

Journal of Algebra 254 (2002) 279-299

www.academicpress.com

Hilbert series of quadratic algebras associated with pseudo-roots of noncommutative polynomials

Israel Gelfand,^a Sergei Gelfand,^{b,c} Vladimir Retakh,^{a,*} Shirlei Serconek,^d and Robert Lee Wilson^a

^a Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019, USA
 ^b American Mathematical Society, PO Box 6248, Providence, RI 02940, USA
 ^c Institute for Problems of Information Transmission, 19, Ermolova str., Moscow, 103051, Russia
 ^d IME-UFG CX Postal 131 Goiania – GO CEP 74001-970 Brazil

Received 12 September 2001

Communicated by Efim Zelmanov

Abstract

The quadratic algebras Q_n are associated with pseudo-roots of noncommutative polynomials. We compute the Hilbert series of the algebras Q_n and of the dual algebras Q_n^{l} .

© 2002 Elsevier Science (USA). All rights reserved.

Introduction

Let $P(x) = x^n - a_1 x^{n-1} + \dots + (-1)^n a_n$ be a polynomial over a ring *R*. Two classical problems concern the polynomial P(x): investigation of the solutions of the equation P(x) = 0 and the decomposition of P(x) into a product of irreducible polynomials.

* Corresponding author.

E-mail addresses: igelfand@math.rutgers.edu (I. Gelfand), sxg@ams.org (S. Gelfand), vretakh@math.rutgers.edu (V. Retakh), shirlei@mat.ufg.br (S. Serconek), rwilson@math.rutgers.edu (R.L. Wilson).

In the commutative case relations between these two problems are well known: when *R* is a commutative division algebra, *x* is a central variable, and the equation P(x) = 0 has roots $x_1, ..., x_n$, then

$$P(x) = (x - x_n) \dots (x - x_2)(x - x_1).$$
(0.1)

In noncommutative case relations between the two problems are highly nontrivial. They were investigated by Ore [11] and others. ([10] is a good source for references; see also the book [3] where matrix polynomials are considered.) More recently, some of the present authors have obtained results [6,7,15] which are important for the present work. For a division algebra R, I. Gelfand and V. Retakh [6–8] studied connections between the coefficients of P(x) and a generic set of solutions x_1, \ldots, x_n of the equation P(x) = 0. They showed that for any ordering $I = (i_1, \ldots, i_n)$ of $\{1, \ldots, n\}$ one can construct elements y_k , $k = 1, \ldots, n$, depending on x_{i_1}, \ldots, x_{i_k} such that

$$a_{1} = y_{1} + y_{2} + \dots + y_{n},$$

$$a_{2} = \sum_{i < j} y_{j} y_{i},$$

$$\vdots$$

$$a_{n} = y_{n} \dots y_{2} y_{1}.$$
(0.2)

These formulas are equivalent to the decomposition

$$P(t) = (t - y_n) \dots (t - y_2)(t - y_1)$$
(0.3)

where *t* is a central variable. Formula (0.3) can be viewed as a noncommutative analog of formula (0.1). A decomposition of P(x) for a noncommutative variable *x* is more complicated (see [7]).

The element y_k , which is defined to be the conjugate of x_{i_k} by a Vandermonde quasideterminant involving x_{i_1}, \ldots, x_{i_k} , is a rational function in x_{i_1}, \ldots, x_{i_k} ; it is symmetric in $x_{i_1}, \ldots, x_{i_{k-1}}$. (Quasideterminants were introduced and studied in [4,5,8]. We do not need the explicit formula for y_k here.) It was shown in [15] that the polynomials in y_k for a fixed ordering I which are symmetric in x_l can be written as polynomials in the symmetric functions a_1, \ldots, a_n given by formulas (0.2). Thus these are the natural noncommutative symmetric functions.

It is convenient for our purposes to use the notation $y_k = x_{A_k,i_k}$ where $A_k = \{i_1, \ldots, i_{k-1}\}$ for $k = 2, \ldots, n$, $A_1 = \emptyset$. In the generic case there are n! decompositions of type (0.3). Such decompositions are given by products of linear polynomials $t - x_{A,i}$ where $A \subset \{1, \ldots, n\}, i \in \{1, \ldots, n\}, i \notin A$. It is natural to call the elements $x_{A,i}$ pseudo-roots of the polynomial P(x). Note that elements $x_{\emptyset,i} = x_i, i = 1, \ldots, n$, are roots of the polynomial P(x).

In [9] I. Gelfand, V. Retakh, and R. Wilson introduced the algebra Q_n of all pseudo-roots of a generic noncommutative polynomial. It is defined by generators

 $x_{A,i}, A \subset \{1, \ldots, n\}, i \in \{1, \ldots, n\}, i \notin A$, and relations

$$x_{A\cup i,j} + x_{A,i} - x_{A\cup j,i} - x_{A,j}, (0.4a)$$

$$x_{A\cup i,j} \cdot x_{A,i} - x_{A\cup j,i} \cdot x_{A,j}, \quad i,j \in \{1,\dots,n\} \setminus A.$$

$$(0.4b)$$

In [9] a natural homomorphism e of Q_n into the free skew field generated by x_1, \ldots, x_n was constructed. We believe that the map e is an embedding.

We consider the algebra Q_n as a universal algebra of pseudo-roots of a noncommutative polynomial of degree n. Our philosophy is the following: the algebraic operations of addition, subtraction and multiplication are cheap, but the operation of division is expensive. For our problem we cannot use the "cheap" free associative algebra generated by x_1, \ldots, x_n , but to use the gigantic free skew field is too expensive. So, we suggest to use an "affordable intermediate" algebra Q_n .

Relations (0.4) show (see [9]) that we may define a linearly independent set of generators

$$r_A = x_{A \setminus \{a_1\}, a_1} + x_{A \setminus \{a_1, a_2\}, a_2} + \dots + x_{\emptyset, a_k}$$

for all nonempty $A = \{a_1, ..., a_k\} \subseteq \{1, ..., n\}$. These generators satisfy the quadratic relations

$$\{ r(A) \left(r\left(A \setminus \{i\} \right) - r\left(A \setminus \{j\} \right) \right) + \left(r\left(A \setminus \{i\} \right) - r\left(A \setminus \{j\} \right) \right) r\left(A \setminus \{i, j\} \right) - r\left(A \setminus \{i\} \right)^2 + r\left(A \setminus \{j\} \right)^2 \mid i, j \in A \subseteq \{1, \dots, n\} \}.$$

Another linearly independent set of generators in Q_n , $\{u_A \mid \emptyset \neq A \subseteq \{1, ..., n\}\}$, supersymmetric to $\{r_A \mid \emptyset \neq A \subseteq \{1, ..., n\}\}$, was used in [2] for a construction of noncommutative algebras related to simplicial complexes.

As a quadratic algebra Q_n has a dual quadratic algebra $Q_n^!$, see [14]. A study of this algebra is of an independent interest. In Section 5 we describe generators and relations for the algebra $Q_n^!$.

In this paper we compute the Hilbert series of the quadratic algebras Q_n and Q_n^l . Recall that if $W = \sum_{i \ge 0} W_i$ is a graded vector space with dim W_i finite for all *i* then the Hilbert series of *W* is defined by

$$H(W,t) = \sum_{i \ge 0} (\dim W_i) t^i.$$

Any quadratic algebra A has a natural graded structure $A = \sum_{i \ge 0} A_i$ where A_i is the span of all products of *i* generators. If A is finitely generated then the subspaces A_i are finite-dimensional and the Hilbert series H(A, t) of A is defined. Note that the Hilbert series $H(A^{!}, t)$ is also defined for the dual algebra $A^{!}$.

Recall that if A and A[!] are Koszul algebras then $H(A, t)H(A^!, -t) = 1$ (see [14]). The converse is not true but the counter-examples are rather superficial (see [12,13]).

The following two theorems, which are the main results of this paper, show that the quadratic algebras Q_n satisfy this necessary condition for the Koszulity of Q_n .

Theorem 1.
$$H(Q_n, t) = \frac{1-t}{1-t(2-t)^n}$$
.
Theorem 2. $H(Q_n^!, t) = \frac{1+t(2+t)^n}{1+t}$.

In the course of proving Theorem 1 we develop results (cf. Lemma 4.4) which describe the structure of Q_n in terms of Q_{n-1} . These results appear to be of independent interest. We use these results to compute (Corollary 4.9) the Hilbert series of Q_n in terms of the Hilbert series of Q_{n-1} . While proving Theorem 2 we determine (Proposition 6.4) a basis for the dual algebra Q_n^l .

We begin, in Section 1, by recalling, from [9], the construction of Q_n (as a quotient of the tensor algebra T(V) for an appropriate vector space V) and developing notation for certain important elements of T(V). We also note that Q_n has a natural filtration. In Section 2 we study the associated graded algebra gr Q_n , obtaining a presentation for gr Q_n . In view of the basis theorem for Q_n (in [9]) it is easy to determine a basis for gr Q_n . We next, in Section 3, define certain important subalgebras of Q_n which we denote $Q_n(1)$ and $Q_n(\hat{1})$. We show that the structures of these algebras are closely related to the structure of Q_{n-1} . In Section 4 we use these facts to prove Theorem 1 by induction on n. We then begin the study of the dual algebra Q_n^l , recalling generalities about the algebra and finding the space of defining relations in Section 5 and constructing a basis for Q_n^l in Section 6. The proof of Theorem 2, contained in Section 7, is then straightforward.

1. Generalities about Q_n

The quadratic algebra Q_n is defined in [9]. Here we recall one presentation of Q_n and develop some notation. Let *V* denote the vector space over a field *F* with basis $\{v(A) | \emptyset \neq A \subseteq \{1, ..., n\}$ and T(V) denote the tensor algebra on *V*. The symmetric group on $\{1, ..., n\}$ acts on *V* by $\sigma(v(A)) = v(\sigma(A))$ and hence also acts on T(V).

Note that

$$T(V) = \sum_{i \ge 0} T(V)_i$$

where

 $T(V)_i = \operatorname{span} \{ v(A_1) \dots v(A_i) \mid \emptyset \neq A_1, \dots, A_i \subseteq \{1, \dots, n\} \}$

is a graded algebra. Each $T(V)_i$ is finite-dimensional.

Also, defining

$$T(V)_{(i)} = \operatorname{span} \{ v(A_1) \dots v(A_i) \mid i \ge 0, \ |A_1| + \dots + |A_i| \le j \}$$

gives an increasing filtration

$$F.1 = T(V)_{(0)} \subset T(V)_{(1)} \subset \cdots$$

of T(V).

Note that

$$T(V)_{(j)} = \sum_{i \ge 0} T(V)_i \cap T(V)_{(j)}.$$

Let $\emptyset \neq B \subseteq A \subseteq \{1, ..., n\}$ and write $B = \{b_1, ..., b_k\}$ where $b_1 > b_2 > ... > b_k$. Let Sym(*B*) denote the group of all permutations of *B*. When convenient we will write $A \setminus b_1 ... \setminus b_k$ in place of $A \setminus \{b_1, ..., b_k\}$. Define $\mathcal{V}(A : B)$ to be

$$\sum_{\sigma \in \operatorname{Sym}(B)} \operatorname{sgn}(\sigma) \sigma \left\{ v(A)v(A \setminus b_1)v(A \setminus b_1 \setminus b_2) \dots v(A \setminus b_1 \dots \setminus b_{k-1}) + \sum_{u=1}^{k-1} (-1)^u \left\{ v(A \setminus b_1) \dots v(A \setminus b_1 \dots \setminus b_{u-1})v(A \setminus b_1 \dots \setminus b_u)^2 \times v(A \setminus b_1 \dots \setminus b_{u+1}) \dots v(A \setminus b_1 \dots \setminus b_{k-1}) \right\} + (-1)^k v(A \setminus b_1) \dots v(A \setminus b_1 \dots \setminus b_k) \right\}.$$

Let $Q = \operatorname{span}\{\mathcal{V}(A : B) \mid B \subseteq A \subseteq \{1, \dots, n\}, |B| = 2\}$ and let $\langle Q \rangle$ denote the ideal in T(V) generated by Q. Denote the quotient $T(V)/\langle Q \rangle$ by Q_n . Since $Q \subseteq T(V)_2, Q_n$ is a quadratic algebra. Q_n is, of course, graded:

$$Q_n = \sum_{i \ge 0} Q_{n,i}, \text{ where } Q_{n,i} = (T(V)_i + \langle Q \rangle) / \langle Q \rangle.$$

Defining

$$Q_{n,(j)} = \left(T(V)_{(j)} + \langle \mathcal{Q} \rangle \right) / \langle \mathcal{Q} \rangle$$

gives an increasing filtration

$$F.1 = Q_{n,(0)} \subset Q_{n,(1)} \subset \cdots$$

of Q_n . Note that

$$Q_{n,(j)} = \sum_{i \ge 0} Q_{n,i} \cap Q_{n,(j)}$$

Let r(A) denote $v(A) + \langle Q \rangle$ and $\mathcal{R}(A : B)$ denote $\mathcal{V}(A : B) + \langle Q \rangle$. Note that if |B| = 2 then $\mathcal{R}(A : B) = 0$ (in Q_n).

2. The associated graded algebra gr Q_n

Let
$$\mathcal{X} = \operatorname{span}\{v(A)(v(A \setminus i) - v(A \setminus j)) \mid i, j \in A \subseteq \{1, \dots, n\}\}.$$

$$X_n = \left(T(V) + \langle \mathcal{X} \rangle\right) / \langle \mathcal{X} \rangle.$$

Let x(A) denote $v(A) + \langle \mathcal{X} \rangle$.

Note that X_n is graded

$$X_n = \sum_{i \ge 0} X_{n,i}, \quad \text{where } X_{n,i} = \left(T(V)_i + \langle \mathcal{X} \rangle \right) / \langle \mathcal{X} \rangle$$

and has an increasing filtration

$$F.1 = X_{n,(0)} \subset X_{n,(1)} \subset \cdots \quad \text{where } X_{n,(j)} = \left(T(V)_{(j)} + \langle \mathcal{X} \rangle\right) / \langle \mathcal{X} \rangle.$$

A *string* is a finite sequence $\mathcal{B} = (B_1, \ldots, B_l)$ of nonempty subsets of $\{1, \ldots, n\}$. We call $l = l(\mathcal{B})$ the *length* of \mathcal{B} and $|\mathcal{B}| = \sum_{i=1}^{l} |B_i|$ the *degree* of \mathcal{B} . Let *S* denote the set of all strings. If $\mathcal{B} = (B_1, \ldots, B_l)$ and $\mathcal{C} = (C_1, \ldots, C_m) \in S$ define $\mathcal{BC} = (B_1, \ldots, B_l, C_1, \ldots, C_m)$ and $x(\mathcal{B}) = x(B_1) \ldots x(B_l)$. For any set $W \subseteq S$ of strings we will denote $\{x(\mathcal{B}) | \mathcal{B} \in W\}$ by x(W). Note that *S* contains the empty string \emptyset . Let $S^\circ = S \setminus \{\emptyset\}$. For any subset $U \subseteq S$ let $U^\circ = U \cap S^\circ$.

We recall from [9], the definition of $Y \subseteq S$. Let $\emptyset \neq A = \{a_1, \ldots, a_l\} \subseteq \{1, \ldots, n\}$ where $a_1 > a_2 > \cdots > a_l$ and $j \leq |A|$. Then we write $(A : j) = (A, A \setminus a_1, \ldots, A \setminus a_1 \setminus \cdots \setminus a_{j-1})$, a string of length j.

Consider the following condition on a string $(A_1 : j_1) \dots (A_s : j_s) \in S$:

if
$$2 \leq i \leq s$$
 and $A_i \subseteq A_{i-1}$ then $|A_i| \neq |A_{i-1}| - j_{i-1}$. (2.1)

Let $Y = \{(A_1 : j_1) \dots (A_s : j_s) \in S \mid (2.1) \text{ is satisfied}\}$. It is proved in [9] that r(Y) is a basis for Q_n .

Suppose $\mathcal{B} = (B_1, ..., B_l)$ is a string. Recall, from [9], that we may define by induction a sequence of integers $n(\mathcal{B}) = (n_1, n_2, ..., n_l)$, $1 = n_1 < n_2 < \cdots < n_t = l + 1$, as follows:

- $n_1 = 1$,
- $n_{k+1} = \min(\{j > n_k \mid B_j \nsubseteq B_{n_k} \text{ or } |B_j| \neq |B_{n_k}| + n_k j\} \cup \{l+1\}),$
- and *t* is the smallest *i* such that $n_i = l + 1$.

We call $n(\mathcal{B})$ the *skeleton* of \mathcal{B} .

Let $\mathcal{B} = (B_1, \ldots, B_l)$ be a string with skeleton $(n_1 = 1, n_2, \ldots, n_t = l + 1)$. Define \mathcal{B}^{\vee} to be the string $(B_{n_1}, n_2 - n_1)(B_{n_2}, n_3 - n_2) \ldots (B_{n_{t-1}}, n_t - n_{t-1})$. Note that $l(\mathcal{B}^{\vee}) = l(\mathcal{B})$ and $|\mathcal{B}^{\vee}| = |\mathcal{B}|$.

Proposition 2.1. $x(\mathcal{B}) = x(\mathcal{B}^{\vee})$.

Proof. If t = 1 then l = 0 so $\mathcal{B} = \mathcal{B}^{\vee}$ is the empty string and $x(\mathcal{B}) = x(\mathcal{B}^{\vee}) = 1$. Assume t = 2, so $\mathcal{B}^{\vee} = (B_1, l)$. We will proceed by induction on l. If l = 1 then $\mathcal{B} = (B_1) = \mathcal{B}^{\vee}$ so there is nothing to prove. If l = 2, then $\mathcal{B} = (B_1, B_1 \setminus i)$ for some *i* and $\mathcal{B}^{\vee} = (B_1, B_1 \setminus j)$ for some *j*. Since $x(B_1)x(B_1 \setminus i) = x(B_1)x(B_1 \setminus j)$ by the defining relations, the result holds in this case.

Now assume l > 2 and that the result holds for all $C = (C_1, ..., C_k)$ with skeleton (1, k + 1) and k < l. We have $\mathcal{B} = (B_1, ..., B_{l-1})(B_l)$ so $x(\mathcal{B}) = x(B_1, ..., B_{l-1})x(B_l)$. Since the skeleton of $(B_1, ..., B_{l-1})$ is (1, l) the induction assumption applies and shows that $x(B_1, ..., B_{l-1}) = x(B_1, l-1)$. Let *b* denote the largest element of B_1 . Then since $(B_1, l-1) = (B_1)(B_1 \setminus b, l-2)$ we have $x(\mathcal{B}) = x(B_1, ..., B_{l-1})x(B_l) = x(B_1, l-1)x(B_l) = x(B_1)x(B_1 \setminus b, l-2)x(B_l)$. If $b \notin B_l$ the induction assumption shows that this is $x(B_1)x(B_1 \setminus b, l-2)x(B_l)$. If $b \notin B_l$ and then, since $|B_l| < |B_1|$, we may find $c \in B_1$, $c \neq b$, $c \notin B_l$. Then by the induction assumption $x(B_1, l-1)$ $x(B_l) = x(B_1)x(B_1 \setminus c, l-2)x(B_l)$ and, again by the induction assumption, this is equal to $x(B_1)x(B_1 \setminus c, l-1)$.

Write $(B_1)(B_1 \setminus c, l-1) = (B_1, C_2, ..., C_l)$ and note that, as l > 2, the largest element of B_1 is not in C_l . Then by the previous case $x(B_1, C_2, ..., C_l) = x((B_1, C_2, ..., C_l)^{\vee})$. But $x(\mathcal{B}) = x(B_1, C_2, ..., C_l)$ and $(B_1, C_2, ..., C_l)^{\vee} = (B_1, l)$ proving the result in case t = 2.

Finally, suppose t > 2 and suppose $n(\mathcal{B}) = (n_1, \ldots, n_t)$. We proceed by induction on t. Let $\mathcal{B}' = (B_1, \ldots, B_{n_2-1})$ and $\mathcal{B}'' = (B_{n_2}, \ldots, B_t)$. Note that $n(\mathcal{B}') = (1, n_2)$ and $n(\mathcal{B}'') = (n_2, \ldots, n_t)$, and so, by induction, $x(\mathcal{B}') = x(\mathcal{B}'^{\vee})$ and $x(\mathcal{B}'') = x(\mathcal{B}''^{\vee})$. Then $x(\mathcal{B}) = x(\mathcal{B}')x(\mathcal{B}'') = x(\mathcal{B}'^{\vee})x(\mathcal{B}''^{\vee}) = x(\mathcal{B}^{\vee})$, proving the proposition. \Box

Let gr Q_n denote the associated graded algebra of Q_n . For any string \mathcal{B} let $\bar{r}(\mathcal{B})$ denote the element $r(\mathcal{B}) + Q_{n,|\mathcal{B}|-1}$ of gr Q_n .

For any set *S* of strings write $\bar{r}(S) = \{\bar{r}(B) \mid B \in S\}$.

Lemma 2.2. $\bar{r}(Y)$ is a basis for gr Q_n .

Proof. This follows from the fact that $r(Y) \cap Q_{n,i}$ is a basis for $Q_{n,i}$ (Theorem 1.3.8 and Proposition 1.4.1 of [9]). \Box

Corollary 2.3. The linear map $\phi : X_n \to \text{gr } Q_n$ defined by $\phi(x(\mathcal{B})) = \overline{r}(\mathcal{B})$ is an isomorphism of algebras.

Proof. Since Q_n is generated by $\{r(A) | \emptyset \neq A \subseteq \{1, ..., n\}\}$, gr Q_n is generated by $\{\bar{r}(A) | \emptyset \neq A \subseteq \{1, ..., n\}\}$. If i > j

$$0 = \mathcal{R}(A : \{i, j\})$$

= $r(A)(r(A \setminus i) - r(A \setminus j)) + (r(A \setminus i) - r(A \setminus j))r(A \setminus i \setminus j)$
 $- r(A \setminus i)^2 + r(A \setminus j)^2,$

we have

$$r(A)(r(A \setminus i) - r(A \setminus j)) \in Q_{n,2|A|-2}$$

and so $\bar{r}(A)(\bar{r}(A \setminus i) - \bar{r}(A \setminus j)) = 0$ in gr Q_n . Consequently there is a homomorphism from X_n into gr Q_n that takes x(A) into $\bar{r}(A)$. Since the generating set $\{\bar{r}(A) \mid \emptyset \neq A \subseteq \{1, ..., n\}\}$ is contained in the image of this map, the map is onto. Note that $Y = \{\mathcal{B} \mid \mathcal{B} = \mathcal{B}^{\vee}\}$. Thus by Proposition 2.1, X_n is spanned by x(Y). Since the image of this set is the linearly independent set $\bar{r}(Y)$, the map is injective. \Box

3. The subalgebras $Q_n(1)$ and $Q_n(\hat{1})$

Let $Q_n(\hat{1})$ denote the subalgebra of Q_n generated by $\{r(A) \mid \emptyset \neq A \subseteq \{2, ..., n\}$. Let

 $S(1) = \{ \mathcal{B} = (B_1, \dots, B_l) \in S \mid 1 \in B_i \text{ for all } i \},\$ $S(1)^{\dagger} = \{ \mathcal{B} = (B_1, \dots, B_l) \in S(1) \mid |B_i| > 1 \text{ for all } i \}, \text{ and}\$ $S(\hat{1}) = \{ \mathcal{B} = (B_1, \dots, B_l) \in S \mid B_1, \dots, B_l \subseteq \{2, \dots, n\} \}.$

Let $Y(1) = Y \cap S(1)$, $Y(1)^{\dagger} = Y \cap S(1)^{\dagger}$, and $Y(\hat{1}) = Y \cap S(\hat{1})$. Let $Y_{(n-1)}$ denote $\{(B_1, \dots, B_l) \in Y(1) \mid B_1, \dots, B_l \subseteq \{1, \dots, n-1\}\}$.

Lemma 3.1. Q_{n-1} is isomorphic to $Q_n(\hat{1})$.

Proof. For any subset $A \subseteq \{1, ..., n-1\}$, let A + 1 denote $\{a + 1 \mid a \in A\}$, a subset of $\{2, ..., n\}$. Clearly there is a homomorphism from Q_{n-1} into $Q_n(\hat{1})$ that takes r(A) into r(A + 1). This map is injective since the "r(Y)-basis" for Q_{n-1} maps into a subset of $r(Y) \subseteq Q_n$. Since the generators for $Q_n(\hat{1})$ are contained in the image of this map, it is onto. \Box

Corollary 3.2. $Y(\hat{1})$ is a basis for $Q_n(\hat{1})$.

Let $Q_n(1)$ denote the subalgebra of Q_n generated by $\{r(A) \mid 1 \in A \subseteq \{1, \ldots, n\}\}$.

Lemma 3.3. The map from gr $Q_n(\hat{1})$ into gr $Q_n(1)$ that takes $\bar{r}(A)$ into $\bar{r}(A \cup \{1\})$ is an injective homomorphism and $\bar{r}(Y(1)^{\dagger})$ is a basis for the image.

Proof. gr $Q_n(\hat{1})$ has generators $\{\bar{r}(A) \mid \emptyset \neq A \subseteq \{2, ..., n\}\}$ and relations $\{\bar{r}(A)(\bar{r}(A \setminus i) - \bar{r}(A \setminus j)) \mid i, j \in A \subseteq \{2, ..., n\}\}$. Since

$$\bar{r}(A \cup \{1\})(\bar{r}(A \setminus i \cup \{1\}) - \bar{r}(A \setminus j \cup \{1\})) = 0 \quad \text{in gr } Q_n(1),$$

286

the required homomorphism exists. Since the homomorphism maps $\bar{r}(Y(\hat{1}))$ injectively to $\bar{r}(Y(1)^{\dagger})$, a subset of $\bar{r}(Y)$, the homomorphism is injective and $\bar{r}(Y(1)^{\dagger})$ is a basis for the image. \Box

Lemma 3.4. (a) $\bar{r}(Y(1))$ is a basis for gr $Q_n(1)$. (b) r(Y(1)) is a basis for $Q_n(1)$.

Proof. (a) Since $\bar{r}(Y(1)) \subseteq \bar{r}(Y)$ it is linearly independent. Hence it is sufficient to show that $\bar{r}(Y(1))$ spans gr $Q_n(1)$. But gr $Q_n(1)$ is spanned by the elements $\bar{r}(\mathcal{B})$ where $\mathcal{B} = (B_1, \ldots, B_l), 1 \in B_1, \ldots, B_l$. By Proposition 2.1 $\bar{r}(\mathcal{B}) = \bar{r}(\mathcal{B}^{\vee})$ where (n_1, \ldots, n_l) is the skeleton of \mathcal{B} and

$$\mathcal{B}^{\vee} = (B_{n_1}, n_2 - n_1)(B_{n_2}, n_3 - n_2) \dots (B_{n_{t-1}}, n_t - n_{t-1}).$$

Since $1 \in B_j$ for each $j, \mathcal{B}^{\vee} \in Y(1)$ giving the result.

Part (b) is immediate from (a). \Box

If *A* and *B* are algebras, let A * B denote the free product of *A* and *B* (cf. [1, Chapter 3, Section 5, Exercise 6]). Thus there exist homomorphisms $\alpha : A \to A * B$ and $\beta : B \to A * B$ such that if *G* is any associative algebra and $\mu : A \to G$, $\nu : B \to G$ are homomorphisms then there exists a unique homomorphism $\lambda : A * B \to G$ such that $\lambda \alpha = \mu$ and $\lambda \beta = \nu$. Furthermore, if *A* and *B* have identity element 1, $\{1\} \cup \Gamma_A$ is a basis for *A* and $\{1\} \cup \Gamma_B$ is a basis for *B* then A * B has a basis consisting of 1 and all products $g_1 \dots g_m$ or $g_2 \dots g_{m+1}$ where $n \ge 1$ and $g_t \in \alpha(\Gamma_A)$ if *t* is even and $g_t \in \beta(\Gamma_B)$ if *t* is odd.

Lemma 3.5. gr $Q_n(1)$ is isomorphic to gr $Q_{n-1} * F[\bar{r}(1)]$.

Proof. Let α : gr $Q_{n-1} \rightarrow$ gr $Q_{n-1} \ast F[\bar{r}(1)]$ and β : $F[\bar{r}(1)] \rightarrow$ gr $Q_{n-1} \ast F[\bar{r}(1)]$ be the homomorphisms occurring in the definition of gr $Q_{n-1} \ast F[\bar{r}(1)]$.

If $\emptyset \neq A = \{a_1, ..., a_k\} \subseteq \{1, ..., n - 1\}$ define

 $\delta(A) = \{1, 1 + a_1, \dots, 1 + a_k\}.$

Then define a map μ : { $\bar{r}(A) \mid \emptyset \neq A \subseteq \{1, ..., n-1\}$ } \rightarrow gr $Q_n(1)$ by

 $\mu(\bar{r}(A)) = \bar{r}(\delta(A)).$

In view of Lemma 2.2, μ extends to a linear map

 μ : gr $Q_{n-1} \rightarrow$ gr $Q_n(1)$.

By Corollary 2.3, μ preserves the defining relations for gr Q_{n-1} and so is a homomorphism. Lemma 3.4 implies that μ is injective. Note that $\bar{r}(1) \in \text{gr } Q_n(1)$ generates a subalgebra isomorphic to the polynomial algebra $F[\bar{r}(1)]$. Thus there is an injection

$$\nu: F[\bar{r}(1)] \to \operatorname{gr} Q_n(1).$$

Consequently there is a homomorphism

$$\lambda : \operatorname{gr} Q_{n-1} * \Gamma[\bar{r}(1)] \to \operatorname{gr} Q_n(1)$$

such that $\lambda \alpha = \mu$ and $\lambda \beta = \nu$. We claim that λ is an isomorphism.

Let \mathcal{T} denote the set of all strings $\mathcal{G}_1 \dots \mathcal{G}_n$ or $\mathcal{G}_2 \dots \mathcal{G}_{n+1}$ where $\mathcal{G}_i = \mathcal{B}_i \in Y(1)^{\dagger}$ if *i* is odd and $\mathcal{G}_i = \{1\}^{j_i}$ if *i* is even. Note that $\mathcal{T} \subseteq S(1)$. Define

$$\Phi: \mathcal{T} \to Y(1)$$

by $\Phi(\mathcal{B}) = \mathcal{B}^{\vee}$. Define $\Psi: Y(1) \to \mathcal{T}$ by $\Psi((A, j)) = (A, j)$ if j < |A|, $\Psi((A, j)) = (A, j - 1)\{1\}$ if j = |A|, and

$$\Psi\bigl((A_1, j_1) \dots (A_s, j_s)\bigr) = \Psi\bigl((A_1, j_1)\bigr) \dots \Psi\bigl((A_s, j_s)\bigr)$$

if $(A_1, j_1) \dots (A_s, j_s)$ satisfies (2.1). Then Φ and Ψ are inverse mappings.

Let $\gamma_i = \alpha$ if *i* is odd and $\gamma_i = \beta$ if *i* is even. Then gr $Q_{n-1} * F[\bar{r}(1)]$ has basis consisting of 1 and all products $\gamma_1 \bar{r}(\mathcal{H}_1) \dots \gamma_m \bar{r}(\mathcal{H}_m)$ or $\gamma_2 \bar{r}(\mathcal{H}_2) \dots \gamma_m \bar{r}(\mathcal{H}_{m+1})$ where $\mathcal{H}_i \in Y_{(n-1)}$ if *i* is odd and $\mathcal{H}_i = \{1\}^{j_i}$ if *i* is even. Then

$$\lambda \big(\gamma_1 \bar{r}(\mathcal{H}_1) \dots \gamma_m \bar{r}(\mathcal{H}_m) \big) = \bar{r} \big(\delta(\mathcal{H}_1) \bar{r}(\mathcal{H}_2) \dots \big) = \bar{r} \big(\delta(\mathcal{H}_1) \mathcal{H}_2 \dots \big)$$
$$= \bar{r} \big(\big(\delta(\mathcal{H}_1) \mathcal{H}_2 \dots \big)^{\vee} \big)$$

and $\delta(\mathcal{H}_1)\mathcal{H}_2... \in \mathcal{T}$. Also, $\lambda(\gamma_2 \bar{r}(\mathcal{H}_2)...\gamma_{m+1}\bar{r}(\mathcal{H}_{m+1}) = \bar{r}(\mathcal{H}_2\delta(\mathcal{H}_3)...) = \bar{r}(\mathcal{H}_2\delta(\mathcal{H}_3)...)^{\vee})$ and $\mathcal{H}_2\delta(\mathcal{H}_3)... \in \mathcal{T}$. Every element of \mathcal{T} arises in this way. Since $\Phi: \mathcal{T} \to Y(1)$ is a bijection, we see that λ maps a basis of gr $Q_{n-1} * F[\bar{r}(1)]$ bijectively onto the basis $\bar{r}(Y(1))$ of gr $Q_n(1)$, proving the lemma. \Box

4. Proof of Theorem 1

Let $\theta: S \times S \to S$ be defined by

 $\theta((B_1,\ldots,B_l),(C_1,\ldots,C_k)) = (B_1,\ldots,B_l,C_1,\ldots,C_k).$

Lemma 4.1. *If* $\mathcal{B} = (B_1, ..., B_l)$, $\mathcal{C} = (C_1, ..., C_k) \in Y$, $1 \notin B_l$ and $1 \in C_1$, then $\mathcal{BC} \in Y$.

Proof. Since $\mathcal{B} \in Y$ we may write $\mathcal{B} = (A_1, j_1) \dots (A_s, j_s)$ where (2.1) is satisfied. Since $1 \notin B_l$ we have $1 \notin A_s$. Similarly since $\mathcal{C} \in Y$ we may write $\mathcal{C} = (D_1, m_1) \dots (D_t, m_t)$ where condition (2.1) holds. Since $1 \in C_1$ we have $1 \in D_1$. Then $\mathcal{BC} = (A_1, j_1) \dots (A_s, j_s)(D_1, m_1) \dots (D_t, m_t)$. Since (2.1) holds for \mathcal{B} and \mathcal{C} , and since $D_1 \nsubseteq A_s$ (for $1 \in D_1, 1 \notin A_s$), (2.1) is satisfied for \mathcal{BC} and so $\mathcal{BC} \in Y$. \Box

Let $\mathcal{B} = (B_1, ..., B_l) \in S$. Define $A(\mathcal{B}) = \{i \mid 1 \leq i \leq l-1, 1 \in B_i, 1 \notin B_{i+1}\}$ and $a(\mathcal{B}) = |A(\mathcal{B})|$. Set $S_{\{i\}} = \{\mathcal{B} \in S \mid a(\mathcal{B}) = i\}$. Then *S* is equal to the disjoint union $\bigcup_{i \geq 0} S_{\{i\}}$. **Lemma 4.2.** $(SS(1)^{\circ} \cap S_{\{0\}}) \times (S(\hat{1})^{\circ}S \cap S_{\{i\}})$ injects into $S_{\{i+1\}}$.

Proof. Let $\mathcal{B} = (B_1, \ldots, B_l) \in S_{\{i+1\}}$. There are l + 1 pairs in $S \times S$ which θ maps to \mathcal{B} , namely $(B_1, \ldots, B_j) \times (B_{j+1}, \ldots, B_l)$ for $0 \leq j \leq l$. Now $(B_1, \ldots, B_j) \in S_{\{0\}}$ implies $j \leq \min A(\mathcal{B})$ while $(B_1, \ldots, B_j) \in SS(1)^\circ$ and $(B_{j+1}, \ldots, B_l) \in S(1)^\circ S$ implies $j \in A(\mathcal{B})$ and the lemma follows. \Box

Let
$$L(1) = S(1)^{\circ} \times S(\hat{1})^{\circ}$$
, and $L(i+1) = L(1) \times L(i)$, $i \ge 1$.

Corollary 4.3. $\bigcup_{i \ge 0} S(\hat{1}) \times L(i) \times S(1)$ injects into S.

Proof. The *i*th term in the union maps into $S_{\{i\}}$, so it is enough to prove that this is an injection. Write this term as $(S(\hat{1}) \times S(1)^{\circ}) \times (S(\hat{1})^{\circ} \times L(i-1) \times S(1))$ and observe that the result follows by the lemma and by induction on *i*. \Box

Let *M* denote the span of $Y(1)^{\circ}Y(\hat{1})^{\circ} \cap Y$ and let *N* denote the subalgebra of Q_n generated by *M*.

Lemma 4.4. N is isomorphic to the free algebra generated by M and the map

 $Q_n(\hat{1}) \otimes N \otimes Q_n(1) \to Q_n$

induced by multiplication is an isomorphism of graded vector spaces.

Proof. Let $W = Y(1)^{\circ}Y(\hat{1})^{\circ} \cap Y$ and let $W^{i} = W \times \cdots \times W$ (*i* times). Then *W*, being linearly independent, is a basis for *M*. By Lemma 4.2, $\bigcup_{i \ge 0} W^{i}$ injects into *S*. Indeed, Lemma 4.1 shows that the image is in *Y*. Thus $\bigcup_{i \ge 0} W^{i}$ injects onto a basis for *N*, so *N* is isomorphic to the free algebra generated by *M*. Again by Lemma 4.1 we have that $\bigcup_{i \ge 0} Y(\hat{1}) \times W^{i} \times Y(1)$ maps into *Y*. Since any substring of an element of *Y* is again in *Y*, this map is onto. By Corollary 4.3 the map is an injection. This proves the final statement of the lemma. \Box

We now recall some well-known facts about Hilbert series (cf. [14, Section 3.3]).

Lemma 4.5. (a) If W_1 and W_2 are graded vector spaces then

 $H(W_1 \otimes W_2, t) = H(W_1, t)H(W_2, t).$

(b) If W is a graded vector space, then

$$H(T(W), t) = \frac{1}{1 - H(W, t)}.$$

(c) If $A = \sum_{i \ge 0} A_i$ and $B = \sum_{i \ge 0} B_i$ are graded algebras with $A_0 = B_0 = F.1$, then

$$\frac{1}{H(A * B, t)} = \frac{1}{H(A, t)} + \frac{1}{H(B, t)} - 1.$$

Let U(A : j) denote the span of all strings $(A_1 : j_1) \dots (A_s : j_s)$ satisfying (2.1) such that $1 \in A_i$ for all *i* and $(A_s : j_s) = (A, j)$.

Lemma 4.6. $H(U(A:j),t) = t^j(1-t)^{n-|A|}H(Q_n(1),t).$

Proof. Since whenever the string $(A_1 : j_1) \dots (A_{s-1} : j_{s-1})$ satisfies (2.1) then the string $(A_1 : j_1) \dots (A_{s-1} : j_{s-1})(\{1, \dots, n\}, j)$ also satisfies (2.1), we have

$$H(U(\lbrace 1,\ldots,n\rbrace,j),t) = t^{j}H(Q_{n}(1),t).$$

We now proceed by downward induction on |A|, assuming the result is true whenever |A| > l. Let |A| = l. Then

$$H(U(A:j),t) = t^{j}H(Q_{n}(1),t) - t^{j}\sum_{C \supseteq A, |C| = |A|+m, m \ge 1} H(U(C:m),t).$$

By the induction assumption this is

$$t^{j} \bigg(1 - \sum_{C \supseteq A, |C| = |A| + m, m \ge 1} t^{m} (1 - t)^{n - |C|} \bigg) H \big(Q_{n}(1), t \big).$$

Let $C = D \cup A$ where $D \subseteq \{1, ..., n\} \setminus A$. Then the expression becomes

$$t^{j} \left(1 - \sum_{\emptyset \neq D \subseteq \{1, \dots, n\} \setminus A} t^{|D|} (1-t)^{n-|A|-|D|} \right) H \left(Q_{n}(1), t \right).$$

By the binomial theorem the quantity in parenthesis is $(1 - t)^{n-|A|}$, proving the result. \Box

Let $B \subseteq \{2, ..., n\}$ and let Z(B) denote the span of all strings $(A_1 : j_1) \dots (A_s : j_s)$ such that $1 \in A_1, \dots, A_s, (A_1 : j_1) \dots (A_s : j_s)$ satisfies (2.1), $|B| = |A_s| - j_s, A_s \supseteq B$.

Lemma 4.7. $H(Z(B), t) = tH(Q_n(1), t)$.

Proof. Write $A_s = B \cup E \cup \{1\}$ where $B \cap E = \emptyset$ and $E \subseteq \{2, ..., n\}$. Then

$$Z(B) = \sum_{E \subseteq \{2, ..., n\} \setminus B} U(B \cup E \cup \{1\}, |E| + 1)$$

and so

$$H(Z(B),t) = \sum_{E \subseteq \{2,\dots,n\} \setminus B} t^{|E|+1} (1-t)^{n-|B|-|E|-1} H(Q_n(1),t).$$

By the binomial theorem this is $tH(Q_n(1), t)$. \Box

Lemma 4.8. $H(M, t) = (H(Q_n(\hat{1}), t) - 1)(H(Q_n(1), t) - 1) - tH(Q_n(1), t) \times (H(Q_n(\hat{1}), t) - 1)).$

Proof. *M* is the span of $Y(1)^{\circ}Y(\hat{1})^{\circ} \cap Y$. The complement \mathcal{Z} of $Y(1)^{\circ}Y(\hat{1})^{\circ} \cap Y$ in $Y(1)^{\circ}Y(\hat{1})^{\circ}$ is the set of all strings $(A_1 : j_1) \dots (A_s : j_s)(B_1, \dots, B_l)$ such that $(A_1 : j_1) \dots (A_s : j_s) \in Y(1)^{\circ}$ satisfies (2.1), $|B_1| = |A_s| - j_s$, $A_s \supseteq B_1$, $(B_1, \dots, B_l) \in Y(\hat{1})$. Let Z denote the span of \mathcal{Z} . The lemma follows from showing that

$$H(Z,t) = t H(Q_n(1),t) (H(Q_n(\hat{1}),t) - 1).$$

For $\emptyset \neq B \subseteq \{2, ..., n\}$ let P(B) denote the span of all strings in \mathbb{Z} such that $B_1 = B$ and $P_0(B)$ denote the span of all strings $(B_1, ..., B_l) \in Y(\hat{1})$ such that $B_1 = B$. Then $Z = \sum_{\emptyset \neq B \subseteq \{2, ..., n\}} P(B)$ and $H(P(B), t) = H(Z(B), t)H(P_0(B), t)$. By Lemma 4.7, this equals to $tH(Q_n(1), t)H(P_0(B), t)$. Thus

$$H(Z,t) = \sum_{\substack{\emptyset \neq B \subseteq \{2,...,n\} \\ \theta \neq B \subseteq \{2,...,n\}}} H(P(B),t)$$

= $\sum_{\substack{\emptyset \neq B \subseteq \{2,...,n\} \\ \theta \neq B \subseteq \{2,...,n\}}} t H(Q_n(1),t) H(P_0(B),t)$.

But $\sum_{\emptyset \neq B \subseteq \{2,...,n\}} H(P_0(B), t) = H(Q_n(\hat{1}), t) - 1$ and the lemma is proved. \Box

Corollary 4.9.
$$\frac{1}{H(Q_n, t)} = (2 - t) \frac{1}{H(Q_{n-1}, t)} - 1.$$

Proof. $H(Q_n, t) = H(Q_n(\hat{1}), t)H(N, t)H(Q_n(1), t)$ by Lemma 4.4. For brevity we write $H(Q_n(\hat{1}), t) = a$ and $H(Q_n(1), t) = b$. Then

$$H(N,t) = \frac{1}{1 - H(M,t)} = \frac{1}{(1-t)b + a + (t-1)ab}$$

and so

$$\frac{1}{H(Q_n,t)} = \frac{(1-t)b + a + (t-1)ab}{ab} = \frac{1-t}{a} + \frac{1}{b} + t - 1.$$

Since

$$\frac{1}{b} = \frac{1}{a} - t,$$

(by Lemmas 3.5 and 4.5(c)) this gives

$$\frac{1}{H(Q_n,t)} = \frac{1-t}{a} + \frac{1}{a} - 1 = \frac{2-t}{a} - 1.$$

Now $a = H(Q_n(\hat{1}), t) = H(Q_{n-1}, t)$, so the corollary follows. \Box

Theorem 1 now follows from Corollary 4.9 and the fact that $Q_0 = F$.

5. Generalities about the dual algebra $Q_n^!$

Let V^* denote the dual space of V. Thus V^* has basis

 $\{v^*(A) \mid \emptyset \neq A \subseteq \{1, \dots, n\}\}$ where $\langle v(A), v^*(B) \rangle = \delta_{A,B}$.

Note that $T(V^*) = \sum_{i \ge 0} T(V^*)_i$ is a graded algebra where $T(V^*)_i = \operatorname{span}\{v^*(A_1) \dots v^*(A_i) \mid \emptyset \ne A_1, \dots, A_i \subseteq \{1, \dots, n\}\}$. Also, $T(V^*)$ has a decreasing filtration

$$T(V^*) = T(V^*)_{(0)} \supset T(V^*)_{(1)} \supset \cdots \supset T(V^*)_{(j)} \supset \cdots$$

where

$$T(V^*)_{(j)} = \operatorname{span} \{ v^*(A_1) \dots v^*(A_i) \mid |A_1| + \dots + |A_i| \ge j \}.$$

In fact

$$T(V^*)_{(j+1)} = (T(V)_{(j)})^{\perp}$$
 for $j \ge 0$.

Define $Q_n^! = T(V^*)/\langle Q^\perp \rangle$. We may explicitly describe Q^\perp and thus give a presentation of $Q_n^!$. To do this define the following subsets of $T(V^*)_2$:

$$S_{1} = \left\{ v^{*}(A)v^{*}(B) \mid B \not\subseteq A \text{ or } |B| \neq |A|, |A| - 1 \right\},$$

$$S_{2} = \left\{ v^{*}(C) \left(\sum_{i \in C} v^{*}(C \setminus i) \right) + v^{*}(C)^{2} \mid |C| \ge 2 \right\},$$

$$S_{3} = \left\{ \left(\sum_{i \notin C} v^{*}(C \cup i)v^{*}(C) \right) + v^{*}(C)^{2} \mid C \neq \{1, \dots, n\} \right\}$$

$$S_{4} = \left\{ v^{*} \left\{ \{1, \dots, n\} \right\}^{2} \right\}.$$

Theorem 5.1. $S_1 \cup S_2 \cup S_3 \cup S_4$ spans \mathcal{Q}^{\perp} . Therefore, $Q_n^!$ is presented by generators $\{v^*(A) \mid \emptyset \neq A \subseteq \{1, ..., n\}$ and relations $S_1 \cup S_2 \cup S_3 \cup S_4$.

Before beginning the proof of this theorem, we present some examples and develop some notation. Set

$$s(A) = \left(v^*(A) + \langle \mathcal{Q}^{\perp} \rangle\right) / \langle \mathcal{Q}^{\perp} \rangle \in Q_n^!.$$

Write s(i) for $s(\{i\})$, s(ij) for $s(\{i, j\})$, etc.

Example. (a) $Q_2^!$ is 5-dimensional with basis

 $\{1, s(1), s(2), s(12), s(12)s(1)\}.$

(b) $Q_3^!$ is 14-dimensional with basis

$$\{1, s(1), s(2), s(3), s(12), s(13), s(23), s(123), s(123)s(12), \\ s(123)s(13), s(12)s(1), s(13)s(1), s(23)s(2), s(123)s(12)s(1)\}.$$

These assertions follow from Proposition 6.4.

Note that $Q_n^! = \sum_{i \ge 0} Q_{n,i}^!$ is graded where

$$Q_{n,i}^{!} = \left(T(V^{*})_{i} + \langle \mathcal{Q}^{\perp} \rangle \right) / \langle \mathcal{Q}^{\perp} \rangle$$

and that $Q_n^!$ has a decreasing filtration

$$Q_n^! = Q_{n,(0)}^! \supseteq Q_{n,(1)}^! \supseteq \cdots \supseteq Q_{n,(j)}^! \supseteq \cdots$$

where

$$\mathcal{Q}_{n,(j)}^{!} = \left(T(V^*)_{(j)} + \langle \mathcal{Q}^{\perp} \rangle \right) / \langle \mathcal{Q}^{\perp} \rangle.$$

Clearly

$$Q_{n,(j)}^! = \sum_{i \ge 0} Q_{n,i}^! \cap Q_{n,(j)}^!$$
 and $Q_{n,i}^! \cap Q_{n,(j)}^! = (0)$ if $j > ni$.

Let gr $Q_n^! = \sum_{j=0}^{\infty} Q_{n,(j)}^! / Q_{n,(j+1)}^!$, the associated graded algebra of $Q_n^!$. Denote $s(A) + Q_{n,(|A|+1)}^! \in \text{gr } Q_n^!$ by $\bar{s}(A)$. Then $\{\bar{s}(A) \mid \emptyset \neq A \subseteq \{1, \dots, n\}\}$ generates gr $Q_n^!$.

Proof of Theorem 5.1. We first show that each S_h , $1 \le h \le 4$, is contained in \mathcal{Q}^{\perp} , i.e., that $\langle \mathcal{V}(A: \{c, d\}), u_h \rangle = 0$ whenever $c < d, c, d \in A \subseteq \{1, \ldots, n\}$ and $u_h \in S_h$. For h = 1 or 4 this is clear.

If h = 2, we note that

$$\left\langle \mathcal{V}\left(A:\{c,d\}\right), v^*(C)\left(\sum_{i\in C}v^*(C\setminus i)\right) + v^*(C)^2\right\rangle = 0$$

unless A = C, $A \setminus c = C$, or $A \setminus d = C$. In the first case,

$$\begin{split} &\left\langle \mathcal{V}\big(A:\{c,d\}\big), \ v^*(C)\bigg(\sum_{i\in C}v^*(C\setminus i)\bigg)+v^*(C)^2\right\rangle \\ &= \left\langle v(A)v(A\setminus d)-v(A)v(A\setminus c), \ v^*(A)\bigg(\sum_{i\in A}v^*(A\setminus i)\bigg)\bigg\rangle = 0. \end{split}$$

In the second case,

I. Gelfand et al. / Journal of Algebra 254 (2002) 279-299

$$\begin{split} \left\langle \mathcal{V}(A:\{c,d\}), \ v^*(C) \bigg(\sum_{i \in C} v^*(C \setminus i)\bigg) + v^*(C)^2 \right\rangle \\ &= \left\langle -v(A \setminus c)v(A \setminus c \setminus d), \ v^*(A \setminus c) \bigg(\sum_{i \in A \setminus c} v^*(A \setminus c \setminus i)\bigg) \right\rangle \\ &+ \left\langle v(A \setminus c)^2, \ v^*(A \setminus c)^2 \right\rangle \\ &= -1 + 1 = 0. \end{split}$$

In the third case,

$$\begin{split} \left\langle \mathcal{V}(A:\{c,d\}), \ v^*(C) \bigg(\sum_{i \in C} v^*(C \setminus i) \bigg) + v^*(C)^2 \right\rangle \\ &= \left\langle v(A \setminus d) v(A \setminus c \setminus d), \ v^*(A \setminus d) \bigg(\sum_{i \in A \setminus d} v^*(A \setminus d \setminus i) \bigg) \right\rangle \\ &+ \left\langle -v(A \setminus d)^2, \ v^*(A \setminus d)^2 \right\rangle \\ &= 1 - 1 = 0. \end{split}$$

If h = 3, we note that

$$\left\langle \mathcal{V}\left(A:\{c,d\}\right), \left(\sum_{i\notin C} v^*(C\cup i)v^*(C)\right) + v^*(C)^2 \right\rangle = 0$$

unless $A \setminus c = C$, $A \setminus d = C$, or $A \setminus c \setminus d = C$. In the first case,

$$\begin{split} \left\langle \mathcal{V}\left(A:\{c,d\}\right), \ \left(\sum_{i\notin C} v^*(C\cup i)v^*(C)\right) + v^*(C)^2 \right\rangle \\ &= \left\langle -v(A)v(A\setminus c), \ \sum_{i\notin A\setminus c} v^*(A\cup i\setminus c)v^*(A\setminus c) \right\rangle \\ &+ \left\langle v(A\setminus c)^2, \ v^*(A\setminus c)^2 \right\rangle \\ &= -1 + 1 = 0. \end{split}$$

In the second case,

$$\begin{split} \left\langle \mathcal{V}\big(A:\{c,d\}\big), \ \left(\sum_{i\notin C} v^*(C\cup i)v^*(C)\right) + v^*(C)^2 \right\rangle \\ &= \left\langle v(A)v(A\setminus d), \ \sum_{i\notin A\setminus d} v^*(A\cup i\setminus d)v^*(A\setminus d) \right\rangle \\ &+ \left\langle -v(A\setminus d)^2, \ v^*(A\setminus d)^2 \right\rangle \\ &= 1-1=0. \end{split}$$

In the third case,

294

$$\begin{split} \left\langle \mathcal{V}\big(A:\{c,d\}\big), \ \left(\sum_{i\notin C} v^*(C\cup i)v^*(C)\right) + v^*(C)^2 \right\rangle \\ &= \left\langle v(A\setminus d)v(A\setminus c\setminus d) - v(A\setminus c)v(A\setminus c\setminus d), \right. \\ &\left. \sum_{i\notin A\setminus c\setminus d} v^*(A\cup i\setminus c\setminus d)v^*(A\setminus c\setminus d) \right\rangle = 0. \end{split}$$

We will now use downward induction on l to show that $(S_1 \cup S_2 \cup S_3 \cup S_4) \cap T(V^*)_{(l)}$ spans $Q^{\perp} \cap T(V^*)_{(l)}$ for all $l \ge 0$. Note that, since $T(V^*) = T(V^*)_{(0)}$, this will complete the proof of the lemma. Now Q^{\perp} is contained in $T(V^*)_2$ and $T(V^*)_2 \cap T(V^*)_{(2n+1)} = (0)$, so the result holds for l = 2n + 1. Assume the result holds whenever l > m and let $u \in Q^{\perp} \cap T(V^*)_{(m)}$. Suppose that m is even. Then by subtracting an element in the span of S_1 we may assume that $u \in \sum_{|C|=m/2} a_C v^*(C)^2 + T(V^*)_{(m+1)}$ for some scalars a_C . Then by subtracting an element in this case. Now suppose that m is odd. Then by subtracting an element in the span of S_1 we may assume that

$$u \in \sum_{|C|=(m+1)/2, i \in C} b_{C,i} v^*(C) v^*(C \setminus i) + T(V^*)_{(m+1)}$$

for some scalars $b_{C,i}$. Since $0 = \langle \mathcal{V}(C : \{c, d\}), u \rangle$ for all *C* with |C| = (m + 1)/2 we see that $b_{C,c} = b_{C,d}$ for all $c, d \in C$. Then by subtracting an element in the span of S_2 we may assume that $u \in T(V^*)_{(m+1)}$. Hence the induction assumption gives our result in this case and the proof of the lemma is complete. \Box

6. A basis for $Q_n^!$

Let $B = \{b_1, \ldots, b_k\} \subseteq A \subseteq \{1, \ldots, n\}$ with $b_1 > \cdots > b_k$. Define $\mathcal{S}(A : B) \in Q_n^!$ by

$$\mathcal{S}(A:B) = s(A)s(A \setminus b_1) \dots s(A \setminus b_1 \dots \setminus b_k).$$

Let $\min A$ denote the smallest element of A. Define

$$S = \{S(A:B) \mid B \subseteq A \subseteq \{1, \dots, n\}, \min A \notin B\},\$$

$$\overline{S}(A:B) = S(A:B) + Q_{n,(1+(|B|+1)(2|A|-|B|)/2)}^!,$$

and

$$\overline{\mathcal{S}} = \left\{ \overline{\mathcal{S}}(A:B) \mid B \subseteq A \subseteq \{1, \dots, n\}, \min A \notin B \right\}.$$

Lemma 6.1. $\overline{S} \cup \{\overline{s}(\emptyset)\}$ spans gr $Q_n^!$ and $S \cup \{s(\emptyset)\}$ spans $Q_n^!$.

295

Proof. It is sufficient to show the first assertion. We know that $\{\bar{s}(A) \mid \emptyset \neq A \subseteq \{1, ..., n\}\}$ generates gr $Q_n^!$. Since the sets S_1 , S_3 , and S_4 are contained in Q^{\perp} , we see that $\bar{s}(A)\bar{s}(B) = 0$ unless $B \subset A$ and |B| = |A| - 1. Furthermore, since the set S_2 is contained in Q^{\perp} , we have $\bar{s}(A)(\sum_{i \in A} \bar{s}(A \setminus i)) = 0$ for all $A \subseteq \{1, ..., n\}, |A| \ge 2$. Then if $i, j \in A \subseteq \{1, ..., n\}$ we have

$$\bar{s}(A)\bar{s}(A \setminus i)\bar{s}(A \setminus i \setminus j) = -\bar{s}(A) \left(\sum_{l \in A, l \neq i} \bar{s}(A \setminus l)\right) \bar{s}(A \setminus i \setminus j)$$
$$= -\bar{s}(A)\bar{s}(A \setminus j)\bar{s}(A \setminus i \setminus j).$$

The lemma is then immediate. \Box

Lemma 6.2. Let $B = \{b_1, ..., b_k\} \subseteq A \subseteq \{1, ..., n\}$ with $b_1 > \cdots > b_k$ and k > 2. Then, for $0 \leq m \leq k - 3$,

$$\left\langle \sum_{\sigma \in \operatorname{Sym}(B)} \operatorname{sgn}(\sigma) \sigma \left\{ v(A \setminus b_1) \dots v(A \setminus b_1 \dots \setminus b_{k-1}) \right\}, \\ V^{*m} \mathcal{Q}^{\perp} V^{*k-m-3} \right\rangle = 0.$$

Proof. If k = 3 then

,

$$\sum_{\sigma \in \operatorname{Sym}(B)} \operatorname{sgn}(\sigma) \sigma \left\{ v(A \setminus b_1) \dots v(A \setminus b_1 \dots \setminus b_{k-1}) \right\}$$

= $\mathcal{V}(A : \{b_1, b_2\}) + \mathcal{V}(A : \{b_2, b_3\}) + \mathcal{V}(A : \{b_3, b_1\}) \in \mathcal{Q},$

so the result holds. Now assume that k > 3 and that the result holds for k - 1. Then it is sufficient to show that

$$\left\langle \sum_{\sigma \in \operatorname{Sym}(B)} \operatorname{sgn}(\sigma) \sigma \left\{ v(A \setminus b_1) \dots v(A \setminus b_1 \dots \setminus b_{k-1}) \right\}, \\ v^*(A \setminus b_1) V^{*m-1} \mathcal{Q}^{\perp} V^{*k-m-3} \right\rangle = 0$$

whenever m > 0 and that

$$\left\langle \sum_{\sigma \in \operatorname{Sym}(B)} \operatorname{sgn}(\sigma) \sigma \left\{ v(A \setminus b_1) \dots v(A \setminus b_1 \dots \setminus b_{k-1}) \right\}, \\ \mathcal{Q}^{\perp} V^{*k-4} v^* (A \setminus b_1 \setminus \dots \setminus b_{k-1}) \right\rangle = 0.$$

Both of these are immediate from the induction assumption. \Box

Lemma 6.3. *Let* $B \subseteq A \subseteq \{1, ..., n\}$ *and* $|B| = k \ge 2$. *Then*

$$\mathcal{V}(A:B) \in \bigcap_{m=0}^{k-2} V^m \mathcal{Q} V^{k-m-2}.$$

Proof. It is enough to show that $\langle \mathcal{V}(A:B), V^{*m} \mathcal{Q}^{\perp} V^{*k-m-2} \rangle = 0$ for all *m*, $0 \leq m \leq k-2$. This is immediate if k = 2. We will proceed by induction on *k*. Thus we assume k > 2 and that the assertion is true for k-1. Now if m > 0 then $V^{*m} \mathcal{Q}^{\perp} V^{*k-m-2} = \sum_{C \subseteq \{1,...,n\}} v^*(C) V^{*m-1} \mathcal{Q}^{\perp} V^{*k-m-2}$. Now $v^*(C) V^{*m-1} \mathcal{Q}^{\perp} V^{*k-m-2}$ is orthogonal to $\mathcal{V}(A:B)$ unless $A \supseteq C \supseteq A \setminus B$ and |C| = |A| or |A| - 1. But if |C| = |A| then $v^*(C) V^{*m-1} \mathcal{Q}^{\perp} V^{*k-m-2}$ is orthogonal to $\mathcal{V}(A:B)$ by Lemma 6.2 and if |C| = |A| - 1, the induction assumption yields the same result. Thus, the assertion holds if m > 0. For m = 0 we must consider $\mathcal{Q}^{\perp} V^{*k-2} = \sum_{C \subseteq \{1,...,n\}} \mathcal{Q}^{\perp} V^{*k-3} v^*(C)$. Now, $\mathcal{Q}^{\perp} V^{*k-3} v^*(C)$ is orthogonal to $\mathcal{V}(A:B)$ unless $A \supseteq C \supseteq A \setminus B$ and |C| = |A| - |B| or |A| - |B| + 1. If |C| = |A| - |B| then $\mathcal{Q}^{\perp} V^{*k-3} v^*(C)$ is orthogonal to $\mathcal{V}(A:B)$ by Lemma 6.2 and if |C| = |A| - |B| or |A| - |B| + 1. If |C| = |A| - |B| then $\mathcal{Q}^{\perp} V^{*k-3} v^*(C)$ is orthogonal to $\mathcal{V}(A:B)$ by Lemma 6.2 \square $A \setminus B$ and |C| = |A| - |B| or |A| - |B| + 1. If |C| = |A| - |B| then $\mathcal{Q}^{\perp} V^{*k-3} v^*(C)$ is orthogonal to $\mathcal{V}(A:B)$ by Lemma 6.2 \square of the lemma. \square

Let \mathcal{V} denote the span of $\{\mathcal{V}(A:B) \mid B \subseteq A \subseteq \{1, ..., n\}\}$. The lemma shows that \mathcal{V} is orthogonal to $\langle \mathcal{Q}^{\perp} \rangle$ and so, the pairing of T(V) and $T(V^*)$ induces a pairing of \mathcal{V} and $Q_n^!$.

Proposition 6.4. S is a basis for $Q_n^!$.

Proof. Suppose min $A \notin B \subseteq A \subseteq \{1, ..., n\}$. Then

 $\langle \mathcal{V}(A:B\cup \{\min A\}), \mathcal{S}(A:B)\rangle = 1$

and

 $\langle \mathcal{V}(C, D), \mathcal{S}(A:B) \rangle = 0$

if |C| < |A| or if |C| = |A| and $C \neq A$ or if min $A \in D$ and $D \neq B$. It is then easy to see that S is linearly independent. In view of Lemma 6.3, this proves the proposition. \Box

Corollary 6.5. gr $Q_{\underline{n}}^!$ is presented by generators $\{v^*(A) \mid \emptyset \neq A \subseteq \{1, ..., n\}\}$ and relations $\overline{S_1} \cup \overline{S_2} \cup \overline{S_3}$ where

$$\overline{S}_1 = \left\{ v^*(A)v^*(B) \mid B \not\subseteq A \text{ or } |B| \neq |A|, |A| - 1 \right\},\$$

$$\overline{S}_2 = \left\{ v^*(C) \sum_{i \in C} v^*(C \setminus i) \mid |C| \ge 2 \right\},\$$

$$\overline{S}_3 = \left\{ v^*(C)^2 \mid \emptyset \neq C \subseteq \{1, \dots, n\} \right\}.$$

7. Proof of Theorem 2

Clearly if i > 0 then $S \cap Q_{n,i}^!$ is a basis for $Q_{n,i}^!$. Thus, for i > 0, dim $Q_{n,i}^!$ is equal to $|S \cap Q_{n,i}^!|$. This is the same as $|\{S(A : B) \in S \mid |B| = i - 1\}|$. Now

$$\left|\left\{\mathcal{S}(A:B)\in\mathcal{S}\mid|B|=i-1 \text{ and } |A|=u\right\}\right| = \binom{n}{u}\binom{u-1}{i-1}.$$

Thus

$$\begin{split} H(Q_n^!, t) &= 1 + \sum_{i>0} \left(\sum_{u=i}^n \binom{n}{u} \binom{u-1}{i-1} \right) t^i \\ &= 1 + t \sum_{i>0} \left(\sum_{u=i}^n \binom{n}{u} \binom{u-1}{i-1} \right) t^{i-1} \\ &= 1 + t \sum_{v=0}^{n-1} \left(\sum_{u=v+1}^n \binom{n}{u} \binom{u-1}{v} \right) t^v \\ &= 1 + t \sum_{u=1}^n \sum_{v=0}^{u-1} \binom{n}{u} \binom{u-1}{v} t^v \\ &= 1 + t \sum_{u=1}^n \binom{n}{u} \sum_{v=0}^{u-1} \binom{u-1}{v} t^v \\ &= 1 + t \sum_{u=1}^n \binom{n}{u} (t+1)^{u-1} \\ &= 1 + \frac{t}{t+1} \sum_{u=1}^n \binom{n}{u} (t+1)^u \\ &= 1 + \frac{t}{t+1} ((2+t)^n - 1) = \frac{1}{t+1} (t+1+t(2+t)^n - t) \\ &= \frac{1}{t+1} (1+t(2+t)^n). \end{split}$$

This completes the proof of Theorem 2.

References

- [1] N. Bourbaki, in: Algebra, Vol. I, Springer-Verlag, New York, 1989, Chapters 1-3.
- [2] I. Gelfand, S. Gelfand, V. Retakh, Noncommutative algebras associated to complexes and graphs, Selecta Math. 7 (2001) 525–531.
- [3] I. Gohberg, P. Lancaster, L. Rodman, Matrix Polynomials, Academic Press, 1982.

- [4] I. Gelfand, V. Retakh, Determinants of matrices over noncommutative rings, Funct. Anal. Appl. 25 (2) (1991) 91–102.
- [5] I. Gelfand, V. Retakh, A theory of noncommutative determinants and characteristic functions of graphs, Funct. Anal. Appl. 26 (4) (1992) 1–20.
- [6] I. Gelfand, V. Retakh, Noncommutative Vieta theorem and symmetric functions, in: Gelfand Math. Sem. 1993–95, Birkhäuser, Boston, 1996.
- [7] I. Gelfand, V. Retakh, A theory of noncommutative determinants and characteristic functions of graphs. I, in: Publ. LACIM, UQAM, Vol. 14, 1993, pp. 1–26.
- [8] I. Gelfand, V. Retakh, Quasideterminants, I, Selecta Math. 3 (1997) 417-546.
- [9] I. Gelfand, V. Retakh, R.L. Wilson, Quadratic-linear algebras associated with factorizations of noncommutative polynomials and noncommutative differential polynomials, Selecta Math. 7 (2001) 493–523.
- [10] T.Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, 1991.
- [11] O. Ore, Theory of non-commutative polynomials, Ann. of Math. 34 (1933) 480-508.
- [12] L. Positselski, The correspondence between Hilbert series of quadratically dual algebras does not imply their having the Koszul property, Funct. Anal. Appl. 29 (3) (1995) 213–217.
- [13] J.-E. Roos, On the characterization of Koszul algebras. Four counter-examples, C.R. Acad. Sci. Paris Ser. I 321 (1995) 15–20.
- [14] V.A. Ufnarovskij, Combinatorial and asymptotic methods in algebra, in: A.I. Kostrikin, I.R. Shafarevich (Eds.), in: Algebra, Vol. VI, Springer-Verlag, New York, 1995, pp. 1–196.
- [15] R.L. Wilson, Invariant polynomials in the free skew field, Selecta Math. 7 (2001) 565-586.