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Euler-Lagrange and Euler-Hamilton variational principles are presented 
for a class of linear initial value problems. 

1. INTRODUCTION 

Initial value problems arise in diffusion, classical mechanics, and other 
areas of mathematical physics and it is of some interest to provide a varia- 
tional formulation of them. Early attempts, represented by Hamilton’s 
principle and other action principles, are inadequate because they actually 
refer to boundary value problems, in which comparison curves must agree 
with the critical curve at both ends of the time interval. The unsatisfactory 
nature of these results arises basically because the function space is that 
of standard calculus of variations with inner product 

For such spaces, boundary terms at t = 0 and t = T enter naturally, and 
furthermore the operator a/at characteristic of diffusion is not symmetric, 
so that terms such as @/at are not potential. 

One way around these difficulties has been explored recently by Tonti [l] 
using the idea of a convolution inner product 

With this bilinear form the operator a/at is symmetric and it is possible to 
give a variational formulation of initial value problems. Tonti’s results [l] 
refer to the Euler-Lagrange formulation of certain problems and they 
involve essential conditions or constraints on the admissible functions. In 
this paper we show how these constraints can be removed so that the initial 
conditions arise as natural conditions from the variational theory. In addition, 
we provide a canonical Euler-Hamilton formulation of the results. 

840 
Copyright ,<: 1976 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82665896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


VARIATIONAL PRINCIPLES FOR LINEAR INITIAL VALUE PROBLEMS 841 

2. A CLASS OF INITIAL VALUE PROBLEMS 

We consider a class of initial value problems described b! 

A;ci+BG+Cq=f, t>o (2.1) 
with 

q(O) = a, (2.2) 
and 

G(O) = b. (2.3) 

Here the vectors have n components, f, a, and b being given, and d, B, 
and C denote given symmetric n x II matrices. The solution q* of (2.1) 
to (2.3) will be regarded as an element in the convolution space with inner 
product 

It is also convenient to define a reduced inner product 

With these definitions we find that 

and so the operator 

has formal adjoint 

in the convolution space. 

L = apt 

L” = djdt 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

3. VARIATIONAL PRINCIPLE 

To obtain a variational formulation of the initial value problem in (2.1)- 
(2.3), we seek a potential J(q) such that J(q) is stationary at q*, that is 

sJ(q*) = 0. (3.1) 

A suitable potential J(q) will contain two parts, one corresponding to the 
differential equation (2.1) and the other corresponding to the initial conditions 
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(2.2) and (2.3). Taking these two aspects into account we find the following 
result. 

THEOREM 3.1. The functional 

J(q) = .Xil, Ailie + Kq, BG), + B<q, Cq,, - <f, q>r 

4 <&4q - ah - (9, Ab?, + :(q, W, - (4, W, (3.2) 

is stationary at the so&ion q* of (2.1)-(2.3). 

Proof. The first variation of the functional (3.2) is 

= <t, Ailh + Kq> BE), + KS, JWc + (5, Cq>, - (5, 0, 

+ <k 4q - a)h + (4, .4& - (5, Abj, 

+ X5, Bqh + &<q, B% - (5, Bah , at q = q*. 

Integrating the first and second terms by parts using (2.6), we find that 

SJ = (5, -4;i + B4 -t- Cq - 0, + (6 A(q - aDo 

+ (5,-G - b)h + (5, B(q - ah , at q = q*. (3.3) 

Hence, for arbitrary variations 5, 8 J = 0 implies that q* satisfies equations 
(2.1)-(2.3). This proves the theorem. 

We note that in this variational principle both of the initial conditions 
are natural conditions, and so no essential conditions need be imposed on the 
admissible functions q. 

4. CANONICAL FORMULATION 

The problem in (2.1)-(2.3) wi now be formulated in terms of canonical II 
equations. In general these equations take the form (see [2]) 

Lq = awlau, (4.1) 

Lag = awlaq, (4.2) 

where u and q are canonical variables, L* is the formal adjoint of L, and 
IV = W(u, q) is the Hamilton functional. 
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For L and L* we choose 

L = d/d& L* = dldt, (4.3) 

(see Eq. (2.6)) and for u we take 

u = Acj + 4Bq. (4.4) 

Assuming that d-l exists, we can rewrite (4.4) as 

4 = A-91 - 5-t’Bq, (4.5) 

and then (2.1) may be written as 

ii = f - cq + @-‘Bq - @/J-lu. (4.6) 

These are canonical equations of the form 

4 = EW/%u, 

Ii = %6V/2q, 

(4.7) 

(4.8) 

where a suitable Hamiltonian W is 

W(u, q) = $<u, k’u), - (q, $Bd-%I‘,, - -;;q, Cq; c 

+ $\:q, tBA-‘Bq;,, f (f, q‘\c. (4.9) 

In terms of the canonical variables, the initial conditions (2.2) and (1.3) 
become 

q(O) = a, (4.10) 

u(0) = Bb + +Ba. (4.11) 

It is readily checked that the second derivatives of I+’ in (4.9) have the 
required symmetry properties, namely, 

Equations (4.7) to (4.11) provide a canonical formulation of the problem in 
Section 2. 1f’e now obtain the associated variational principles. 

Introduce the action functional 

I(U, q) -= U, Q>c - W(U, q) + (u, q - a’;, -- c:q, .-lb + $Ba‘\,, , (4.13) 

= li, qb, - W(U, q) - b:u, a>,, + c:q, u - (--lb 1 PBa):a. (4.14) 
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From these expressions we find that 

ar . 
( 

aw. 
au = q -- ) au t>O + MO) - 4, (4.15) 

and 
ar . aw -= 
aq ( u - a,) t,O + b(O) - (-4 b + &WI. (4.16) 

The action I(u, q) is stationary where al/au = 0, Z/aq = 0, and so we have 
the variational principle 

THEOREM 4.1. The functional I(u, q) in (4.13), (4.14), is stationary at the 
solution (u*, q*) of the initial value problem (4.7) to (4.11). In this theorem 
the conditions (4.10) and (4.11) are natural conditions. 

The functional 1(u, q) can be used to obtain two additional variational 
principles. 

Using (4.13) we define the functional K(q) by 

K(q) = I(u, 91, (4.17) 

where u is such that the first canonical equation (4.7) holds identically, 
that is 

u=Aa++Bq. (4.18) 

Putting (4.18) in (4.17) we find that 

K(q) = l(q)9 (4.19) 

where J(q) is the functional defined in (3.2). Thus we have 

THEOREM 4.2. The functional K(q) in (4.17) is stationary at q*. 

In this theorem we have recovered the Euler-Lagrange principle of Theorem 
3.1. Secondly, using (4.14) we can define a functional G(u) by 

G(u) = I(u, 4, (4.20) 

where q is such that the second canonical equation (4.8) holds identically, 
that is 

q = (C - @A-lB)-r(f - ti - @?A-lu). 

Putting (4.21) in (4.20) we find that 

G(u) = -&(u, A-k), - +(v, D-Iv>, - (u, a),, 

+ (D-lv, u - (Ab + +Z3a))o, 

(4.21) 

(4.22) 
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where 

D = C - $BA-‘B, 

From its construction we have 

v = f - ti - $Bk’u. (4.23) 

THEOREM 4.3. The functional G(u) in (4.22) is stationary at u*. 

This completes our canonical description of the class of problems in 
Section 2. 

The ideas employed here can also be used to obtain variational principles 
for problems in diffusion theory and other areas of mathematical physics. 
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