, M. Ristinmaa / International Journal of Solids and Structures 48 (2011) 3209–3216 3211
L¼

C11 C12 C13 0 0 0 0 0 e31 0 0 q31

C11 C13 0 0 0 0 0 e31 0 0 q31

C33 0 0 0 0 0 e33 0 0 q33

C44 0 0 0 e15 0 0 q15 0
C44 0 e15 0 0 q15 0 0

C66 0 0 0 0 0 0
�k11 0 0 �a11 0 0

�k11 0 0 �a11 0
�k33 0 0 �a33

�l11 0 0
�l11 0

�l33

26666666666666666666666664

37777777777777777777777775
and W is given as

W ¼ ½ k11 k22 k33 k23 k31 k12 p1 p2 p3 m1 m2 m3 �T

From here on, R and Z will be referred to as excitation field and re-
sponse field, respectively.
3. Incremental constitutive equation

The incremental formulation is introduced so that the resulting
constitutive equation is valid for composites with different proper-
ties of the constituents while considering the debonding process of
the reinforcements.

3.1. Formulation

In Fig. 1, the piezoelectromagnetic composite of interest is
shown. The states before and after an incremental deformation of
the composite containing piezoelectromagnetic elements, in the
damage process are depicted. The far field applied mechanical,
electrical and magnetic loading conditions are denoted as R and
the response field as Z0 at the start of an increment where at the
end of the increment the values are given by R + dR and Z0 + dZ0.
Moreover, the state before the incremental deformation, shown
in Fig. 1(a), is described in terms of the volume fractions of the in-
Debonded 
particle 
(void) 
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particle 

Intact particle volume fraction:  fp

Debonded particle volume fraction:  fd

Matrix volume fraction: 1 - fp - fd
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Fig. 1. Debonding of inhomogeneities in the deformation process.
tact and damaged particles fp and fd. If the volume fraction of the
particles that are debonded during the incremental deformation
is denoted by dfp, then the state after deformation, shown in
Fig. 1(b), can be described in terms of the volume fractions of the
intact and debonded particles fp � dfp and fd + dfp.

To obtain the incremental macroscopic and microscopic consti-
tutive responses, the analyses will be based on the formulation
provided by Tohgo and Chou (1996) and Shabana (2003) for the
debonding case. Following Eshelby equivalence principle com-
bined with Mori–Tanaka mean field concept, the incremental exci-
tation field in the intact particle, dRp, is given by

dRp ¼ dRþ deR þ dRpt
1 ¼ L1 dZ0 �P1dT þ deZ þ dZpt

1

� �
¼ L0 dZ0 �P0dT þ deZ þ dZpt

1 � dZ�1
� �

ð6Þ

where the subscript 0 refers to the matrix and 1 refers to the
reinforcements.

Since air has a significantly smaller dielectric constant relative
to that of a piezoelectric material (Sosa, 1992), it is assumed that
the excitation field (i.e. the stress, electric displacement and mag-
netic flux) inside a void vanishes. Hence, the Eshelby equivalence
principle for the debonded reinforcement can be written in the fol-
lowing form:

0 ¼ dRþ deR þ dRpt
2 ¼ L0 dZ0 �P0dT þ deZ þ dZpt

2 � dZ�2
� �

ð7Þ

Furthermore, since in the debonding process the current reinforce-
ment excitation field should be released in the next incremental
deformation, the following equation is obtained:

�Rp ¼ dRþ deR þ Rpt
3 ¼ L1 dZ0 �P1dT þ deZ þ Zpt

3

� �
¼ L0 dZ0 �P0dT þ deZ þ Zpt

3 � Z�3
� �

ð8Þ

In the above equations, dR and deR are the incremental excitation
field and the incremental average excitation field based on Mori
and Tanaka mean field concept, and they are related to dZ0 and deZ by

dR ¼ L0ðdZ0 �P0dTÞ; deR ¼ L0 deZ ð9Þ

In Eqs. (6)–(8), dRpt
1 ; dRpt

2 ; Rpt
3 and dZpt

1 ; dZpt
2 ; Zpt

3 represent the per-
turbed parts of the excitation and the response fields in the intact
and debonded reinforcements and the reinforcement to be debond-
ed, respectively. Moreover, dZ�1; dZ�2 and Z�3 are the Eshelby equiv-
alent transformation response fields. The perturbed response
fields are related to the transformation response fields by

dZpt
1 ¼ SdZ�1; dZpt

2 ¼ SdZ�2; Zpt
3 ¼ SZ�3 ð10Þ

where dRpt
1 ; dRpt

2 and Rpt
3 are described by

dRpt
1 ¼ L0ðS � IÞdZ�1; dRpt

2 ¼ L0ðS � IÞdZ�2; Rpt
3 ¼ L0ðS � IÞZ�3

ð11Þ

The matrix I is a 12 � 12 identity matrix and the matrix S denotes
the magneto-electro-elastic Eshelby tensor of the particles, which
is the key ingredient necessary for determining the magnetoelectric
coupling of piezoelectric-piezomagnetic composites (Wu and
Huang, 2000). For ellipsoidal inclusions, S is expressed as a function
of the shape of the inhomogeneity and the electro-magneto-elastic
moduli of the matrix. Explicit expressions for the electro-magneto-
elastic Eshelby tensors are given in Li and Dunn (1998a) and Huang
et al. (1998).

Since the incremental overall excitation field dR is determined
by the average excitation field of the composite, it follows that,

dR ¼ ðfp � dfpÞdRp � dfpR
p þ ð1� fp � fdÞðdRþ deRÞ ð12Þ
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where the incremental average excitation field deR is given by

deR ¼ � ðfp � dfpÞdRpt
1 þ fddRpt

2 þ dfpR
pt
3

� �
ð13Þ

Substituting Eqs. (9) and (11) into (13), the incremental average re-
sponse field is expressed by

deZ ¼ �ðS � IÞ ðfp � dfpÞdZ�1 þ fddZ�2 þ dfpZ�3
� �

ð14Þ
Using Eqs. (6)–(8) and taking Eqs. (10) and (14) into consideration,
the following relations are obtained after some mathematical
manipulations.

L�1
0 Rp ¼ ðL0 � L1Þ�1ðL1P1 � L0P0Þ þP0

h i
dT

þ S � ðL0 � L1Þ�1L0

h i
dZ�1 � ðS � IÞZ�3 ð15Þ

L�1
0 Rp ¼ ðS � IÞdZ�2 � ðS � IÞZ�3 ð16Þ

�L�1
0 Rp ¼ dZ0 �P0dT � ðS � IÞ ðfp � dfpÞdZ�1 þ fddZ�2 þ dfpZ�3

� �
þ ðS � IÞZ�3 ð17Þ

The Eshelby equivalent transformation response fields, dZ�1; dZ�2
and Z�3, are obtained by solving the simultaneous Eqs. (15)–(17).
In the general case, there are three phases for the reinforcements
in the composite, and there are twelve components of the transfor-
mation response field for each phase. The solution can be written as

dZ�1 ¼ A�1
1 B1 þ A�1

1 B1ðS � IÞH�1dfp½I � ðS � IÞD1�
n o

L�1
0 dRþP0dT

� �
þ A�1

1 B1ðS � IÞH�1L�1
0 dfpR

p �
n

A�1
1 M1 þ A�1

1 B1ðS � IÞH�1dfp

� P0 � ðS � IÞD2�½
o

dT

dZ�2 ¼ A�1
2 B2 þ A�1

2 B2ðS � IÞH�1dfp½I � ðS � IÞD1�
n o

L�1
0 dRþP0dT

� �
� A�1

2 B2ðS � IÞH�1L�1
0 dfpR

p

þ A�1
2 M2 � A�1

2 B2ðS � IÞH�1dfp½P0 � ðS � IÞD2�
n o

dT

ð18Þ

Z�3 ¼ H�1½ðS � IÞD1 � I� L�1
0 dRþP0dT

� �
� H�1L�1

0 rp

þ H�1½P0 � ðS � IÞD2�dT

where

D1 ¼ ðfp � dfpÞA�1
1 B1 þ fdA�1

2 B2

D2 ¼ ðfp � dfpÞA�1
1 M1 � fdA�1

2 M2

A1 ¼ ðL1 � L0Þ�1R1 � fdR�1
3 R2

B1 ¼ �fdR�1
3 L0 � I

M1 ¼ �fdR�1
3 L0P0 � ðL1 � L0Þ�1ðL1P1 � L0P0Þ

A2 ¼ R�1
1 ðL1 � L0Þfd � R�1

2 R3

n o
ðI � SÞ

B2 ¼ �R�1
2 L0 � R�1

1 ðL1 � L0Þ

M2 ¼ R�1
1 ðL1P1 � L0P0Þ þ R�1

2 L0P0

H ¼ ðS � IÞðfp � dfpÞA�1
1 B1ðS � IÞdfp

þ ðS � IÞfdA�1
2 B2ðS � IÞdfp þ ðS � IÞð1� dfpÞ

R1 ¼ L0 þ ðL1 � L0ÞS þ ðL1 � L0ÞðI � SÞðfp � dfpÞ

R2 ¼ �L0ðI � SÞðfp � dfpÞ

R3 ¼ L0ð1� fdÞ

ð19Þ

The incremental overall response field, dZ, of the composite is ex-
pressed by the average response field as follows:
dZ ¼ ðfp � dfpÞ dZ0 þ deZ þ dZpt
1

� �
þ fd dZ0 þ deZ þ dZpt

2

� �
þ dfp dZ0 þ deZ þ Zpt

3

� �
þ ð1� fp � fdÞ dZ0 þ deZ� �

ð20Þ

Considering Eqs. (10) and (14), the above relation becomes

dZ ¼ dZ0 þ ðfp � dfpÞdZ�1 þ fddZ�2 þ dfpZ�3 ð21Þ

Substituting from Eq. (18), the overall incremental response field-,
dZ, incremental excitation field, dR, relation of the composite is ob-
tained as

dZ ¼ L�1dRþ Pdfp þPdT ð22Þ

where

L�1 ¼ ðI þ D1Þ � ½D1ðS � IÞ � I�H�1dfp½ðS � IÞD1 � I�
n o

L�1
0

P ¼ ½D1ðS � IÞ � I�H�1L�1
0 Rp

P ¼ �
D2 þ ½D1ðS � IÞ � I�H�1dfp½P0 � ðS � IÞD2�
�P0ððI þ D1Þ � ½D1ðS � IÞ � I�H�1½ðS � IÞD1 � I�dfpÞ

( )
ð23Þ

Eq. (22) shows that the incremental macroscopic response field of
the composite consists of three main parts: the response field incre-
ment due to the excitation field increment, the debonding damage
and the temperature change. The effective electro-magneto-
mechanical properties of the composite such as elastic, piezoelec-
tric, piezomagnetic, dielectric, magnetic permeability and mag-
neto-electric coupling coefficients can be extracted from the first
part. On the other hand, the thermal stress tensor k and the associ-
ated pyroelectric vector, p, and pyromagnetic vector, m, that are in-
cluded in the thermal matrix P of the composite can be extracted
from the third part. First, it is concluded that

W ¼ LP ð24Þ

and finally the thermal expansion coefficients in different directions
can be evaluated from

a ¼ C�1
k ð25Þ

The approach also allows for the assessment of the microscopic
constitutive behavior, i.e. the resulting local excitation field and
thereby also allows for the possibility to design failure-safe elec-
tro-magneto-thermo-mechanical smart composites. Therefore, the
microscopic excitation and response fields of the matrix and rein-
forcements are introduced here. The incremental average excitation
field of the matrix, dRm ¼ dRþ deR, is given by

dRm ¼ L0 dZ0 �P0dT � ðS � IÞ ðfp � dfpÞdZ�1 þ fddZ�2 þ dfpZ�3
� �h i

ð26Þ

Using Eq. (18), the explicit expression of the matrix excitation field
can be expressed as

dRm¼L0ðI�SÞ
ðIþD1Þ�½D1ðS� IÞ� I�H�1

x½ðS� IÞD1� I�dfpþðI�SÞ�1S

 !
L�1

0 dR

(
þ½D1ðS� IÞ� I�H�1dfpL�1

0 Rp

�
D2þ½D1ðS� IÞ� I�H�1dfp½P0�ðS� IÞD2�
þP0ððIþD1Þ�½D1ðS� IÞ� I�H�1½ðS� IÞD1� I�dfp� IÞ

 !)
dT ð27Þ

Moreover, the incremental average excitation field of the intact
reinforcements is

dRp ¼ dRþ deR þ dRpt
1

dRp ¼ dRm þ L0ðS � IÞdZ�1
ð28Þ



Table 1
Material properties of the composite constituents (BaTiO3, CoFe2O4 and Epoxy) (Tang
and Yu, 2009).

BaTiO3 CoFe2O4 Epoxy

C11 (GPa) 166 286 5.53
C12 (GPa) 77 173 2.97
C13 (GPa) 78 170 2.97
C33 (GPa) 162 269.5 5.53
C44 (GPa) 43 45.3 1.28
e15 (C m�2) 11.6 0 0
e31 (C m�2) �4.4 0 0
e33 (C m�2) 18.6 0 0
k11 (10�9C V�1 m�1) 11.2 0.08 0.1
k33 (10�9C V�1 m�1) 12.6 0.093 0.1
q15 (N A�1 m�1) 0 550 0
q31 (N A�1 m�1) 0 580.3 0
q33 (N A�1 m�1) 0 699.7 0
l11 (10�6 N s2 C�2) 5 �590 0.01
l33 (10�6 N s2 C�2) 10 157 0.01
a11 (�10�6 K�1) 15.7 10 54
a22 (�10�6 K�1) 15.7 10 54
a33 (�10�6 K�1) 6.4 10 54

Fig. 2. Effective elastic moduli C11 and C12 of a fibrous composite against the
volume fraction of BaTiO3 for different values of the aspect ratio (b = 0.1, 0.5, 1, 5,
and 100).

Fig. 3. Effective thermal expansion coefficients a11 and a33 of a fibrous composite
against the damage evolution for different volume fractions of BaTiO3 (fpo = 0.05,
0.1, 0.2 and 0.3).
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Furthermore, the incremental average response fields of the matrix
and both the intact and damaged reinforcements can be evaluated
from

dZm ¼ L�1
0 dRm

dZp ¼ L�1
1 dRp

dZd ¼ dZ0 þ deZ þ SdZ�2

ð29Þ

With Eqs. (27)–(29) and taking advantage of Eq. (18), it is then pos-
sible to calculate the incremental microscopic excitation and re-
sponse fields for the different constituents.

3.2. Volume fraction of the particles in the debonding process

Based on the critical energy criterion of interfacial debonding
(Chen et al., 2003), the threshold bond strength rcr between the
particle and matrix materials depends on the particle size and
may be written as

rcr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cð1� fpoÞE0

c1½fpoð1� 2m0Þ þ ð1þ m0Þ=2�

s
ð30Þ

where c is the specific interface adhesive energy; E0 is the initial
modulus of the matrix; m0 is the Poisson ratio of the matrix; c1 is
the particle radius and fpo is the initial particle volume fraction.

Suppose the probability of debonding at the interface can be de-
scribed by the Weibull’s distribution function:

P ¼ 1� exp � r� rcr

S0

� �m	 

; ðr P rcrÞ ð31Þ

where S0 and m are material parameters and r is the average nor-
mal stress at the interface that defined in Chen et al. (2003). Then,
for r > rcr, the cumulative volume fraction of the damaged rein-
forcements is represented by fpoP, and the volume fraction of the
reinforcements to be debonded in the incremental deformation,
dfp, is given by

dfp ¼ fpo
dP
dr

dr ð32Þ

To close the theory, the above relations are then used in the previ-
ously-derived constitutive equations of the composite.

4. Numerical results and discussions

In this section, two examples are considered. The intention of
the first example is to demonstrate the applicability of the pro-
posed model by applying it to a two-phase electro-magneto-elastic
composite consisting of the piezoelectric BaTiO3 continuous fibers
embedded in piezomagnetic CoFe2O4 matrix. While in the second
example, the matrix is changed to be epoxy instead of CoFe2O4 to
evaluate the microscopic and macroscopic fields and the damage
evolution of the smart composite under mechanical loading condi-
tions. The electro-magneto-thermo elastic moduli of the constitu-
ent materials are taken from Tang and Yu (2009) and are
presented in Table 1. The considered materials of the constituents,
BaTiO3 and CoFe2O4, are transversely isotropic with the axis of
symmetry oriented in the 3-direction while epoxy is isotropic.

4.1. Electro-magneto-thermo elastic properties

Fig. 2 shows the variations of the elastic moduli C11 and C12

against the volume fraction of the BaTiO3 elliptical cylindrical fi-
bers for different values of the aspect ratio b. It can be seen that
both moduli recover the moduli of the constituent phases at the
two volume fraction limits. Also, the obtained results are consis-
tent with those presented in Aboudi (2001) for the circular
cylindrical fibers (b = 1). While C12 is hardly affected by the aspect
ratio, C11 decreases with its increase. This is mainly because the
dimension in the 1-direction of the elliptic cross section of the fiber
decreases relative its dimension in the 2-direction with the in-
crease of the aspect ratio and consequently the stiffness decreases
in the 1-direction and increases in the 2-direction. Beyond b = 5,
the effect of the aspect ratio on C11 is negligible. The slight devia-
tion of C12 with the aspect ratio may refer to the secondary effect of
the electromagnetic properties of the constituents.

Figs. 3–5 reveal the Coefficients of Thermal Expansion (CTEs),
pyroelectric p and pyromagnetic m properties as functions of the



Fig. 4. Effective pyroelectric coefficient p3 of a fibrous composite against the
damage evolution for different volume fractions of BaTiO3 (fpo = 0.05, 0.1, 0.2 and
0.3).

Fig. 5. Effective pyromagnetic coefficient m3 of a fibrous composite against the
damage evolution for different volume fractions of BaTiO3 (fpo = 0.05, 0.1, 0.2 and
0.3).

Fig. 6. Effective magnetoelectric coefficient a33 of a fibrous composite against the
damage evolution for different volume fractions of BaTiO3 (fpo = 0.05, 0.1, 0.2 and
0.3).

Fig. 7. Effective magnetic permeability coefficient l11 and l33 of a fibrous
composite against the damage evolution for different volume fractions of BaTiO3

(fpo = 0.05, 0.1, 0.2 and 0.3).
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damage evolution fd/fpo due to debonding damage for different
values of the circular cylindrical fiber volume fraction. The values
of CTEs, p and m coincide with Tang and Yu (2009) when fd = 0.
Since a11 of the fiber is higher than both a33 and that of the matrix,
the increase of the fiber volume fraction results in an increase in a11

of the composite and a decrease in its a33 as shown in Fig. 3. This
behavior occurs because the long fibers prevent the matrix from
expanding in the 3-direction, and as a result the matrix is forced
to expand more than usual in the transverse directions. This results
in a lower CTE in the 3-direction than that in the transverse direc-
tions. It can be seen that a33 increases when the fibers gradually
turn into voids due to the reduction of the fiber volume fraction.
This consequently results in more freedom that the matrix has to
expand in the 3-direction. When all fibers turn into voids, a33 ap-
proaches the matrix limit. On the other hand, a11 has an opposite
behavior as it decreases when fibers gradually turn into voids.
Although the pyroelectric and pyromagnetic coefficients are absent
in each of the individual constituents, the pyroelectric effect is in-
duced in the composite due to the interaction between the piezo-
electric effect and the thermal expansion. Moreover, the
pyromagnetic effect is induced due to the interaction between the
piezomagnetic effect and the thermal expansion. As depicted in
Figs. 4 and 5, the coefficients p3 and m3 are in general decreasing
with the increase of the fiber volume fraction for the perfect com-
posite (no debonding occurs) and these results are consistent with
Tang and Yu (2009). When all fibers turn into voids, p3 approaches
zero for the different values of the fiber volume fraction. On the
other hand, m3 decreases nonlinearly with the damage evolution
as shown in Fig. 5.

The electromagnetic coefficient is another material property
that is triggered in the composite and can be utilized in practical
applications, even if it is absent in each constituent. The variation
of the effective electromagnetic coupling coefficient a33 of the
fibrous composite against the damage evolution for different
volume fractions of the fibers is illustrated in Fig. 6. It can be
noticed that a33 decreases with the damage evolution and its
decreasing rate becomes higher for the higher fiber volume frac-
tion. However, for the perfect composite a33 is increasing with
the fiber volume fraction and its values are consistent with the re-
sults in Aboudi (2001).

Fig. 7 depicts the effective magnetic permeability coefficients
l11 and l33 of the smart material against the damage evolution
for different volume fractions of the fibers. It can be seen that
l11 increases with the increase of the initial fiber volume fraction,
which is opposite to l33. Both coefficients are almost independent
on the damage evolution. It can be observed from Fig. 8 that the
effective axial dielectric permittivity k33 increases significantly
with the initial fiber volume fraction, while the effective transverse
dielectric permittivity k11 is almost independent on the initial fiber
volume fraction. Although k11 remains almost invariant with the
change of the damage evolution, k33 decreases almost linearly with
the damage evolution.

The variations of the effective piezoelectric coefficients e33, e31

and e15 are shown in Fig. 9. It is obvious that e33 and e31 are signif-
icant while e15 is almost negligible. However e33 and e31 have
opposite behaviors with the increase of the initial fiber volume
fraction and the damage evolution; they approach zero when all
fibers turn into voids. However the piezomagnetic coefficient q15

decreases with the increase of the initial fiber volume fraction as
shown in Fig. 10; it is almost independent on the damage evolu-
tion. It is found from the numerical results that the other



Fig. 8. Effective dielectric coefficients k33 and k11 of a fibrous composite against the
damage evolution for different volume fractions of BaTiO3 (fpo = 0.05, 0.1, 0.2 and 0.3).

Fig. 9. Effective piezoelectric coefficients e33, e31 and e15 of a fibrous composite
against the damage evolution for different volume fractions of BaTiO3 (fpo = 0.05,
0.1, 0.2 and 0.3).

Fig. 10. Effective piezomagnetic coefficients q15 of a fibrous composite against the
damage evolution for different volume fractions of BaTiO3 (fpo = 0.05, 0.1, 0.2 and
0.3).

Fig. 11. Effective thermal expansion coefficients a11 and a33 of a fibrous composite
against the damage evolution for different geometries of the reinforcements (fpo = 0.3).

Fig. 12. Effective pyroelectric and pyromagnetic coefficients p33 and m33 of a
fibrous composite against the damage evolution for different geometries of the
reinforcements (fpo = 0.3).
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piezomagnetic coefficients q13 and q33 have the same order of the
magnitude of q15 and also have the same behavior of q15.

As a final investigation, three different geometries of the rein-
forcements are considered in order to investigate their effects on
the properties of the smart composite. These geometries are circu-
lar cylindrical fiber, thin disk and ribbon with initial volume frac-
tion equals 0.3. It can be seen from Fig. 11 that the transverse
CTE a11 is higher than the axial one a33 for all geometries. In addi-
tion, the cylindrical fiber has the highest level for a11 and a33, while
the disk reinforcement has the lowest one. Moreover, the disk is
significantly affected by the damage evolution relative to the other
geometries. The variation of the pyroelectric and pyromagnetic
properties p3 and m3 are shown in Fig. 12. The ribbon and thin disk
reinforcements have the highest levels for p3 and m3 respectively.
While disk reinforcement results in negligible p3, cylinder and rib-
bon reinforcements result in a negligible m3 relative to that of the
disk reinforcement. Moreover, both properties approach zero when
all reinforcements turn into voids. It is emphasized again that the
composite exhibits these two properties even if neither constituent
exhibits them. It can be seen from the previous results that the dif-
ferent properties have remarkable differences according to the
considered reinforcement aspect ratio, volume fraction and
geometry.

4.2. Effect of damage evolution during continuous loading

As an example of the application of the present constitutive
equation, a continuous loading situation is considered. The pur-
pose of this is to highlight the usefulness of the formulation (e.g.
as a constitutive driver in a non-linear finite element setting).
The model is evidently very general, but for simplicity the response
under uniaxial tension in the axial direction is analyzed. The spe-
cific microstructure is described as a particle reinforced smart
composite taking into account the debonding damage of the rein-
forcements. The matrix material is taken as epoxy with the piezo-
electric BaTiO3 inclusions. The initial reinforcement volume
fraction, the reinforcement diameter and the specific interface
adhesive energy are taken to be 0.15, 100 lm and 0.1 J/m2,
respectively.

The variations of the axial stresses in the composite,
reinforcement and matrix rz; rp

z and rm
z as well as the damaged

reinforcements volume fraction fd are shown in Fig. 13 as functions
of the composite axial strain ez. It can be seen that both of the



Fig. 13. Microscopic and macroscopic stress–strain relations of the composites
with debonding damage. b = 1, fpo = 0.15.
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microscopic stresses are linear and the reinforcements exhibit the
highest linear stress–strain relation while the matrix exhibits the
lowest linear one. On the other hand, both the macroscopic
stress–strain relation and the damage evolution are nonlinear.
Not surprisingly, the volume fraction of the damaged reinforce-
ments increases with the axial strain. It can be noticed that the
stress in the reinforcements is one order of magnitude higher than
both the stress in the matrix and the macroscopic stress of the
composite. Therefore, designing smart structures based on the
macroscopic analysis may give misleading results and may lead
to unexpected failure of different structures. Eventually, the micro-
scopic analysis and the damage evolution of the reinforcements
should be considered when designing different smart structures.
For this loading situation, it turns out that the electric field E3,
which is induced due to the piezoelectric effect, increases mono-
tonically with the axial strain as shown in the figure.

5. Conclusions

A micromechanical approach, which results in an incremental
constitutive equation, to analyze the local multiphysical micro-
scopic fields in the matrix and in the inclusion as well as the mac-
roscopic multiphysical field of heterogeneous smart composites,
which are sensitive to thermomechanical, electric and magnetic
fields, is presented. Full coupling between elastic, electric, mag-
netic and thermal fields and different geometries of the reinforce-
ments as well as the debonding process of the reinforcements due
to high loading conditions are considered. The effective multiphys-
ical properties including the effective elastic, piezoelectric, piezo-
magnetic, dielectric, magnetic permeability and magneto-electric
coupling coefficients as well as the thermal stress coefficients
and the associated pyroelectric and pyromagnetic constants are
extracted from the macroscopic multiphysical field.

The proposed constitutive equation is valid for predicting four
different field behaviors of smart composites under four different
types of loading conditions either individually or combined. These
are electric, magnetic, thermal, and mechanical loading conditions.
Also, it is valid for composites that exhibit one or more of these
field behaviors and loading conditions. For example, if the compos-
ite under consideration is a piezoelectric one with no magnetic
effect of the constituent materials, the proposed constitutive equa-
tion can be used after removing the magnetic effect parts; thus, the
stiffness and Eshelby matrices will be 9 � 9 matrices in this case. If
the electric parts are also removed, these matrices will be 6 � 6
matrices and the constitutive equation will deal with the thermo-
mechanical behaviors of composites. Moreover, the thermal part
can definitely be omitted too leading to predicting the mechanical
field behaviors of traditional composites. Eventually, different
combinations of the four different fields of different composites
can be treated by the proposed constitutive equation.

In short, the presented constitutive law can be used to study the
microstructure-property-performance relationship of materials
and to guide the design and optimization of the smart structures.
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