
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Computational Geometry 34 (2006) 83–95

www.elsevier.com/locate/comgeo

Independent set of intersection graphs of convex objects in 2D ✩

Pankaj K. Agarwal, Nabil H. Mustafa ∗

Department of Computer Science, Duke University, Durham, NC 27708-0129, USA

Received 22 August 2004; received in revised form 1 November 2005; accepted 19 December 2005

Available online 28 February 2006

Communicated by J. Pach

Abstract

The intersection graph of a set of geometric objects is defined as a graph G = (S,E) in which there is an edge between two
nodes si , sj ∈ S if si ∩ sj �= ∅. The problem of computing a maximum independent set in the intersection graph of a set of objects
is known to be NP-complete for most cases in two and higher dimensions. We present approximation algorithms for computing a
maximum independent set of intersection graphs of convex objects in R

2. Specifically, given (i) a set of n line segments in the plane
with maximum independent set of size α, we present algorithms that find an independent set of size at least (α/(2 log(2n/α)))1/2

in time O(n3) and (α/(2 log(2n/α)))1/4 in time O(n4/3 logc n), (ii) a set of n convex objects with maximum independent set of
size α, we present an algorithm that finds an independent set of size at least (α/(2 log(2n/α)))1/3 in time O(n3 + τ (S)), assuming
that S can be preprocessed in time τ (S) to answer certain primitive operations on these convex sets, and (iii) a set of n rectangles
with maximum independent set of size βn, for β � 1, we present an algorithm that computes an independent set of size �(β2n).
All our algorithms use the notion of partial orders that exploit the geometric structure of the convex objects.
 2006 Elsevier B.V. All rights reserved.
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1. Introduction

An independent set of a graph is a subset of pairwise nonadjacent nodes of the graph. The maximum-independent-
set problem asks for computing a largest independent set of a given graph. Given a graph G and an integer k > 0,
determining whether there is an independent set in G of size k is known to be NP-complete even for many restricted
cases (e.g. planar graphs [13], bounded-degree graphs [25], geometric graphs [26]). Naturally, the attention then turned
toward approximating the largest independent set in polynomial time. Unfortunately, the existence of polynomial-time
algorithms for approximating the maximum independent set efficiently for general graphs is unlikely [16]. However,
efficient approximation algorithms are known for many restricted classes of graphs. For planar graphs, polynomial-
time approximation schemes exist for computing the maximum independent set. Note that a graph is planar if and only
if there exists a set of unit disks in the plane whose contacts give the edges of the planar graph [22]. Thus a natural
direction is to investigate the independent-set problem for the graphs induced by a set of geometric objects. The
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intriguing question there is whether (and what) geometric nature of objects aids in efficient computation of maximum
independent set. One such family of graphs arising from geometric objects that have been studied are the so-called
intersection graphs.

Given a set S = {s1, . . . , sn} of geometric objects in R
d , the intersection graph of S, GS = (V ,E) is defined as

follows: each node vi ∈ V corresponds to the object si and eij ∈ E if si ∩ sj �= ∅. A subset V ′ ⊆ V is an independent
set in GS if for every pair of nodes vi, vj ∈ S′, si ∩ sj = ∅. For brevity, we say “independent set of S” when we
mean “independent set of the intersection graph of S”. In this paper, we present approximation algorithms for the
independent-set problem on intersection graphs of line segments and convex objects in the plane.

Besides the inherent interest mentioned above, independent sets of intersection graphs have found applications in
map labeling in computational cartography [2], and frequency assignment in cellular networks [21]. For example, in
the map-labeling problem, we are given a set of labels of geometric objects, and the goal is to place the maximum
number of labels that are pairwise disjoint. Computing the maximum independent set of these labels yields a labeling
with the maximum number of labeled objects.

Related work. Given S, let I∗(S) denote a maximum independent set of GS , and let α(S) denote it size. We will
use α to denote α(S) when S is clear from the context. We say that an algorithm computes a c-approximation to I∗(S)

if it computes an independent set of size at least α(S)/c.
For a general graph G(V,E) with n vertices, there cannot be a polynomial-time approximation algorithm with

approximation ratio better than n1−ε for any ε > 0 unless NP = ZPP [16]. Currently the best algorithm for a general
graph finds an independent set of size �(α · log2 n/n) [7], where α is the size of a maximum independent set in G.

However, for intersection graphs of geometric objects, better approximation ratios are possible. If I is a set of
intervals in R, then the maximum independent set of the intersection graph of I can be computed in linear time.
Computing I∗(S) is known to be NP-complete if S is a set of unit disks or a set of orthogonal segments in R

2 [18].
For unit disks in R

2, a polynomial time (1 + ε)-approximation scheme was proposed in [17]. For arbitrary disks,
independently Erlebach et al. [11] and Chan [8] presented a polynomial time (1 + ε)-approximation scheme. The
above schemes for computing independent set of disks use shifted dissection, which relies heavily on the fact that the
geometric objects are disks (or “fat” objects). A divide-and-conquer technique is used for the case of the intersec-
tion graphs of axis-parallel rectangles in the plane, for which Agarwal et al. [2] presented a O(logn)-approximation
algorithm in time O(n logn). If the rectangles have unit height, they describe a (1 + ε)-approximation scheme with
running time O(n logn + n2/ε−1). Berman et al. [5] show that a logk n-approximation can be computed in O(nkα(S))

time. Recently Chan [9] improved these algorithms by describing an algorithm that returns a logk α(S)-approximation
in time O(n logn + nωk−1), where k � 2 is any constant and ω is the maximum number of rectangles a point can
be in. Efficient algorithms are known for other classes of graphs as well [3,6].

In other related work [19], it was shown that the problem of recognizing intersection graphs of line segments, i.e.,
given a graph G, does there exist a set of segments whose intersection graph is G, is NP-hard. Another work related
to ours is of Pach and Tardos [23]. Given a set of disjoint objects (which could be line segments or convex shapes)
in R

2 lying on a sheet of glass, they study the following combinatorial question: by cutting the glass into two separate
sheets with a straight line, and then recursively cutting the resulting two pieces, how many objects can be separated
into different sheets of glass? Using decomposition schemes similar to ours, they present various upper and lower
bounds on the number of objects that can be separated.

Our results. We first present approximation algorithms for a set S of n segments in R
2, all of which intersect a

common vertical line. We show that we can compute1

• in O(n3) time an independent set of S of size at least
√

α, and
• in O(n4/3 logc n) time an independent set of S of size at least α1/4.

Using these results, we show that for an arbitrary set S of segments in R
2, we can compute an independent set of size

at least

• √
α/(2 log(2n/α)) in time O(n3), or

1 All logarithms in this paper are base 2.
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• (α/(2 log(2n/α)))1/4 in time O(n4/3 logc n).

We then extend our results to convex sets. Namely, for a family S of n convex sets in R
2, we can compute in

O(n3 + τ(S)) time an independent set of size at least (α/2 log(2n/α))1/3, assuming that certain primitive operations
(namely sidedness and pairwise object intersection queries) on these convex sets can be performed by preprocessing
S in τ(S) time (see Theorem 3.3). Finally, for a set of n rectangles with maximum independent set of size βn, for
some β � 1, we compute in O(n3) time, an independent set of size at least �(β2n).

Organization. Section 2 describes approximation algorithms for a set of line segments in R
2, and Section 3 de-

scribes the algorithm for convex sets. These algorithms proceed by showing the existence of a large subset of the
maximum independent set with special structural properties. These properties are then used to compute the largest-
sized such subset from the entire set of objects using dynamic programming. Section 4 presents a combinatorial local
search algorithm for the case of axis-parallel rectangles.

2. Approximation algorithms for line segments

Let S = {s1, . . . , sn} be a set of line segments in R
2. Let x(p), y(p) denote the x- and y-coordinates of a point

p ∈ R
2. Let l(s) (resp. r(s)) denote the x-coordinate of the left (resp. right) endpoint of the segment s ∈ S, and let σi

denote the slope of si .

2.1. A
√

α-approximation algorithm

In this section we assume that all the segments in S intersect the y-axis. We also assume that the segments in S are
sorted in increasing order of their intersection points with the y-axis, and we use S = 〈s1, . . . , sn〉 to denote this sorted
sequence.

We call a subsequence S′ = 〈si1, . . . , sim〉 of S s-monotone (see Fig. 1(a)) if

• sij ∩ sik = ∅ for all 1 � j < k � m.
• σij < σij+1 for all 1 � j < m (called increasing s-monotone) or σij > σij+1 for all 1 � j < m (called decreasing

s-monotone).

Lemma 2.1. Let I ⊆ S be a subsequence of pairwise-disjoint segments, all intersecting a common vertical line. There
exists an s-monotone sequence I ′ ⊆ I of size at least

√|I |.

Fig. 1. (a) Bold segments form an increasing s-monotone sequence, (b) Sij in solid (c) si , sj , sk as in the proof of Lemma 2.2.
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Proof. By Dilworth’s theorem [10], there is a subsequence I ′ of I such that the slopes of the segments are either
monotonically increasing or monotonically decreasing, and the size of I ′ is at least

√|I |. Since the segments in I are
pairwise disjoint, I ′ is s-monotone. Furthermore, given I , I ′ can be computed in O(n log logn) time [12]. �

We describe an algorithm for computing the longest s-monotone subsequence of S. By Lemma 2.1, its size is at
least

√
α(S). Without loss of generality, we describe how to compute the longest increasing s-monotone subsequence;

the same procedure can compute the longest decreasing s-monotone subsequence of S, and we return the longer of
the two.

We add a segment s0 to S such that it intersects y-axis below all the segments of S, does not intersect any segment of
S, σ0 < σi for all i � 1, and it spans all the other segments of S (i.e., l(s0) < l(si) and r(s0) > r(si) for all 1 � i � n).
We add another similar segment sn+1 that intersects the y-axis above all the other segments in S, does not intersect
any segment in S, spans all the other segments of S, and σn+1 > σi for all i � n.

For 0 � i < j � n + 1 such that si ∩ sj = ∅ and σi < σj , let Sij ⊆ S denote the subsequence of segments sk s.t.

(S1) i < k < j ,
(S2) σi < σk < σj ,
(S3) l(sk) > max{l(si), l(sj )},
(S4) si ∩ sk = ∅ and sj ∩ sk = ∅.

See Fig. 1(b) for an illustration of Sij . Let Φ(i, j) ⊆ Sij denote the longest increasing s-monotone subsequence of
Sij . If there is more than one such sequence, we choose the lexicographically minimum one. Set φ(i, j) = |Φ(i, j)|.
We wish to compute Φ(0, n + 1). Note that by definition of s0 and sn+1, S0(n+1) = S.

Lemma 2.2. For all 0 � i < j � n + 1,

φ(i, j) = max
sk∈Sij

φ(i, k) + φ(k, j) + 1. (1)

Proof. Let Φ(i, j) = 〈sa1 , . . . , sau〉. Let sah
be the segment in Φ(i, j) with the leftmost left endpoint, i.e.,

l(sah
) � l(sak

) for all 1 � k � u. Note that 〈sa1 , . . . , sah−1〉 ⊆ Siah
and 〈sah+1 , . . . , sau〉 ⊆ Sahj . Since each of these

two subsequences is s-monotone and sah
∈ Sij , φ(i, ah) � h − 1 and φ(ah, j) � u − h. Therefore φ(i, j) =

φ(i, ah) + φ(ah, j) + 1 and hence

φ(i, j) � max
sk∈Sij

φ(i, k) + φ(k, j) + 1.

Conversely, let sk ∈ Sij . By definition of Sik and Skj (cf. (S1)–(S4)), for all sα ∈ Sik and sβ ∈ Skj ,

(i) i < α < k < β < j ,
(ii) σi < σα < σk < σβ < σj ,

(iii) l(sα), l(sβ) > l(sk) > max{l(si), l(sj )},
(iv) sα ∩ sk = ∅, and sβ ∩ sk = ∅.

See Fig. 1(c). As observed in [23], (i)–(iv) imply that the line lk supporting sk does not intersect sα and sβ . Indeed, (i)
& (ii) imply that lk does not intersect sα or sβ to the right of the y-axis, and (iii) & (iv) imply that lk does not intersect
sα or sβ to the left of the y-axis. Since sα and sβ lie on the opposite sides of lk , they neither intersect each other, nor si
or sj . Hence, the segments in Φ(i, k)∪Φ(k, j) are pairwise disjoint. Moreover, the fact that sα and sβ do not intersect
si or sj and (i)–(iv) imply that sα and sβ satisfy (S1)–(S4) for Sij . Hence Sik ∪ Skj ⊆ Sij .

Therefore the sequence 〈Φ(i, k) ◦ 〈sk〉 ◦ Φ(k, j)〉 is an s-monotone subsequence of Sij . Hence,

φ(i, j) � φ(i, k) + φ(k, j) + 1.

This completes the proof of the lemma. �
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We can compute φ(i, j) using a dynamic-programming approach. We can compute the set Sij in O(n) time and
φ(i, j) in another O(n) time, assuming φ(i, k) and φ(k, j) have already been computed. Therefore, the total time spent
in computing φ(i, j) for all 1 � i < j � (n + 1) is O(n3). Putting everything together, we conclude the following.

Theorem 2.3. Given a set S of n segments in R
2, all intersecting a common vertical line, an independent set of size

at least
√

α(S) can be computed in time O(n3).

2.2. A α3/4-approximation algorithm

We now present a faster algorithm at the expense of a larger approximation factor. The algorithm again tries to
find a large subset of I∗(S) that has a certain special structure, which allows its computation in polynomial time. We
assume that all the segments of S intersect the y-axis and are sorted in increasing order by the x-coordinates of their
left endpoints. Let S = 〈s1, . . . , sn〉 denote this sequence. Let ci be the y-coordinate of the intersection point of si with
the y-axis.

Lemma 2.4. Let I ⊆ S be a subsequence of pairwise-disjoint segments, all intersecting the y-axis. Then there exists
a subsequence I ′′ = 〈s1, . . . , sm〉, such that I ′′ ⊆ I , |I ′′| � |I |1/4, and it has one of the following properties [24]: For
all 1 � i < m,

(L1) r(si) < r(si+1) and ci < ci+1 (Fig. 2(a)),
(L2) r(si) < r(si+1) and ci > ci+1 (Fig. 2(b)),
(L3) r(si) > r(si+1) and ci < ci+1 (Fig. 2(c)),
(L4) r(si) > r(si+1) and ci > ci+1 (Fig. 2(d)).

Proof. By Dilworth’s theorem, there exists a subsequence I ′ ⊆ I of length at least
√|I | such that the x-coordinates

of the right endpoints are either monotonically increasing or monotonically decreasing. Again applying Dilworth’s
theorem to I ′, one can find a subsequence I ′′ ⊆ I ′ of length at least

√|I ′| � |I |1/4 such that ci for si ∈ I ′′ are either
monotonically increasing or monotonically decreasing.

If I ′ is increasing and I ′′ increasing (resp. decreasing), then the sequence is of type (L1) (resp. (L2)). If I ′ is
decreasing and I ′′ increasing (resp. decreasing), then the sequence is of type (L3) (resp. (L4)). �

We refer to a subsequence of pairwise-disjoint segments of S that satisfies one of (L1)–(L4) property as an l-
monotone sequence. The following property of l-monotone sequences allows us to compute them efficiently.

Lemma 2.5. Let S′ = 〈s1, . . . , sm〉 be a sequence of segments so that one of the conditions (L1)–(L4) is satisfied and
si ∩ si+1 = ∅ for i = 1, . . . ,m − 1. Then S′ is an l-monotone sequence.

Fig. 2. The four types of l-monotone sequences described in Lemma 2.4.
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Proof. It is clear that for segments of type (L1)–(L4), two segments si and sj , for i < j − 1, cannot intersect without
either si intersecting si+1 or sj intersecting sj−1. Therefore if si ∩ si+1 = ∅ for all i, then the segments are pairwise
non-intersecting and hence l-monotone. �

By Lemma 2.5, the segments in any sequence satisfying one of (L1)–(L4) are pairwise non-intersecting if the
consecutive segments do not intersect (see Fig. 2).

We present an algorithm that, given a sequence S of segments, computes the longest l-monotone subsequence
of each type. By Lemma 2.4, the longest of them is an independent set of size at least (α(S))1/4. We describe an
algorithm for computing the longest l-monotone subsequence of type (L1). The others can be computed analogously.

Define Sj to be the set of segments such that sk ∈ Sj if

(i) k < j ,
(ii) r(sk) < r(sj ),

(iii) ck < cj ,
(iv) sk ∩ sj = ∅.

Let Φ(j) be the longest l-monotone subsequence of Sj of type (L1) that contains sj . Set φ(j) = |Φ(j)|. We wish to
compute max1�j�n φ(j).

Lemma 2.6. For 1 � j � n,

φ(j) = max
sk∈Sj

φ(k) + 1.

Proof. Let Φ(j) = 〈sa1 , . . . , sau=j 〉. Clearly 〈sa1 , . . . , sau−1〉 ⊆ Sau−1 is an l-monotone sequence, and sau−1 ∈ Sj .
Therefore φ(au−1) � u − 1 and φ(j) � φ(k) + 1 for all sk ∈ Sj . Conversely, Lemma 2.5 implies that for any sk ∈ Sj ,
the sequence 〈Φ(k) ◦ sj 〉 is an l-monotone sequence. Hence, φ(j) � φ(k) + 1. �

A naive approach takes O(n) time to compute each φ(j), provided that φ(k), for all k < j , have already been com-
puted. This yields an O(n2) time algorithm. We now describe a more sophisticated approach by exploiting geometry
to compute each φ(j) in O(n1/3 logc n) amortized time.

Let Mj = 〈s1, . . . , sj 〉. We compute φ(j) sequentially for j = 1, . . . , n, maintaining a data structure Ψ that stores
all the segments of Mj . Given the segment sj+1, the data structure returns maxsk∈Sj+1 φ(k). Once we have com-
puted φ(j), we insert the segment sj together with its weight φ(j) into the data structure. Note that after we have
inserted φ(j), the data structure stores all the segments in the set Mj+1.

We now describe Ψ , a three-level data structure, that stores a set E of weighted segments. For a query segment
γ intersecting the y-axis, it returns the maximum weight of a segment s in E so that r(s) � r(γ ), γ ∩ s = ∅, and γ

intersects the y-axis above s. The first-level is a balanced binary search tree Tr(S) on the x-coordinates of the right
endpoints of the segments in S. Let Cu denote the “canonical” subset of segments stored in the subtree rooted at u ∈
Tr(S). For each node u, the second-level data structure is a balanced binary search tree Tc(Cu) on {c(s) | s ∈ Cu}. Let
Cu

v ⊆ Cu denote the set of segments stored in the subtree rooted at v ∈ Tc(Cu). Finally, for the set of segments Cu
v , we

construct a segment-intersection data structure D(Cu
v ) as described in [1]. It stores a family of canonical subsets of Cu

v

in a tree-like structure. The total size of the data structure is O(n4/3 logc n), and it can be constructed in O(n4/3 logc n)

time. For a query segment γ , we can report in O(n1/3 logc n) time the segments of Cu
v not intersecting γ as a union of

O(n1/3 logc n) canonical subsets. For each canonical subset A ⊆ Cu
v , we store the maximum weight wA of a segment

in A. The overall data structure Ψ can be constructed in time O(n4/3 logc n).
For a query segment γ , we wish to report maxφ(s), where the maximum is taken over all segments s of E so that

r(s) � r(γ ), s ∩ γ = ∅, and the intersection point of s with the y-axis lies below that of γ . We query the first-level
tree Tr with the right endpoint of γ and identify a set V1 of O(logn) nodes so that

⋃
u∈V1

Cu is the set of segments
whose right endpoints lie to the left of r(γ ). Next, for each u ∈ V1, we compute a set V2(u) of O(logn) nodes s.t.⋃

v∈V2(u) Cu
v is the set of segments of Cu that intersect the y-axis below γ does. For each v ∈ V2(u), we compute

the maximum weight wv of a segment in Cu
v that does not intersect γ , using the third-level data structure. We return

maxu∈V maxv∈V (u) wv . The total time spent is O(n1/3 logc n).
1 2
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Finally, we can use the standard dynamization techniques by Bentley and Saxe [4] to handle insertions in the
data structure. Since the data structure can be constructed in O(n4/3 logc n) time, the amortized insertion time is
O(n1/3 logc+1 n). However, in our applications, we know in advance all the segments that we want to insert—they are
the segments of S. So we can somewhat simplify the data structure as follows. Set the weight of all segments to 0, and
construct Ψ on all the segments of S. When we wish to insert a segment, we update its weight and update the weight
of appropriate canonical subsets at the third level of Ψ . Omitting all the details, we conclude the following.

Theorem 2.7. Given a set S of n segments in R
2, all intersecting a common vertical line, one can compute an

independent set of size at least α(S)1/4 in time O(n4/3 logc n).

2.3. Independent set for arbitrary segments

Let S be a set of arbitrary segments in R
2. We describe a recursive algorithm for computing an independent set

of S. Let l be the vertical line passing through the median x-coordinate of the right endpoints of segments in S, i.e.,
at most n/2� segments have their right endpoints on each side of l. We partition S into three sets, SL,SR and S∗. SL

(resp. SR) is the subset of segments that lie completely to the left (resp. right) of l, and S∗ is the subset of segments
whose interiors intersect l.

We compute an independent set I ∗ of S∗, and recursively compute an independent set IL (resp. IR) of SL (resp. SR).
Since the segments in SL do not intersect any segments in SR , IL ∪ IR is an independent set of SL ∪ SR . We return
either I ∗ or IL ∪ IR , whichever is larger.

Suppose our algorithm computes an independent set of size at least µ(n,α), where α = α(S). Let nL = |SL|,
nR = |SR|, αL = α(SL), αR = α(SR) and α∗ = α(S∗). Suppose the algorithm for computing an independent set of S∗
returns a set of size at least ζ(α∗). Then

µ(n,α) � max
{
µ(nL,αL) + µ(nR,αR), ζ(α∗)

}
,

where αL + αR + α∗ � α,nL,nR � n/2, nL � αL, and nR � αR . Since µ and ζ are sub-linear functions, it can be
argued that

µ(n,α) � max
{
µ(n/2, α − α∗), ζ(α∗)

}
, (2)

since µ(nL,αL) + µ(nR,αR) � µ(n/2, αL) + µ(n/2, αR) � µ(n/2, αL + αR) � µ(n/2, α − α∗). We now show that
the solution to the above recurrence is

µ(n,α) � ζ

(
α

2 log(2n/α)

)
.

Expanding (2), we obtain

µ(n,α) � max
{
µ(n/2, α − α1), ζ(α1)

}
� max

{
µ(n/22, α − α1 − α2), ζ(α1), ζ(α2)

}
...

� max

{
µ

(
n/2j , α −

j∑
i=1

αi

)
, ζ(α1), . . . , ζ(αj )

}

� max
{
ζ(α1), . . . , ζ(αl)

}
where l is the depth of recursion and

∑l
i=1 αi = α. Moreover, for all j ,

n

2j
� α −

j∑
i=1

αi. (3)

We claim that

max αi � α
.

1�i�l 2 log(2n/α)
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Indeed if it were not true, then l � 2 log(2n/α). Then for j = log(2n/α), n/2j = α/2, while α − ∑j

i=1 αi > α −
jα

2 log(2n/α)
= α/2, thereby contradicting (3). The proof then follows.

If we can compute the independent set of S∗ in time t (n), then the running time of the algorithm is O(t (n) logn).
If t (n) � n1+ε , then the running time is O(t (n)). Hence we conclude the following.

Theorem 2.8. Let A be a set of m segments, all of which intersect a common vertical line. Suppose we can compute
an independent set of A of size at least ζ(α(A)) in time t (m). Then for any set S of n segments in R

2, we can compute
an independent set of size at least ζ(α/2 log(2n/α)) where α = α(S). The running time is O(t (n)) if t (n) � n1+ε , and
O(t (n) logn) otherwise.

Corollary 2.1. For a set S of n segments in R
2, one can compute an independent set of size at least (i)

(α/2 log(2n/α))1/2 in time O(n3) and (ii) (α/2 log(2n/α))1/4 in time O(n4/3 logc n).

3. Independent set for convex objects

We now describe how the results of the previous section can be extended to find an independent set in a set of
convex objects in R

2. Let S = {s1, . . . , sn} be a set of convex objects in R
2, and let I∗(S) be a maximum independent

set of S. As for segments, we first describe an algorithm for the case in which all objects in S intersect the y-axis. We
then use the approach in Section 2.3 to handle the general case. Define l(si) (resp. r(si)) to be the smallest (largest)
x-coordinate of all the points p ∈ si . Let ci be the maximum y-coordinate of the intersection of si with the y-axis.
Again assume that S is sorted in increasing order of the x-coordinates of the leftmost endpoints. An application of
Dilworth’s theorem similar to Lemma 2.4 gives the following.

Lemma 3.1. Given a set I ⊆ S of pairwise-disjoint convex objects all intersecting the y-axis, there exists a subse-
quence I ′ = 〈s1, . . . , sm〉, where |I ′| � |I |1/3 and I ′ has one of the following structure: For all 1 � i < m

(C1) r(si) < r(si+1) and ci < ci+1 (Fig. 3(a)), or
(C2) r(si) < r(si+1) and ci > ci+1 (Fig. 3(a)), or
(C3) r(si) > r(si+1) (Fig. 3(b)).

Sequences satisfying condition (C1) or (C2) can be computed using a dynamic programming approach similar to
the one in Section 2.2. We outline the algorithm for computing a longest subsequence of type (C3).

For 1 � i < j � n such that si ∩ sj = ∅, let Sij ⊆ S denote the subsequence of convex objects sk so that

(i) ci < ck < cj ,
(ii) max{l(si), l(sj )} < l(sk) < r(sk) < min{r(si), r(sj )}, and

Fig. 3. (a) Sequences of type (C1) (bold) and (C2) (dashed); (b) sequence of type (C3), (c) Sij (solid).
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(iii) si ∩ sk = ∅ and sj ∩ sk = ∅.

See Fig. 3(c). Let Φ(i, j) ⊆ Sij denote the longest subsequence of type (C3) of Sij . Set φ(i, j) = |Φ(i, j)|. Then we
can prove the following.

Lemma 3.2. For all 1 � i < j � n,

φ(i, j) = max
sk∈Sij

φ(i, k) + φ(k, j) + 1. (4)

We can compute φ(i, j) using a dynamic-programming approach. Assuming φ(i, k) and φ(k, j) have already been
computed, we only need to compute the set Sij . Suppose we can preprocess S in time τ(S) so that we have the
following information at our disposal: (P1) l(si), r(si), ci for each si ∈ S, (P2) whether si ∩ sj = ∅ for each si, sj ∈ S.
Then the set Sij can be computed in time O(n). Hence, we can compute φ(1, n) in O(n3 + τ(S)) time. Plugging this
procedure into the recursive scheme of Section 2.3 we obtain the following.

Theorem 3.3. Let S be a set of n convex objects in R
2 so that (P1)–(P2) can be computed in τ(S) time. Then an

independent set of size at least (α/2 log(2n/α))1/3 can be computed in time O(n3 + τ(S)).

4. Independent set for axis-parallel rectangles

Let S = {s1, . . . , sn} be a set of n rectangles in R
2, and let ω(S) denote the size of the largest clique in the intersec-

tion graph of S. Without loss of generality, we can assume that no rectangle completely contains any other rectangle.
We first consider two special cases of rectangle intersection graphs—the piercing and non-piercing intersection sub-
graphs, derived by defining the following partial order among the rectangles.

Given two rectangles s1 and s2, s1 ≺ s2 if and only if s1 intersects both vertical edges of s2, and s2 intersects both
horizontal edges of s1 (see Fig. 4(a)). Clearly, if s1 ≺ s2, then s1 and s2 intersect, and neither contains any vertex of
the other. Note that ≺ is a transitive relation: s1 ≺ s2 ≺ s3 implies s1 ≺ s3. If s1 ≺ s2, we say that s1 and s2 pierce, and
that s2 is pierced by s1.

4.1. Piercing and non-piercing rectangle intersection graphs

Given S, the relation ≺ partitions the edges in the intersection graph GS into two sets E1 and E2: given an edge
{a, b} ∈ E(GS), {a, b} ∈ E1 if a ≺ b or b ≺ a, and {a, b} ∈ E2 otherwise.

Piercing intersection graphs. Define the piercing intersection graph of S as the directed graph Gp = (V ,E), i.e.,
each vertex in V (Gp) corresponds to a rectangle in S, and there is a directed edge (a, b) between two vertices a and
b if b is pierced by a, i.e., (a, b) ∈ E(Gp) if and only if a ≺ b.

Fig. 4. (a) s1 ≺ s2 ≺ s3; (b) the set S′ (solid) and the set I ′ (dashed); (c) mapping rectangles in S′ to vertices, and rectangles in I ′ to edges.
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Lemma 4.1. Given a set S of n rectangles in R
2, let Gp be the piercing graph of S. Then ω(Gp) · α(Gp) � n, and a

maximum independent set in Gp can be computed in polynomial time.

Proof. It follows from the transitivity of ≺ that Gp is a transitive graph. It is a well-known fact that all transitive graphs
are perfect graphs [14], i.e., for every induced subgraph of Gp , the size of the maximum clique equals the chromatic
number. Therefore the vertices of Gp can be partitioned into ω(Gp) subsets, each of which is an independent set in
Gp . Since the largest subset has at least n/ω(Gp) vertices, we conclude that ω(Gp) · α(Gp) � n.

By a classical result of Grotschel et al. [15], a largest independent set of a perfect graph can be computed in
polynomial time. �

Non-piercing intersection graphs. We now consider the case of pairwise non-piercing rectangles. Let S be a set of
n rectangles such that no two rectangles pierce (although they could intersect); the intersection graph of S is called
the non-piercing intersection graph and denoted as Gnp . First, note that computing the optimal independent set of S

remains NP-hard since the construction in [26] proving the NP-hardness for intersection graphs of rectangles uses
only non-piercing rectangles.

We call a subset S′ = {si1, . . . , sim} ⊆ S r-maximal if it satisfies the following four conditions:

(A1) S′ is an independent set,
(A2) Every s ∈ S \ S′ intersects some s′ ∈ S′,
(A3) For each s′ ∈ S′, there is at most one rectangle s ∈ I∗(S) such that s intersects s′ and does not intersect any

other rectangle in S′, and
(A4) For every pair of disjoint rectangles s′, t ′ ∈ S′, there are at most two mutually-disjoint rectangles s, t ∈ S \ S′

such that s, t intersect both s′ and t ′, and no other rectangle in S′.

Lemma 4.2. Let S′ = {si1, . . . , sim} ⊆ S be an r-maximal set. Then |S′| � α(S)/c0, where c0 � 11.

Proof. Let I = I∗(S) be the set of rectangles in a maximum independent set. We will charge each rectangle in I to a
rectangle in S′ such that each rectangle in S′ is charged at most a constant c0 times. The lemma then follows.

Let s be a rectangle in I . By maximality condition (A2), s intersects at least one rectangle in S′, and since the
rectangles in S are pairwise non-piercing, s does not pierce any rectangle in S′. We charge s to a rectangle in S′
as follows. First, if s ∈ S′, we charge s to itself. Clearly, each rectangle in S′ ∩ I receives only one unit of charge.
Otherwise, we charge s as follows:

(C1) s only intersects one rectangle s′ ∈ S′. Charge s to s′. By condition (A3), each rectangle in S′ receives at most
one unit of charge.

(C2) s intersects s′ in a corner (i.e., s contains a vertex of s′). Charge s to s′. Since I and S′ are independent sets,
each rectangle in S′ receives at most four units of charge.

Let I ′ ⊆ I be the set of rectangles of I that have not yet been charged. Thus far each rectangle in S′ has received
at most 5 charges, so therefore |I \ I ′| � 5|S′|. We now bound the number of rectangles in I ′. I ′ has the following
property: each rectangle in I ′ intersects exactly two rectangles in S′ (see Fig. 4(b)); (C1) and (C2) above deal with
all other intersection possibilities. We map each rectangle in S′ and I ′ to a vertex and an edge, respectively, by
constructing a bipartite multi-graph GI ′ = (V ,E) where each vertex in V corresponds to a rectangle in S′, and there
is an edge between vj and vk if there is a rectangle s ∈ I ′ that intersects both sij and sik . Clearly each rectangle in I ′
maps to an edge in GI ′ .

We now show that GI ′ is a planar multi-graph as follows. Replace each rectangle s′ ∈ S′ with its center c(s′), and
each rectangle s ∈ I ′ with a polygonal curve (consisting of three piecewise-linear segments) as illustrated in Fig. 4(c).
It is clear, given the independence property of the rectangles in I ′ and S′, that the above embedding is non-intersecting.
Hence GI ′ is a planar multi-graph.
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For a planar graph, the number of edges is at most thrice the number of vertices. Since GI ′ is a planar multi-graph
with at most two edges between any pair of vertices by condition (A4), we have |I ′| = |E| � 6|V | = 6|S′|. Hence,
combining the bounds,

|I | = |I ′| + |I \ I ′| � 6|S′| + 5|S′| = 11|S′|. �
Lemma 4.3. Given a set S of n rectangles in R

2 such that no two rectangles pierce, let Gnp denote the corresponding
(non-piercing) intersection graph. Then ω(Gnp) ·α(Gnp) � n

16 , and a c0-approximation to the maximum independent
set can be computed in polynomial time,

Proof. First, by Turán’s Theorem [22], there exists an independent set of size at least n2/4|E|. Second, for each edge
e = {si , sj }, due to the properties of non-piercing graphs, either si contains a vertex of sj or vice versa. Define ci (a
lower-bound on the number of times rectangle si ’s vertex is contained in another rectangle) as follows. If si contains
a vertex of sj , charge the edge e to vertex sj by incrementing cj , otherwise increment ci . Clearly,

∑n
i=1 ci = |E|, and

hence there exists a rectangle sk whose vertices are contained in more than |E|/n rectangles, and therefore at least
one vertex contained in more than |E|/4n rectangles. These rectangles share a common point, and thus form a clique
of size greater than |E|/4n. Hence,

ω(Gnp) · α(Gnp) � n2

4|E| · |E|
4n

= n

16
.

We describe an iterative algorithm to compute a r-maximal set, which, by Lemma 4.2, is a constant-factor approx-
imation of the maximum independent set of GS . In the beginning of the ith iteration the algorithm maintains a set Si

of i pairwise-disjoint rectangles. In the ith iteration, the algorithm checks whether conditions (A2)–(A4) are satisfied.
If the answer is yes, we return Si , as it is a r-maximal set. Otherwise,

(1) Condition (A2) violated. Then there exists a set s ∈ S \ S′ that does not intersect any s′ ∈ S′. Set Si+1 = Si ∪ {s}.
(2) Condition (A3) violated. Then there exist two disjoint rectangles s, t ∈ S \ S′ that intersect some s′ ∈ S′ but no

other rectangle in S′. Set Si+1 = Si \ {s′} ∪ {s, t}.
(3) Condition (A4) violated. Then there exist three pairwise-disjoint rectangles s, t, u ∈ S \S′ that all intersect s′, t ′ ∈

S′, but no other rectangle in S′. Set Si+1 = Si \ {s′, t ′} ∪ {s, t, u}.

It is clear that Si is a set of pairwise-disjoint segments. The process can continue for at most n iterations, and the final
set Sj is obviously a r-maximal set. Since each of the conditions (A2)–(A4) can be checked in polynomial time, the
total running time is polynomial. �
4.2. General rectangle intersection graphs

Combining Lemma 4.1 and Lemma 4.3, we attain the following.

Lemma 4.4. Given a set S of n rectangles in R
2, an independent set of size at least α(S)

d0·ω(S)
, for some constant

d0 � 16c0, can be computed in polynomial time.

Proof. By Lemma 4.1, compute the maximum independent set, say A ⊆ S, in the piercing graph of S. Note the
following:

(i) |A| � α(S) as an independent set in S is an independent set in piercing graph of S, and
(ii) ω(A) � ω(S), since a clique in A is a clique in S.

By Lemma 4.3, α(A) · ω(A) � |A|/16. Hence, using (i) and (ii) above, it follows that α(A) � |A|/16ω(A) �
α(S)/16ω(S). Since the intersection graph of A is non-piercing, Lemma 4.3 gives an algorithm which returns an
independent set of size at least α(A)/c0 � α(S)/16c0ω(S). �
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Remark. Recently, and independently of our work, Lewin-Eytan et al. [20] also proved Lemma 4.4 using considerably
more complicated LP-rounding techniques.

From now on, let α(S) = βn, for some β � 1.

Theorem 4.5. Given S with α(S) = βn, one can compute an independent set of size α(S)
4d0·(1/β)

in polynomial time.

Proof. The algorithm repeatedly extracts large cliques (one can compute the maximum clique in rectangle intersection
graphs in polynomial time [18]) until a good independent set is found, as follows. Set S0 = S, and let Si be the set
of rectangles in the ith iteration. For now assume that the value of β is known. At the ith iteration, if there exists a
clique C of size at least 2/β , remove C from Si , i.e., set Si+1 = Si \ C, and reiterate. If no such clique exists, compute
the maximum independent set, say A, in the piercing graph of Si , and return the maximum independent set in A.
Assume the algorithm stops after j iterations, i.e. ω(Sj ) � 2/β . Note that j � n/(2/β) = α(S)/2. Since at most one
rectangle from the independent set can be in a clique, each iteration removes at most one rectangle from the optimal
independent set of S, hence α(Sj ) � α(S) − j . From Lemma 4.4, one can thus compute an independent set of size at
least

α(Sj )

d0ω(Sj )
� α(S) − j

d0(2/β)
� α(S) − α(S)/2

d0(2/β)
= α(S)

(4d0/β)
,

yielding the desired result. Note that we do not know the value of β , but can run the above algorithm for all the n

possible values, and return the maximum. �
5. Conclusions

In this paper we have presented algorithms for approximating the maximum independent set in the intersection
graphs of convex objects in the plane. The approximation ratio is better if the convex objects are line segments.

All the algorithms described in this paper have the same overall approach. They first prove the existence of a large
independent subset with some special (separator-like) properties. They then show that this subset can be computed
exactly from among the entire set (we used dynamic-programming). One approach toward improving these results is
to show the existence of independent subsets of larger size, which are still computable in polynomial time.

We leave it as an open problem whether the approximation ratios can be improved. In particular, is it possible to
design a

√
α-approximation algorithm for the case of general convex objects (all intersecting a vertical line)? Similarly,

is it possible to approximate the independent set of line segments better than
√

α? For axis-parallel rectangles, devising
an algorithm with approximation ratio o(logn) remains an intriguing open problem. We have made a step toward
crossing the logarithmic bound in this paper, but a general-case constant-factor algorithm remains elusive.
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