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Abstract

The dynamics of two nonlinear partial di%erential equations (PDEs) known as the Kuramoto–Sivashinsky
(K–S) equation and the two-dimensional Navier–Stokes (N–S) equations are analyzed using Karhunen–Lo:eve
(K–L) decomposition and arti;cial neural networks (ANN). For the K–S equation, numerical simulations
using a pseudospectral Galerkin method is presented at a bifurcation parameter �= 17:75, where a dynamical
behavior represented by a heteroclinic connection is obtained. We apply K–L decomposition on the numerical
simulation data with the task of reducing the data into a set of data coe@cients. Then we use ANN to model,
and predict the data coe@cients at a future time. It is found that training the neural networks with only the
;rst data coe@cient is enough to capture the underlying dynamics, and to predict for the other remaining data
coe@cients. As for the two-dimensional N–S equation, a quasiperiodic behavior represented in phase space
by a torus is analyzed at Re = 14:0. Applying the symmetry observed in the two-dimensional N–S equations
on the quasiperiodic behavior, eight di%erent tori were obtained. We show that by exploiting the symmetries
of the equation and using K–L decomposition in conjunction with neural networks, a smart neural model is
obtained.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

During the last thirty years, there has been a lot of interest in studying dynamical systems
that arise from solving the initial value problem for nonlinear partial di%erential equations (PDEs)
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[8,16,17,20,21,28,41,42]. In this paper, two nonlinear parabolic PDEs known as the one-dimensional
Kuramoto–Sivashinsky (K–S) equation and the two-dimensional Navier–Stokes (N–S) equations are
studied. The one-dimensional K–S equation has been ;rst derived in 1976 by Kuramoto and Tsuzuki
[38] as a model for the interfacial instabilities in the context of angular phase turbulence for a sys-
tem of a reaction di%usion equation that models the Belouzov–Zabotinskii reaction in three space
dimensions. Also, in 1977, Sivashinsky [56] derived it independently to model thermal di%usion in-
stabilities observed in laminar Mame fronts in two space dimensions. In the last two decades, many
theoretical and numerical studies were devoted to the K–S equation [2,31,34,35]. On the other hand,
the two-dimensional Kolmogorov Mow which is the solution to the two-dimensional N–S equations
that exhibit turbulent behavior is studied because of the rich of symmetries and the lack of boundary
layer associated with it as compared to the three-dimensional N–S equations.

Understanding the notion of turbulence is one of the major outstanding problem in nonlinear dy-
namics. In this regard, few attempts were made to serve as forerunners for the understanding of
turbulence. One such scenario involves the understanding of the intermittent or bursting behavior of
certain measured quantities. In 1958, Kolmogorov introduced a two-dimensional Mow as an example
on which to study transition to turbulence. This two-dimensional Kolmogorov Mow is the solution of
the two-dimensional N–S equations with force f̃ = ((1=Re)k3 cos ky; 0) assumed stationary and spa-
tially biperiodic. In the forcing f̃; Re represents the Reynolds number, and k represents the wavenum-
ber. The case where k = 1 in f̃ has been studied in [6,45,43]. In that case, the Kolmogorov Mow is
stable for any value of Re. However, if k ¿ 1, then the Mow becomes unstable. In the last decade,
bifurcation of the Kolmogorov Mow have been investigated in [3–5,33,46–48,51,53,54,62,59,60].

Nicolaenko and She [46–48] investigated the bursting regimes of Kolmogorov Mow when k = 8.
They linked the observed dynamics of the bursting regimes with symmetry breaking heteroclinic
connections where small-scale turbulent dynamics prevail, and while large-scale dynamics are asso-
ciated to hyperbolic tori. Platt et al. [51] investigated Kolmogorov Mow with a di%erent forcing of
the form f̃=((k=Re)sin ky; 0) and with k=4. In 1992, Armbruster et al. [3] studied quasiperiodic and
intermittent regimes when k = 8, and in 1994, Armbruster et al. [5] analyzed most bifurcation that
occur at Reynolds number from 1 to 30. In [5], it has been shown that the low-dimensional attractor
for the Kolmogorov Mow has a crucial component that lies in the stable eigenspace of the trivial
solution. Also, a new type of bifurcation known as a gluing bifurcation has been discovered. Later
on, Smaoui and Armbruster [62] have constructed a system of ODEs that mimics the dynamics of
Kolmogorov Mow for a given Reynold number. In 2001, an arti;cial neural network model has been
constructed in [59] to model the unstable manifold of the bursting behavior in Kolmogorov Mow,
and in 2002 an autoassociative neural network was also used by the same author for dimensionality
reduction of the Kolmogorov Mow [60].

The paper is organized as follow: In Section 2, we present two computational methods known as
the Karhunen–Lo:eve decomposition (K–L) and arti;cial neural networks (ANN). In Section 3, we
apply the two computational methods mentioned above on the one-dimensional K–S equation, and
present a neural network model for the dynamical behavior at the bifurcation parameter �=17:75. We
show that the model obtained captures the heteroclinic connection observed in numerical simulations.
In Section 4, we show via K–L decomposition and group symmetry that the dynamics of the
two-dimensional Kolmogorov Mow, consisting of eight modulated travelling waves represented in
phase space by eight tori, can be modelled by arti;cial neural networks, and we summarize in
Section 5.
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2. Computational methods

2.1. The K–L decomposition

The K–L decomposition has been used in various ;eld of applications with di%erent names, de-
pending on the area of applications. In image processing, it is known as the Hotelling transform
[26,30], and in pattern recognition the name of principle component analysis has been used [32].
The K–L decomposition was also used under a variety of other names such as factor analysis [27],
singular value decomposition (SVD) or proper orthogonal decomposition (POD) [40], empirical
orthogonal functions [39], and quasiharmonic modes [12]. Lumley [40] developed the POD tech-
nique to identify coherent structures in turbulent Mow. Armbruster et al. [3,5] and Smaoui [59,62]
have used K–L decomposition in the analysis of the two-dimensional N–S equations. Smaoui et
al. [57,61,63,64] have also used K–L decomposition in Muid Mow in porous media, in the analysis
of sand stones, and in the study of Mames. Regardless of the di%erent names and applications, the
method which is based on second order statistical properties is essentially the same. Since the K–L
decomposition is heavily used in this paper, a detailed description of the method is now presented.

First, we consider the data to be a set of (real) random vectors, which depend on space and time

{Xi}Mi=1; (1)

where X = [x1; x2; : : : ; xN ]T. Next, the mean is computed as

PX =
1
M

M∑
i=1

Xi: (2)

For convenience, an additional sequence of vectors called caricature vectors which have zero mean
are computed as:

X̂ i = Xi − PX ; i = 1; : : : ; M: (3)

Two approaches are known in the literature for computing the covariance matrix. The ;rst approach
is known by the direct method, and the second approach is known by the snapshot method. In the
direct method, the covariance matrix is approximated by

C =
1
M

M∑
i=1

X̂ iX̂ T
i : (4)

Notice that in Eq. (4), the covariance matrix C is an N × N matrix. If N is big, this matrix can
become too large for practical computation. However, using the snapshot method which was ;rst
introduced by Sirovich in 1987 (for a more detailed description of the method see [55]) makes the
computation more tractable. In the snapshot method, the covariance matrix is given by

Cij =
1
M

〈X̂ i; X̂ j〉; i; j = 1; : : : ; M: (5)

Here 〈:; :〉 denotes the usual Euclidean inner product. Now, the matrix is M ×M instead of N × N ,
and assuming that M�N , its eigenvalues and eigenvectors can be easily computed than the one
de;ned by the direct method.
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The covariance matrix C is symmetric and positive de;nite, then its eigenvalues {�i; i= 1; : : : ; M}
are real, and its eigenvectors {�i; i = 1; : : : ; M} form an orthogonal set [66]. The orthogonal eigen-
functions of the data are de;ned as

�k =
M∑
i=1

�[k]
i X̂ i; k = 1; : : : ; M; (6)

where �[k]
i is the ith component of the kth eigenvector. A characterization of the eigenfunctions is

that they form an optimal basis for the expansion of a spatiotemporal data set. This basis has a
smaller least square error than a representation by any other basis, i.e.,

u(x; t) = X̂ ≈
M∑
i=1

ai(t)�i(x); (7)

where the ai’s are the data coe@cients, computed from the projection of a sample vector onto an
eigenfunction

ai =

(
X̂ · �[i]

�[i] · �[i]

)
: (8)

The sum of the eigenvalues of the covariance matrix is de;ned as the “Energy” of the data and
is given by

E =
M∑
i=1

�i: (9)

Each eigenfunction has an energy percentage which depends on the eigenfunction’s associated eigen-
values:

Ek =
�k
E
: (10)

Assuming that the eigenvalues are sorted in a descending order, then the eigenfunctions are ordered
from most to least energetic. Finally, any sample vector can be reconstructed using the eigenfunctions

X = PX +
M∑
i=1

ai�[i]: (11)

Using only the ;rst most energetic K eigenfunctions, an approximation of the data is constructed as

u(x; t) = X ≈ PX +
K∑
i=1

ai�[i]: (12)

2.2. Arti7cial neural networks

ANN have been used in many di%erent disciplines such as speech recognition [9,11,19], image
processing, control system, arti;cial intelligence [1,29,49,52], human face recognition [65], Muid Mow
in porous media [63,64], time series [37,50,58], and dynamical systems [13,25,36,44,57,60,62]. The
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greatest advantage of a neural network is its ability to model complex nonlinear relationships without
any assumptions about the nature of the relationships.

The way ANN analyze data is by passing it through several simulated processors which are
interconnected with synaptic-like “weight”. Once several records of the data to be analyzed are
collected, then the network will run through them and learn how the inputs of each record may be
related to the results. Then, it continually re;nes itself until it can produce an accurate response
when given those particular inputs. If there is any relationship between the input and the result of
each record, the network should be able to create an internal mapping of weights that can accurately
reproduce the expected output.

During the training procedure, the network compares its actual response with the target response
and adjusts its weights in such a way to minimize the sum of the square of the error E, de;ned as

E =
1
2

∑
p

∑
k

(zk − yk)2
p; (13)

where zk is the desired vector of the kth output node, yk is the actual output vector of the kth output
node, and the p subscript refers to the speci;c input vector pattern used. The weights leading into
an output node k are adjusted in proportion to the di%erence between the actual node output and its
desired output.

Among the many algorithms available for adjusting the weight matrix, back-propagation is the
most popular algorithm of all neural network paradigms [9,15,22–24]. It was initially developed
and announced by Paul werbors in the early 1970s in his Harvard university doctoral thesis. Back-
propagation algorithms is a gradient descent or steepest descent algorithm which is based on a
multilayered, feedforward topology, with supervised learning.

In the beginning of the training stage, the network uses a random generator to initialize the weight
matrices and bias vector. If the sum square error E is greater than a ;xed value, then the new weight
adjustments are computed for all hidden layer one by one, until the synaptic weights of the input
layer are reached. Since the goal of the back-propagation algorithm is to locate the global minimum
in the error surface, then new training algorithms were processed to speed up training and to make
sure the search process does not get stuck in local minima. Among those algorithms, Levenberg
–Marquardt algorithm has proven to be e@cient and reliable algorithm for computing the weight
matrix. It is given by

Uwhk = (JTJ +  I)−1JTe; (14)

where  is scalar, J is the Jacobian matrix of derivatives of each error to each weight, and e is an
error vector.

After the iterative optimization procedure has converged, an explicit nonlinear map to be used for
future prediction is obtained:

x(t + P) = f(x(t); x(t − 1)); (15)

where x(t) and x(t − 1) are the values of the data coe@cients at time t and t − 1, respectively;
x(t + P) is the predicted value of the data coe@cient at the next P sampling instant, and f is a set
of nonlinear function representing the ANN-model.
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3. The K–S equation

The K–S equation

9u
9t + #

94u
9x4 +

92u
9x2 +

1
2

(
9u
9x

)2

= 0; (x; t) ∈R1 × R+; (16)

u(x; t) = u(x + L; t); (17)

u(x; 0) = u0(x); (18)

where L is a period, has ;rst been derived in 1976 by Kuramoto and Tsuzuki [38] as a model
equation for interfacial instabilities in the context of angular phase turbulence for a system of a
reaction–di%usion equation that model the Belouzov–Zabotinskii reaction in three space dimensions,
and independently, in 1977, by Sivashinsky [56] to model thermal di%usion instabilities observed
in laminar Mame fronts in two space dimensions. In the last two decades, many theoretical and
numerical studies were devoted to the K–S equation [2,31,34,35].

By setting t̃ = #t=4 and L = 2%, Eq. (16) can therefore be transformed to

9u
9t + 4

94u
9x4 + �

[
92u
9x2 +

1
2

(
9u
9x

)2
]

= 0; 06 x6 2%; (19)

u(x; t) = u(x + 2%; t); (20)

u(x; 0) = u0(x); (21)

where �=4=# is a bifurcation parameter, and u0(x) is 2%-periodic. Eq. (16) is equivalent to Eq. (19),
but with a di%erent time scaling. In [31], extensive numerical simulations have been analyzed for
values of bifurcation parameter � between 0 and 320. There, it has been shown that as � increases, the
dynamics exhibit a variety of interesting behaviors, including ;xed points, travelling waves, beating
waves, homoclinic and heteroclinic orbits, and chaos. For the bifurcation parameter � = 17:75, the
dynamics of the K–S equation is shown to exhibit a homoclinic cycle. Armbruster et al. [2] and
Kevrekidis et al. [35] explained these dynamics in an analytical frame work.

Since the goal of this work is to obtain an arti;cial neural network model for the K–S equation
at � = 17:75, we numerically compute the time series solution of Eq. (19) with u0(x) = sin 2x by
decomposing u(x; t) via the expansion

u(x; t) =
∞∑

k=−∞
ak(t)eikx: (22)

Using the above expansion, Eq. (19) becomes

∞∑
k=−∞

[ȧk(t) + (4k4 − �k2)ak(t)]eikx =
�
2

( ∞∑
k=−∞

kak(t)eikx

)2

: (23)
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The Fourier coe@cients ak are found via the orthogonality relationship:∫ 2%

0
eikxe−ilx dx = 2%'kl: (24)

Applying the orthogonality condition and truncating the expansion results in

ȧl(t) = (�l2 − 4l4)al(t) +
�
2

N∑
n=−N+l

n(l − n)al−nan; (25)

where −N6 l6N . Eq. (25) is solved using a pseudospectral Galerkin method where the nonlinear
term is treated using a “de-aliasing” technique known as aliasing removal by truncation [14].

Fig. 1 presents two numerical simulation results obtained at � = 17:75. Looking carefully at
Fig. 1(a), we see that it consists of two laminar states: one between two bursts and the other is
on the other sides of the two bursts. In phase space concept, the behavior is similar to that of a
heteroclinic orbit where two ;xed points, one stable and the other unstable, are connected through
their stable and unstable manifolds.

The K–L procedure has been used on the numerical results obtained in Fig. 1(a) with the task
of extracting the coherent structures or the most energetic eigenfunctions of the numerical data.
Table 1 depicts the eigenvalue spectrum showing that 99.88% of the energy is captured by the
;rst ;ve eigenfunctions. The ;rst eigenfunction captures 55.69% of the total energy; the second
eigenfunction captures 31.46% of the total energy, and the remaining three accounts for 12.73% of
the total energy. Fig. 2 plots these ;ve eigenfunctions. Since the ;rst ;ve eigenfunctions captured
99.88% of the total energy, this suggests that the dynamical behavior presented by the heteroclinic
orbit lives in a low-dimensional linear space, and that the K–L expansion provides a set of vectors
that span this space. Of course, the dimension of this space may not be the intrinsic dimension
where the attractors reside (see Smaoui [60]). Projections of the numerical results onto the ;rst ;ve
eigenfunctions are given in Fig. 3. It is evident from Fig. 3 that the two bursts appear in the same
position in all ;ve data coe@cients.

To obtain a neural network model for the numerical simulation results, a feedforward neural
network architecture with one input layer, two hidden layers both with nonlinear sigmoidal activation
function g(x) = tanh x, and an output layer with linear transfer function is used. The input layer
consists of ;ve data coe@cients ai; i = 1; : : : ; 5 at time tn and at time tn−1. The output is the
predicted value of the ;ve data coe@cients at the next P sampling instant ai(tn + P), i.e., we have
the following mapping:

ai(tn + P) = f(ai(tn); ai(tn−1)); i = 1; : : : ; 5; (26)

where f is a set of nonlinear function representing the ANN-model. For P = 1, a sensitivity study
was conducted to ;ne tune both the sum square error E as de;ned in Eq. (13) and the number
of nodes in the two hidden layers. The best architecture obtained consists of 10 nodes in the two
hidden layers (see Fig. 4). The network was then trained using the data coe@cients given in Fig.
3. Upon convergence, that is, when the E reaches a preset bound, the weights connecting all nodes
were saved, and the network is ready for testing a new set of data coe@cients not included during
the training stage. This new set of data coe@cients shown in Fig. 5 was derived by applying K–L
decomposition on another simulation result which is presented in Fig. 1(b).
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Fig. 1. (a) Numerical simulation results of the K–S equation at � = 17:75 and with initial conditions u0(x) = sin 2x.
(b) Another numerical simulation results showing di%erent bursting events.
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Table 1
Energy of the ;rst ;ve eigenfunctions of the K–S numerical
simulation data at � = 17:75 capturing 99.88% of the total
energy

Fig. 2. The ;rst ;ve eigenfunctions of the K–S numerical simulation data at � = 17:75.

Fig. 6 presents both the testing data coe@cients and their neural network predictions. Comparing
the original data coe@cients with their neural network counterparts, one can say that the neural
network model was able to capture the heteroclinic connection when P = 1. Since we are interested
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Fig. 3. The ;rst ;ve data coe@cients of the numerical simulation data shown in Fig. 1(a) generated by K–L decomposition.

to predict the dynamical behavior for di%erent values of P (i.e., P= 3; 6, and 9), and since for P= 1
the neural network did not behave extremely well, then to improve the results one might include
more time delays or old observations in the input layer. This approach will not be practical since
it leads to a large network with a considerable number of weights to be estimated. To determine a
better neural network model, we train the network using only the ;rst data coe@cient as a training
data set. We realized that since the heteroclinic connection is captured by the ;rst data coe@cient,
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Fig. 4. The ;rst arti;cial neural network architecture used for the K–S numerical simulation data.

and since the topological dimension of a heteroclinic connections is one, then one might not need
the other data coe@cients during the training stage. In this case, the best neural network architecture
was found to consist of a 2-node input layer, one 5-node hidden layer and one-node output layer (see
Fig. 7). Upon convergence, The resulting network constitutes a dynamical model that can be used
to predict the other four data coe@cients and those data coe@cient resulted from the new numerical
simulation. the model is represented by

a(tn+1) = f(a(tn); a(tn−1)) (27)

or in terms of the saved weights and biases

a(tn+1) = w2g(w1a(tn; tn−1) − �1) − �2; (28)

where w1 is the weight matrix for synapsis connecting the input nodes with nodes of the ;rst hidden
layer, w2 is the weight matrix for synapsis connecting the ;rst hidden layer with the node at the
output layer. These weights are given by

w1 =




2:3573 −2:2035

1:9718 1:2895

0:317 −0:8678

1:2571 0:8814

−4:0324 0:9365



; (29)

w2 = [ − 0:5297 0:0516 − 1:5002 0:1719 − 0:0418]: (30)
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Fig. 5. The ;rst ;ve data coe@cients of the numerical simulation data shown in Fig. 1(b) generated by K–L decomposition.

The bias vectors used for each layer �1 and �2 are given by

�1 =




−0:8089

0:216

0:0398

−2:0482

1:0052



; �2 = [ − 0:1189]: (31)
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Fig. 6. Short-term prediction of the ANN model presented by Fig. 4 (solid) versus the original time series data coe@cients
(dashed).

a(tn; tn−1) =

(
a1(tn)

a1(tn−1)

)

and a(tn+1) = a1(tn+1), are the input and output vectors that consist of the values of the data coe@-
cients at tn−1; tn and tn+1, respectively.

Fig. 8 is a plot of the ;ve data coe@cients used for testing the neural network model obtained
for P= 1. It should be noted again that the network was trained using only the ;rst data coe@cient.
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Fig. 7. The second arti;cial neural network architecture used for modelling the K–S equation for P = 1; 3, and 6.

Testing the model on the remaining four data coe@cients shows an excellent agreement. To further
test our model, we used the second set of data coe@cient presented in Fig. 5. Fig. 9 shows that the
original data coe@cients agree very well with those predicted by the model.

The architecture given in Fig. 7 was also used to predict the data coe@cients when P = 3; 6.
However, for P = 9, the optimal neural network architecture was found to consist of a 2-node input
layer, one 10-node hidden layer and a 1-node output layer. It should be noted that a prediction at
P time steps into the future past the last observed point a(t) will be made using observed data at
times: a(t) and a(t − 1). That is, a prediction at P time steps into the future is made by placing
previously predicted values in the input layer. For P = 3 and 6, the model behaves very well in
capturing the dynamics of the attractors; however, when P = 9, the model behavior degrades as P
increase (see Fig. 9). Of course, this is because previously predicted values (made with some errors)
are used to make subsequent prediction; therefore the errors get magni;ed upon iterations.

So far, a neural network model was presented to capture the dynamics of the one-dimensional K
–S equation at � = 17:75. The model was successful in predicting the dynamical behavior of the
heteroclinic connection at di%erent time steps. However, we showed that as the number of time
steps increases, the model behavior degrades. In the next section, we analyze a more complicated
dynamical behavior than the one presented in this section. The dynamical behavior is presented
by eight di%erent tori representing quasiperiodic behaviors of Kolmogorov Mow at a bifurcation
parameter Re = 14:0.

4. The two-dimensional N–S equation

The two-dimensional N–S equations with periodic boundary conditions in two directions
06 x; y6 2% are given by

ũt + (̃u:∇)̃u + ∇p = #∇2ũ + f̃; (32)
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Fig. 8. Short-term ANN prediction of the ;rst set of ;ve data coe@cients (solid) versus the original data coe@cients
(dashed).

∇ · ũ = 0; (33)

with a force f̃ in the x; y coordinates, kinematic viscosity # = 1=Re and pressure p. In 1958,
Kolmogorov introduced a two-dimensional Kolmogorov Mow as an example on which to study
transition to turbulence with ũ = (4 cos 4y; 0) usually called the “the basic Kolmogorov Mow”.
This Mow is the solution to the N–S equations with force f̃ = (k3# cos 4y; 0), which is assumed
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Fig. 9. Neural network prediction of the second set of data coe@cients when P = 1 (solid line); P = 3 (point line);
P = 6 (dashed line); and P = 9 (dashed-point line).

stationary and spatially biperiodic. Recently, large numerical simulations of this Mow have revealed
a wealth of bifurcation to many di%erent attractors including: steady states, periodic, quasiperiodic
and strange or chaotic attractors [4–6,33,46–48,51,53,54,58,59,67]. In this section, we are interested
in the quasiperiodic behaviors at Re = 1=# = 14:0 and with a wavenumber k = 4.
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If we let ũ = (u1; u2) and f̃ = (f1; f2) in Eq. (32), the x and y components of ũ become

9u1

9t + u1
9u1

9x + u2
9u1

9y +
9p
9x = #

(
92u1

9x2 +
92u1

9y2

)
+ f1; (34)

9u2

9t + u1
9u2

9x + u2
9u2

9y +
9p
9y = #

(
92u2

9x2 +
92u2

9y2

)
+ f2: (35)

Also, by letting

u1 =
9�
9y ; (36)

u2 = −9�9x (37)

and taking the partial derivative with respect to y of Eq. (34), the partial derivative with respect to
x of Eq. (35), and subtracting the two equations, we get

9U�
9t +

9
9x

(
U�

9�
9y

)
− 9
9y

(
U�

9�
9x

)
= #U2� +

9f1

9y − 9f2

9x : (38)

To analyze the stability of the basic Mow equation, we perturb it as

� = �′ + sin 4y: (39)

Then Eq. (38) reduces to

#U2�′ =
9U�′

9t +
9
9x

(
(U�′ − 16 sin 4y)

(
9�′

9y + 4 cos 4y
))

− 9
9y

(
(U�′ − 16 sin 4y)

9�′

9x

)
(40)

or

9U�′

9t = U2�′ − Re
[
9
9x

(
U�′ 9�′

9y

)
− 9
9y

(
U�′ 9�′

9x

)]

− 4Re
9
9x [U�′ + 16U�′]cos 4y; (41)

where Re= 1=# is the Reynolds number and t̃= #t. As the Reynolds number is increased further, the
Kolmogorov Mow, in general, seems to acquire more and more small scale structures without gaining
much additional temporal structure [5]. Applying the inverse Laplacian on Eq. (41), we obtain

9�′

9t = ∇−1

[
U2�′ − Re

[
9
9x

(
U�′ 9�′

9y

)
− 9
9y

(
U�′ 9�′

9x

)]

− 4Re
9
9x [U�′ + 16U�′]cos 4y

]
: (42)

Eq. (42) is called the stream function equation. It can also be written in terms of vorticity !=−U�.
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Fig. 10. Twenty-;ve snapshots of the vorticity at di%erent time when Re = 14.

Numerical studies have shown that Kolmogorov Mow exhibits a remarkable sequence of symmetry
breaking bifurcation leading to a chaotic state. While numerical studies have revealed remarkable
behaviors [3,5,59], the aim of this study is to construct an arti;cial neural network model for the
quasiperiodic behavior shown in Fig. 10, by exploiting as much as possible the symmetries involved
in the problem. Fig. 10 shows the numerical simulation of Eq. (42) presented in terms of the vorticity
formulation.

4.1. The symmetries of the two-dimensional N–S equations

The idea of symmetry was ;rst introduced by Sirovich [55] who suggested the use of symmetry
operation to enlarge the available data set in order to get better averaging behavior. Later on,
Aubry et al. [7] have shown that symmetrizing a data set is a necessary condition to achieve a
representation of the global phase space of the resulting equivariant Galerkin system. Dellnitz et
al. [18] determined the symmetry properties of the K–L operation with respect to the symmetry of
an attractor in phase space. Berkooz and Titi [10] and Smaoui and Armburster [62] showed that
applying a symmetry group on the eigenfunctions will be equivalent to applying the symmetry group
on an actual realization.
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Let us ;rst describe the symmetries of the equation. The symmetries of the Kolmogorov Mow are
generated by the following transformations:

T, : x → x + ,;

r : (x; y) →
(
−x;−y +

%
4

)
;

s : (y; �) → (−y;−�);

t :y → y +
%
2
:

The transformations (rs)2 is equivalent to the transformation t. This is shown below

rs : (x; y; �) s→(x;−y;−�) r→
(
−x; y +

%
4
;−�

)
; (43)

(rs)2 : (x; y; �) rs→
(
−x; y +

%
4
;−�

)
rs→
(
x; y +

%
2
; �
)
: (44)

Thus, (rs)2 = t, and (rs)8 = Id. Also, notice that r is a rotation by %=4 in the x; y-plane. The complete
symmetry group of the Kolmogorov Mow with periodic boundary conditions is then the semidirect
product group D8+̇SO(2), where

D8 = {Id; r; rt; rt2; rt3; t; t2; t3}: (45)

In this section, we apply the D8 symmetry group on both the eigenfunctions and the data set.
First, applying the K–L decomposition on the vorticity numerical simulation data presented in
Fig. 10 yields a set of 50 energetic eigenfunctions capturing 99.99% of the energy (see Fig. 11).
Those eigenfunctions correspond to one laminar state described by a modulated travelling wave at
Re= 14:0. Next, we act with the whole symmetry group D8 on this set of eigenfunctions and obtain
a set of 400 eigenfunctions. Since the eigenfunctions in this new set are not orthogonal, we use
the theory presented in [62] to orthogonalize them (see Fig. 12). Second, instead of numerically
integrating Eq. (42) to look for the eight modulated travelling waves obtained each at di%erent
initial conditions, we can act with the D8 group on the numerical simulation data of one of the
modulated travelling wave presented in Fig. 10. Then, the symmetrized numerical simulation data is
projected onto the set of symmetrized eigenfunctions using Eq. (8) to obtain a set of data coe@cients.
Fig. 13 shows a plot of the ;rst four data coe@cients and Fig. 14 presents the fourth data coe@cient
a4 versus the third data coe@cient a3 showing the eight modulated travelling waves earlier described.
Inspection shows that the third and fourth data coe@cients of the ;rst modulated travelling wave
MTW1 is related with certain symmetry with the sixth, seventh and eighth modulated travelling
waves MTW6;7;8. Also, the second modulated travelling wave MTW2 is related by a di%erent sym-
metry with the third, fourth and ;fth modulated travelling waves MTW3;4;5 (see Table 2). These
;ndings will help us reduce the data set needed for training a neural network.

4.2. A smart neural network model for the quasiperiodic regime

The ;rst approach used to construct a neural network model consists of a combination of two
neural networks in series, where one is used for classi;cation purposes, and the other one is used for
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Fig. 11. The ;rst 20 most energetic eigenfunctions and their associated energies for the vorticity data.

prediction. Fig. 15 is a neural network architecture used for classi;cation with a 4-node input layer
consisting of the four data coe@cients, a 10-nodes hidden layer, and a one-node output layer that
consists of the class rank of the MTW. The classi;cation decision is based on a linear combination
of the output of the activation function for each hidden layer node. The network is trained and
tested using the four data coe@cients of the eight modulated travelling waves. For a given set of
data coe@cients, the network is able to classify the set to one of the eight modulated travelling
waves. Once the classi;cation is done, then a separate network is constructed for predicting the four
data coe@cients at the next instant of time (i.e., ai(t + 1); i = 1; : : : ; 4 are predicted using actual
data coe@cients: ai(t); ai(t − 1); i= 1; : : : ; 4) (see Fig. 16). In this case, eight di%erent models were
constructed each corresponding to one of the eight modulated travelling waves.
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Fig. 12. The ;rst 12 most energetic eigenfunctions and their associated energies for the symmetrized set of eigenfunctions
presented in Fig. 11.

The second approach used to construct a neural network model for the quasiperiodic behavior is
to exploit the symmetry observed in the data coe@cients. Since the data coe@cients of the mod-
ulated travelling waves MTW1;6;7;8 and MTW2;3;4;5 are each related with certain symmetries (see
Table 2), then in principle, one can construct two neural network architectures similar to the one
in Fig. 16. Training each network separately by making use of the symmetries will reduce the
number of networks needed from 8 to 2. Therefore, instead of using eight di%erent models for the
eight modulated travelling waves as stated above, we construct only two. It should be noted that
the network used for classi;cations will still be used here before applying the two networks for
predictions.
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Fig. 13. The ;rst four K–L data coe@cients of the symmetrized data obtained by projecting the data onto 20 symmetrized
eigenfunctions.

The third smart approach consists of applying both the symmetries of the two-dimensional N–S
equations, and the symmetries observed in the data coe@cients. That is, training only one network
with both sets of data coe@cients associated with the modulated travelling waves MTW1 and MTW2.
Of course, the classi;cation network is still needed to determine the right symmetry before making
any prediction. A neural network with an architecture of eight nodes in the input layers, 10 nodes in
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Fig. 14. The fourth K–L data coe@cients a4 versus the third K–L data coe@cients a3 of the symmetrized vorticity
simulation data.

Table 2
The symmetries of modulated travelling waves (MTW)

Modulated travelling waves (MTW) Symmetrized data coe@cients

From To

MTW3 MTW2 a3−MTW3 = −a4−MTW2

a4−MTW3 = a3−MTW2

MTW4 MTW2 a3−MTW4 = −a3−MTW2

a4−MTW4 = −a4−MTW2

MTW5 MTW2 a3−MTW5 = a4−MTW2

a4−MTW5 = a3−MTW2

MTW6 MTW1 a3−MTW6 = a4−MTW1

a4−MTW6 = −a3−MTW1

MTW7 MTW1 a3−MTW7 = −a3−MTW1

a4−MTW7 = −a4−MTW1

MTW8 MTW1 a3−MTW8 = −a4−MTW1

a4−MTW8 = a3−MTW1
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Fig. 15. A neural network architecture used for classi;cation of the modulated travelling wave (MTW).

the hidden layers, and 4 in the output layers is used. Fig. 17 is the combined set of data coe@cients
for MTW1 and MTW2 used during the training stage. Figs. 18 and 19 show the excellent agreement
between the original time series of the testing data coe@cients of MTW3 and MTW8, respectively.
The data coe@cients corresponding to all eight modulated travelling waves were also tested by the
model and the results are successful (see Fig. 20). The ;gure plots the fourth coe@cient versus
the third coe@cient for both the original data and the predicted ones. The model obtained is now
described as

a(tn+1) = f(a(tn); a(tn−1)) (46)

or in terms of the saved weights and biases as

a(tn+1) = w2g(w1a(tn; tn−1) − �1) − �2; (47)

where w1 is the weight matrix for synapsis connecting the input nodes with nodes of the ;rst hidden
layer, w2 is the weight matrix for synapsis connecting the ;rst hidden layer with the node at the
output layer. These weights are given by

w1 =




6:7131 −4:6492 −1:0658 1:8492 −2:3588 −34:834 −31:9507 4:7008

−5:0953 −1:2234 4:4367 3:8324 −38:0005 9:7642 −9:1005 −3:2881

−6:5099 5:2293 −2:6291 1:5278 39:3737 49:6235 4:1375 −31:8184

−6:192 3:9236 −12:5531 −0:7569 −36:9474 −22:3905 20:8317 10:745

16:4098 −6:2891 6:4674 5:7389 19:3025 9:8594 −12:0814 −18:4667

−3:3652 2:0109 −4:3116 0:8604 49:0396 23:2479 −30:1706 4:0732

4:9522 5:473 3:4735 1:2519 −9:7755 −8:6596 4:9247 17:056

−1:7921 1:2112 3:28 −2:9905 15:4324 −10:1373 47:4068 42:7243

10:2125 9:8841 −2:802 1:092 23:3546 29:8509 −12:5327 8:4018

−1:0126 −3:3594 4:0767 0:2776 40:5062 −27:4617 −7:2383 13:7769




;

(48)
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Fig. 16. A neural network architecture used for short-term prediction of the four data coe@cients of the symmetrized
system.

w2 =




0:0212 −0:0433 −0:0122 −0:042 0:0082 −0:0233 0:0287 0:0055 0:0107 −0:0409

−0:0201 0:0344 −0:005 −0:0302 0:0334 −0:0129 0:0318 0:0034 −0:0083 0:0281

−0:0083 −0:0119 0:0024 0:0053 −0:0004 −0:0311 0:0049 −0:0355 −0:0031 0:016

0:0501 0:0111 0:0469 −0:0027 −0:0009 0:0054 −0:0128 0:0497 0:0017 −0:0174


 :

(49)

The bias vectors used for each layer �1 and �2 are given by

�1 =




−1:2078

−0:7394

0:4681

−0:2382

1:0726

0:7741

−0:7335

1:8313

0:9471

0:4497




; �2 =




0:0171

−0:0031

−0:0288

0:0032


 ; (50)

a(tn−1) =



a1(tn−1)

a2(tn−1)

a3(tn−1)

a4(tn−1)


 ; a(tn) =



a1(tn)

a2(tn)

a3(tn)

a4(tn)


 and a(tn+1) =



a1(tn+1)

a2(tn+1)

a3(tn+1)

a4(tn+1)



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Fig. 17. The four data coe@cients of two of the eight modulated travelling waves MTW1 and MTW2 used in training the
neural network.

are the input and output vectors that consist of the values of the data coe@cients at tn−1; tn and tn+1,
respectively.

5. Conclusions

A combination of K–L decomposition and arti;cial neural networks was used to model the K–S
equation and the two-dimensional N–S equation. For the (K–S) equation, numerical solutions using
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Fig. 18. Short-term neural network prediction of the four data coe@cients of MTW3 by using the smart neural network
model.

pseudospectral techniques were obtained at a bifurcation parameter � = 17:75. K–L decomposition
were thus applied on the numerical simulation data to extract coherent structures of the dynamical
behavior represented by a heteroclinic connection. Once the coherent structures were derived, data
coe@cients were obtained by projecting the numerical data onto the most energetic coherent struc-
tures. ANN was then used to model and predict P time steps into the future the dynamical behavior
at �= 17:75 for di%erent values of P (i.e., P= 3; 6, and 9). We found that the neural network model
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Fig. 19. Short-term neural prediction of the four data coe@cients of MTW8 by using the smart neural network model.

was able to capture the underlying dynamics, and observe that as P increases, the model behavior
degrades.

As for the two-dimensional N–S equation, we analyzed a quasiperiodic behavior at Re= 14:0 and
for wave number k = 4 represented in phase space by a torus. We used the D8 group symmetries
observed in the two-dimensional N–S equations to obtain eight di%erent tori. K–L decomposition
was then used on the numerical simulation data of one of the torus to extract the most energetic
eigenfunctions. Those eigenfunctions were symmetrized to capture the coherent structures that span
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Fig. 20. The four K–L data coe@cients a4 versus the third K–L data coe@cient a3 of the symmetrized vorticity simulation
data (solid) versus the neural network prediction (dashed).

the whole phase space. We applied the D8 symmetry on the numerical data without numerically
integrating the two-dimensional N–S equations. The obtained symmetrized data was projected onto
the symmetrized eigenfunctions and a set of data coe@cients was obtained representing the eight tori
earlier observed. Three di%erent neural network models were constructed to model and predict the
data coe@cients. It was found that by applying a certain symmetry observed in the data coe@cient,
one can obtain a reduced neural network model capable of producing the same dynamical behavior
as in the other two models. This work establishes a foundation for modelling the two-dimensional
N–S equations using neural networks for all values of Reynolds numbers and for di%erent values of
wave numbers which will be the subject of future studies.
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