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Abstract

The quadratic algebrasQn are associated with pseudo-roots of noncommutative
polynomials. We compute the Hilbert series of the algebrasQn and of the dual
algebrasQ!n.
 2002 Elsevier Science (USA). All rights reserved.

Introduction

LetP(x)= xn− a1x
n−1+ · · ·+ (−1)nan be a polynomial over a ringR. Two

classical problems concern the polynomialP(x): investigation of the solutions
of the equationP(x) = 0 and the decomposition ofP(x) into a product of
irreducible polynomials.
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In the commutative case relations between these two problems are well known:
whenR is a commutative division algebra,x is a central variable, and the equation
P(x)= 0 has rootsx1, . . . , xn, then

P(x)= (x − xn) . . . (x − x2)(x − x1). (0.1)

In noncommutative case relations between the two problems are highly
nontrivial. They were investigated by Ore [11] and others. ([10] is a good source
for references; see also the book [3] where matrix polynomials are considered.)
More recently, some of the present authors have obtained results [6,7,15] which
are important for the present work. For a division algebraR, I. Gelfand and
V. Retakh [6–8] studied connections between the coefficients ofP(x) and a
generic set of solutionsx1, . . . , xn of the equationP(x) = 0. They showed that
for any orderingI = (i1, . . . , in) of {1, . . . , n} one can construct elementsyk,
k = 1, . . . , n, depending onxi1, . . . , xik such that

a1 = y1+ y2+ · · · + yn,

a2 =
∑
i<j

yjyi,

...

an = yn . . . y2y1. (0.2)

These formulas are equivalent to the decomposition

P(t)= (t − yn) . . . (t − y2)(t − y1) (0.3)

wheret is a central variable. Formula (0.3) can be viewed as a noncommutative
analog of formula (0.1). A decomposition ofP(x) for a noncommutative variable
x is more complicated (see [7]).

The elementyk, which is defined to be the conjugate ofxik by a Vandermonde
quasideterminant involvingxi1, . . . , xik , is a rational function inxi1, . . . , xik ; it
is symmetric inxi1, . . . , xik−1. (Quasideterminants were introduced and studied
in [4,5,8]. We do not need the explicit formula foryk here.) It was shown
in [15] that the polynomials inyk for a fixed orderingI which are symmetric
in xl can be written as polynomials in the symmetric functionsa1, . . . , an
given by formulas (0.2). Thus these are the natural noncommutative symmetric
functions.

It is convenient for our purposes to use the notationyk = xAk,ik where
Ak = {i1, . . . , ik−1} for k = 2, . . . , n, A1 = ∅. In the generic case there aren!
decompositions of type (0.3). Such decompositions are given by products of linear
polynomialst − xA,i whereA⊂ {1, . . . , n}, i ∈ {1, . . . , n}, i /∈ A. It is natural to
call the elementsxA,i pseudo-rootsof the polynomialP(x). Note that elements
x∅,i = xi , i = 1, . . . , n, are roots of the polynomialP(x).

In [9] I. Gelfand, V. Retakh, and R. Wilson introduced the algebraQn of all
pseudo-roots of a generic noncommutative polynomial. It is defined by generators
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xA,i , A⊂ {1, . . . , n}, i ∈ {1, . . . , n}, i /∈A, and relations

xA∪i,j + xA,i − xA∪j,i − xA,j , (0.4a)

xA∪i,j · xA,i − xA∪j,i · xA,j , i, j ∈ {1, . . . , n} \A. (0.4b)

In [9] a natural homomorphisme of Qn into the free skew field generated by
x1, . . . , xn was constructed. We believe that the mape is an embedding.

We consider the algebraQn as a universal algebra of pseudo-roots of a non-
commutative polynomial of degreen. Our philosophy is the following: the
algebraic operations of addition, subtraction and multiplication are cheap, but the
operation of division is expensive. For our problem we cannot use the “cheap”
free associative algebra generated byx1, . . . , xn, but to use the gigantic free
skew field is too expensive. So, we suggest to use an “affordable intermediate”
algebraQn.

Relations (0.4) show (see [9]) that we may define a linearly independent set of
generators

rA = xA\{a1},a1 + xA\{a1,a2},a2 + · · · + x∅,ak
for all nonemptyA = {a1, . . . , ak} ⊆ {1, . . . , n}. These generators satisfy the
quadratic relations{

r(A)
(
r
(
A \ {i})− r

(
A \ {j }))+ (r(A \ {i})− r

(
A \ {j }))r(A \ {i, j })

− r
(
A \ {i})2+ r

(
A \ {j })2 ∣∣ i, j ∈A⊆ {1, . . . , n}}.

Another linearly independent set of generators inQn, {uA | ∅ �= A ⊆
{1, . . . , n}}, supersymmetric to{rA | ∅ �= A ⊆ {1, . . . , n}}, was used in [2] for
a construction of noncommutative algebras related to simplicial complexes.

As a quadratic algebraQn has a dual quadratic algebraQ!n, see [14]. A study
of this algebra is of an independent interest. In Section 5 we describe generators
and relations for the algebraQ!n.

In this paper we compute the Hilbert series of the quadratic algebrasQn

andQ!n. Recall that ifW =∑i�0Wi is a graded vector space with dimWi finite
for all i then the Hilbert series ofW is defined by

H(W, t)=
∑
i�0

(dimWi)t
i .

Any quadratic algebraA has a natural graded structureA =∑i�0Ai where
Ai is the span of all products ofi generators. IfA is finitely generated then the
subspacesAi are finite-dimensional and the Hilbert seriesH(A, t) of A is defined.
Note that the Hilbert seriesH(A!, t) is also defined for the dual algebraA!.

Recall that if A and A! are Koszul algebras thenH(A, t)H(A!,−t) = 1
(see [14]). The converse is not true but the counter-examples are rather superficial
(see [12,13]).



282 I. Gelfand et al. / Journal of Algebra 254 (2002) 279–299

The following two theorems, which are the main results of this paper, show
that the quadratic algebrasQn satisfy this necessary condition for the Koszulity
of Qn.

Theorem 1. H(Qn, t)= 1− t

1− t (2− t)n
.

Theorem 2. H(Q!n, t)=
1+ t (2+ t)n

1+ t
.

In the course of proving Theorem 1 we develop results (cf. Lemma 4.4) which
describe the structure ofQn in terms ofQn−1. These results appear to be of
independent interest. We use these results to compute (Corollary 4.9) the Hilbert
series ofQn in terms of the Hilbert series ofQn−1. While proving Theorem 2 we
determine (Proposition 6.4) a basis for the dual algebraQ!n.

We begin, in Section 1, by recalling, from [9], the construction ofQn (as a quo-
tient of the tensor algebraT (V ) for an appropriate vector spaceV ) and develop-
ing notation for certain important elements ofT (V ). We also note thatQn has a
natural filtration. In Section 2 we study the associated graded algebra grQn, ob-
taining a presentation for grQn. In view of the basis theorem forQn (in [9]) it is
easy to determine a basis for grQn. We next, in Section 3, define certain important
subalgebras ofQn which we denoteQn(1) andQn(1̂). We show that the struc-
tures of these algebras are closely related to the structure ofQn−1. In Section 4 we
use these facts to prove Theorem 1 by induction onn. We then begin the study of
the dual algebraQ!n, recalling generalities about the algebra and finding the space
of defining relations in Section 5 and constructing a basis forQ!n in Section 6.
The proof of Theorem 2, contained in Section 7, is then straightforward.

1. Generalities about Qn

The quadratic algebraQn is defined in [9]. Here we recall one presentation
of Qn and develop some notation. LetV denote the vector space over a fieldF

with basis{v(A) | ∅ �=A⊆ {1, . . . , n}} andT (V ) denote the tensor algebra onV .
The symmetric group on{1, . . . , n} acts onV by σ(v(A))= v(σ (A)) and hence
also acts onT (V ).

Note that

T (V )=
∑
i�0

T (V )i

where

T (V )i = span
{
v(A1) . . .v(Ai)

∣∣ ∅ �=A1, . . . ,Ai ⊆ {1, . . . , n}
}

is a graded algebra. EachT (V )i is finite-dimensional.
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Also, defining

T (V )(j) = span
{
v(A1) . . . v(Ai)

∣∣ i � 0, |A1| + · · · + |Ai |� j
}

gives an increasing filtration

F.1= T (V )(0) ⊂ T (V )(1) ⊂ · · ·
of T (V ).

Note that

T (V )(j) =
∑
i�0

T (V )i ∩ T (V )(j).

Let ∅ �= B ⊆ A ⊆ {1, . . . , n} and writeB = {b1, . . . , bk} whereb1 > b2 >

· · ·> bk. Let Sym(B) denote the group of all permutations ofB. When convenient
we will write A \ b1 . . . \ bk in place ofA \ {b1, . . . , bk}. DefineV(A : B) to be

∑
σ∈Sym(B)

sgn(σ )σ

{
v(A)v(A \ b1)v(A \ b1 \ b2) . . .v(A \ b1 . . . \ bk−1)

+
k−1∑
u=1

(−1)u
{
v(A \ b1) . . .v(A \ b1 . . . \ bu−1)v(A \ b1 . . . \ bu)2

× v(A \ b1 . . . \ bu+1) . . . v(A \ b1 . . . \ bk−1)
}

+ (−1)kv(A \ b1) . . .v(A \ b1 . . . \ bk)
}
.

Let Q = span{V(A : B) | B ⊆ A ⊆ {1, . . . , n}, |B| = 2} and let〈Q〉 denote
the ideal inT (V ) generated byQ. Denote the quotientT (V )/〈Q〉 by Qn. Since
Q⊆ T (V )2, Qn is a quadratic algebra.Qn is, of course, graded:

Qn =
∑
i�0

Qn,i , whereQn,i =
(
T (V )i + 〈Q〉

)/〈Q〉.
Defining

Qn,(j) =
(
T (V )(j) + 〈Q〉

)/〈Q〉
gives an increasing filtration

F.1=Qn,(0) ⊂Qn,(1) ⊂ · · ·
of Qn. Note that

Qn,(j) =
∑
i�0

Qn,i ∩Qn,(j).

Let r(A) denotev(A)+ 〈Q〉 andR(A : B) denoteV(A : B)+ 〈Q〉.
Note that if|B| = 2 thenR(A : B)= 0 (in Qn).
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2. The associated graded algebra grQn

Let X = span{v(A)(v(A \ i)− v(A \ j)) | i, j ∈A⊆ {1, . . . , n}}.
Xn =

(
T (V )+ 〈X 〉)/〈X 〉.

Let x(A) denotev(A)+ 〈X 〉.
Note thatXn is graded

Xn =
∑
i�0

Xn,i , whereXn,i =
(
T (V )i + 〈X 〉

)/〈X 〉
and has an increasing filtration

F.1=Xn,(0) ⊂Xn,(1) ⊂ · · · whereXn,(j) =
(
T (V )(j) + 〈X 〉

)/〈X 〉.
A string is a finite sequenceB = (B1, . . . ,Bl) of nonempty subsets of

{1, . . . , n}. We calll = l(B) the lengthof B and|B| =∑l
i=1 |Bi | thedegreeof B.

Let S denote the set of all strings. IfB = (B1, . . . ,Bl) andC = (C1, . . . ,Cm) ∈ S

defineBC = (B1, . . . ,Bl,C1, . . . ,Cm) andx(B) = x(B1) . . .x(Bl). For any set
W ⊆ S of strings we will denote{x(B) | B ∈W } by x(W). Note thatS contains
the empty string∅. Let S◦ = S \ {∅}. For any subsetU ⊆ S let U◦ =U ∩ S◦.

We recall from [9], the definition ofY ⊆ S. Let ∅ �= A = {a1, . . . , al} ⊆
{1, . . . , n} where a1 > a2 > · · · > al and j � |A|. Then we write(A : j) =
(A,A \ a1, . . . ,A \ a1 \ · · · \ aj−1), a string of lengthj .

Consider the following condition on a string(A1 : j1) . . . (As : js) ∈ S:

if 2 � i � s andAi ⊆Ai−1 then |Ai | �= |Ai−1| − ji−1. (2.1)

Let Y = {(A1 : j1) . . . (As : js) ∈ S | (2.1) is satisfied}. It is proved in [9] that
r(Y ) is a basis forQn.

SupposeB = (B1, . . . ,Bl) is a string. Recall, from [9], that we may define by
induction a sequence of integersn(B) = (n1, n2, . . . , nt ), 1= n1 < n2 < · · · <
nt = l + 1, as follows:

• n1= 1,
• nk+1=min({j > nk | Bj �Bnk or |Bj | �= |Bnk | + nk − j } ∪ {l + 1}),
• andt is the smallesti such thatni = l + 1.

We calln(B) theskeletonof B.
Let B = (B1, . . . ,Bl) be a string with skeleton(n1 = 1, n2, . . . , nt = l + 1).

DefineB∨ to be the string(Bn1, n2 − n1)(Bn2, n3 − n2) . . . (Bnt−1, nt − nt−1).
Note thatl(B∨)= l(B) and|B∨| = |B|.

Proposition 2.1. x(B)= x(B∨).

Proof. If t = 1 thenl = 0 soB = B∨ is the empty string andx(B)= x(B∨)= 1.
Assumet = 2, soB∨ = (B1, l). We will proceed by induction onl. If l = 1 then
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B = (B1) = B∨ so there is nothing to prove. Ifl = 2, thenB = (B1,B1 \ i) for
somei andB∨ = (B1,B1\j) for somej . Sincex(B1)x(B1\ i)= x(B1)x(B1\j)
by the defining relations, the result holds in this case.

Now assumel > 2 and that the result holds for allC = (C1, . . . ,Ck) with
skeleton(1, k + 1) and k < l. We haveB = (B1, . . . ,Bl−1)(Bl) so x(B) =
x(B1, . . . ,Bl−1)x(Bl). Since the skeleton of(B1, . . . ,Bl−1) is (1, l) the induction
assumption applies and shows thatx(B1, . . . ,Bl−1)= x(B1, l − 1). Let b denote
the largest element ofB1. Then since(B1, l − 1)= (B1)(B1 \ b, l − 2) we have
x(B)= x(B1, . . . ,Bl−1)x(Bl)= x(B1, l−1)x(Bl)= x(B1)x(B1\b, l−2)x(Bl).
If b /∈ Bl the induction assumption shows that this isx(B1)x(B1 \ b, l − 1) =
x(B1, l) as required. So we may assumeb ∈ Bl and then, since|Bl | < |B1|, we
may findc ∈ B1, c �= b, c /∈ Bl . Then by the induction assumptionx(B1, l − 1)
x(Bl)= x(B1)x(B1 \ c, l − 2)x(Bl) and, again by the induction assumption, this
is equal tox(B1)x(B1 \ c, l − 1).

Write (B1)(B1 \ c, l−1)= (B1,C2, . . . ,Cl) and note that, asl > 2, the largest
element ofB1 is not in Cl . Then by the previous casex(B1,C2, . . . ,Cl) =
x((B1,C2, . . . ,Cl)

∨). But x(B) = x(B1,C2, . . . ,Cl) and (B1,C2, . . . ,Cl)
∨ =

(B1, l) proving the result in caset = 2.
Finally, supposet > 2 and supposen(B) = (n1, . . . , nt ). We proceed by

induction on t . Let B′ = (B1, . . . ,Bn2−1) and B′′ = (Bn2, . . . ,Bl). Note that
n(B′)= (1, n2) andn(B′′) = (n2, . . . , nt ), and so, by induction,x(B′) = x(B′∨)
and x(B′′) = x(B′′∨). Then x(B) = x(B′)x(B′′) = x(B′∨)x(B′′∨) = x(B∨),
proving the proposition. ✷

Let grQn denote the associated graded algebra ofQn. For any stringB let
r̄(B) denote the elementr(B)+Qn,|B|−1 of grQn.

For any setS of strings writer̄(S)= {r̄(B) | B ∈ S}.

Lemma 2.2. r̄(Y ) is a basis forgrQn.

Proof. This follows from the fact thatr(Y ) ∩ Qn,i is a basis forQn,i (Theo-
rem 1.3.8 and Proposition 1.4.1 of [9]).✷
Corollary 2.3. The linear mapφ :Xn→ grQn defined byφ(x(B))= r̄(B) is an
isomorphism of algebras.

Proof. SinceQn is generated by{r(A) | ∅ �=A⊆ {1, . . . , n}}, grQn is generated
by {r̄(A) | ∅ �=A⊆ {1, . . . , n}}. If i > j

0 = R
(
A : {i, j })

= r(A)
(
r(A \ i)− r(A \ j))+ (r(A \ i)− r(A \ j))r(A \ i \ j)

− r(A \ i)2+ r(A \ j)2,
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we have

r(A)
(
r(A \ i)− r(A \ j)) ∈Qn,2|A|−2

and sor̄(A)(r̄(A \ i) − r̄(A \ j)) = 0 in grQn. Consequently there is a homo-
morphism fromXn into grQn that takesx(A) into r̄(A). Since the generating
set {r̄(A) | ∅ �= A ⊆ {1, . . . , n}} is contained in the image of this map, the map
is onto. Note thatY = {B | B = B∨}. Thus by Proposition 2.1,Xn is spanned by
x(Y ). Since the image of this set is the linearly independent setr̄(Y ), the map is
injective. ✷

3. The subalgebras Qn(1) and Qn(1̂)

Let Qn(1̂) denote the subalgebra ofQn generated by{r(A) | ∅ �= A ⊆
{2, . . . , n}}. Let

S(1)= {B = (B1, . . . ,Bl) ∈ S
∣∣ 1∈ Bi for all i

}
,

S(1)†= {B = (B1, . . . ,Bl) ∈ S(1)
∣∣ |Bi |> 1 for all i

}
, and

S(1̂)= {B = (B1, . . . ,Bl) ∈ S
∣∣ B1, . . . ,Bl ⊆ {2, . . . , n}

}
.

Let Y (1)= Y ∩ S(1), Y (1)†= Y ∩ S(1)†, andY (1̂)= Y ∩ S(1̂).
Let Y(n−1) denote{(B1, . . . ,Bl) ∈ Y (1) | B1, . . . ,Bl ⊆ {1, . . . , n− 1}}.

Lemma 3.1. Qn−1 is isomorphic toQn(1̂).

Proof. For any subsetA ⊆ {1, . . . , n − 1}, let A + 1 denote{a + 1 | a ∈ A},
a subset of{2, . . . , n}. Clearly there is a homomorphism fromQn−1 into Qn(1̂)
that takesr(A) into r(A + 1). This map is injective since the “r(Y )-basis” for
Qn−1 maps into a subset ofr(Y ) ⊆ Qn. Since the generators forQn(1̂) are
contained in the image of this map, it is onto.✷
Corollary 3.2. Y (1̂) is a basis forQn(1̂).

Let Qn(1) denote the subalgebra ofQn generated by{r(A) | 1 ∈ A ⊆
{1, . . . , n}}.

Lemma 3.3. The map fromgrQn(1̂) into grQn(1) that takes̄r(A) into r̄(A∪{1})
is an injective homomorphism andr̄(Y (1)†) is a basis for the image.

Proof. grQn(1̂) has generators{r̄(A) | ∅ �= A ⊆ {2, . . . , n}} and relations
{r̄(A)(r̄(A \ i)− r̄(A \ j)) | i, j ∈A⊆ {2, . . . , n}}. Since

r̄
(
A∪ {1})(r̄(A \ i ∪ {1})− r̄

(
A \ j ∪ {1}))= 0 in grQn(1),
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the required homomorphism exists. Since the homomorphism mapsr̄(Y (1̂))
injectively to r̄(Y (1)†), a subset of̄r(Y ), the homomorphism is injective and
r̄(Y (1)†) is a basis for the image.✷
Lemma 3.4. (a) r̄(Y (1)) is a basis forgrQn(1).

(b) r(Y (1)) is a basis forQn(1).

Proof. (a) Sincer̄(Y (1))⊆ r̄(Y ) it is linearly independent. Hence it is sufficient
to show thatr̄(Y (1)) spans grQn(1). But grQn(1) is spanned by the elements
r̄(B) whereB = (B1, . . . ,Bl), 1∈ B1, . . . ,Bl . By Proposition 2.1̄r(B)= r̄(B∨)
where(n1, . . . , nt ) is the skeleton ofB and

B∨ = (Bn1, n2− n1)(Bn2, n3− n2) . . . (Bnt−1, nt − nt−1).

Since 1∈ Bj for eachj , B∨ ∈ Y (1) giving the result.
Part (b) is immediate from (a).✷
If A and B are algebras, letA ∗ B denote the free product ofA and B

(cf. [1, Chapter 3, Section 5, Exercise 6]). Thus there exist homomorphisms
α :A→ A ∗ B andβ :B→ A ∗ B such that ifG is any associative algebra and
µ :A→G, ν :B→G are homomorphisms then there exists a unique homomor-
phismλ :A∗B→G such thatλα = µ andλβ = ν. Furthermore, ifA andB have
identity element 1,{1} ∪ ΓA is a basis forA and{1} ∪ ΓB is a basis forB then
A ∗ B has a basis consisting of 1 and all productsg1 . . . gm or g2 . . . gm+1 where
n � 1 andgt ∈ α(ΓA) if t is even andgt ∈ β(ΓB) if t is odd.

Lemma 3.5. grQn(1) is isomorphic togrQn−1 ∗ F [r̄(1)].

Proof. Letα : grQn−1→ grQn−1∗F [r̄(1)] andβ :F [r̄(1)]→ grQn−1∗F [r̄(1)]
be the homomorphisms occurring in the definition of grQn−1 ∗ F [r̄(1)].

If ∅ �=A= {a1, . . . , ak} ⊆ {1, . . . , n− 1} define

δ(A)= {1,1+ a1, . . . ,1+ ak}.
Then define a mapµ : {r̄(A) | ∅ �=A⊆ {1, . . . , n− 1}}→ grQn(1) by

µ
(
r̄(A)

)= r̄
(
δ(A)

)
.

In view of Lemma 2.2,µ extends to a linear map

µ : grQn−1→ grQn(1).

By Corollary 2.3,µ preserves the defining relations for grQn−1 and so is a homo-
morphism. Lemma 3.4 implies thatµ is injective. Note that̄r(1) ∈ grQn(1)
generates a subalgebra isomorphic to the polynomial algebraF [r̄(1)]. Thus there
is an injection

ν :F
[
r̄(1)

]→ grQn(1).
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Consequently there is a homomorphism

λ : grQn−1 ∗ Γ
[
r̄(1)

]→ grQn(1)

such thatλα = µ andλβ = ν. We claim thatλ is an isomorphism.
Let T denote the set of all stringsG1 . . .Gn or G2 . . .Gn+1 whereGi = Bi ∈

Y (1)† if i is odd andGi = {1}ji if i is even. Note thatT ⊆ S(1). Define

Φ :T → Y (1)

by Φ(B) = B∨. Define Ψ :Y (1) → T by Ψ ((A, j)) = (A, j) if j < |A|,
Ψ ((A, j))= (A, j − 1){1} if j = |A|, and

Ψ
(
(A1, j1) . . . (As, js)

)= Ψ
(
(A1, j1)

)
. . .Ψ

(
(As, js)

)
if (A1, j1) . . . (As, js) satisfies (2.1). ThenΦ andΨ are inverse mappings.

Let γi = α if i is odd andγi = β if i is even. Then grQn−1 ∗F [r̄(1)] has basis
consisting of 1 and all productsγ1r̄(H1) . . . γmr̄(Hm) or γ2r̄(H2) . . .γmr̄(Hm+1)

whereHi ∈ Y(n−1) if i is odd andHi = {1}ji if i is even. Then

λ
(
γ1r̄(H1) . . . γmr̄(Hm)

) = r̄
(
δ(H1)r̄(H2) . . .

)= r̄
(
δ(H1)H2 . . .

)
= r̄

((
δ(H1)H2 . . .

)∨)
and δ(H1)H2 . . . ∈ T . Also, λ(γ2r̄(H2) . . . γm+1r̄(Hm+1) = r̄(H2δ(H3) . . .) =
r̄(H2δ(H3) . . .)

∨) andH2δ(H3) . . . ∈ T . Every element ofT arises in this way.
SinceΦ :T → Y (1) is a bijection, we see thatλ maps a basis of grQn−1∗F [r̄(1)]
bijectively onto the basis̄r(Y (1)) of grQn(1), proving the lemma. ✷

4. Proof of Theorem 1

Let θ :S × S→ S be defined by

θ
(
(B1, . . . ,Bl), (C1, . . . ,Ck)

)= (B1, . . . ,Bl,C1, . . . ,Ck).

Lemma 4.1. If B = (B1, . . . ,Bl), C = (C1, . . . ,Ck) ∈ Y , 1 /∈ Bl and1∈ C1, then
BC ∈ Y.

Proof. Since B ∈ Y we may write B = (A1, j1) . . . (As, js) where (2.1) is
satisfied. Since 1/∈ Bl we have 1/∈ As . Similarly sinceC ∈ Y we may write
C = (D1,m1) . . . (Dt ,mt ) where condition (2.1) holds. Since 1∈ C1 we have
1 ∈ D1. ThenBC = (A1, j1) . . . (As, js)(D1,m1) . . . (Dt ,mt ). Since (2.1) holds
for B andC, and sinceD1 � As (for 1∈D1, 1 /∈As ), (2.1) is satisfied forBC and
soBC ∈ Y . ✷

Let B = (B1, . . . ,Bl) ∈ S. DefineA(B)= {i | 1 � i � l − 1, 1∈ Bi , 1 /∈Bi+1}
anda(B)= |A(B)|. SetS{i} = {B ∈ S | a(B)= i}. ThenS is equal to the disjoint
union

⋃
i�0S{i}.
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Lemma 4.2. (SS(1)◦ ∩ S{0})× (S(1̂)◦S ∩ S{i}) injects intoS{i+1}.

Proof. Let B = (B1, . . . ,Bl) ∈ S{i+1}. There arel + 1 pairs inS × S which
θ maps toB, namely (B1, . . . ,Bj ) × (Bj+1, . . . ,Bl) for 0 � j � l. Now
(B1, . . . ,Bj ) ∈ S{0} implies j � minA(B) while (B1, . . . ,Bj ) ∈ SS(1)◦ and
(Bj+1, . . . ,Bl) ∈ S(1̂)◦S impliesj ∈A(B) and the lemma follows. ✷

Let L(1)= S(1)◦ × S(1̂)◦, andL(i + 1)= L(1)×L(i), i � 1.

Corollary 4.3.
⋃

i�0S(1̂)×L(i)× S(1) injects intoS.

Proof. Theith term in the union maps intoS{i}, so it is enough to prove that this
is an injection. Write this term as(S(1̂)×S(1)◦)× (S(1̂)◦ ×L(i−1)×S(1)) and
observe that the result follows by the lemma and by induction oni. ✷

Let M denote the span ofY (1)◦Y (1̂)◦ ∩ Y and letN denote the subalgebra
of Qn generated byM.

Lemma 4.4. N is isomorphic to the free algebra generated byM and the map

Qn(1̂)⊗N ⊗Qn(1)→Qn

induced by multiplication is an isomorphism of graded vector spaces.

Proof. Let W = Y (1)◦Y (1̂)◦ ∩ Y and letWi =W × · · · ×W (i times). ThenW ,
being linearly independent, is a basis forM. By Lemma 4.2,

⋃
i�0W

i injects

into S. Indeed, Lemma 4.1 shows that the image is inY . Thus
⋃

i�0W
i injects

onto a basis forN , soN is isomorphic to the free algebra generated byM. Again
by Lemma 4.1 we have that

⋃
i�0Y (1̂) ×Wi × Y (1) maps intoY . Since any

substring of an element ofY is again inY , this map is onto. By Corollary 4.3 the
map is an injection. This proves the final statement of the lemma.✷

We now recall some well-known facts about Hilbert series (cf. [14, Sec-
tion 3.3]).

Lemma 4.5. (a) If W1 andW2 are graded vector spaces then

H(W1⊗W2, t)=H(W1, t)H(W2, t).

(b) If W is a graded vector space, then

H
(
T (W), t

)= 1

1−H(W, t)
.
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(c) If A =∑i�0Ai andB =∑i�0Bi are graded algebras withA0 = B0 =
F.1, then

1

H(A ∗B, t) =
1

H(A, t)
+ 1

H(B, t)
− 1.

Let U(A : j) denote the span of all strings(A1 : j1) . . . (As : js) satisfying
(2.1) such that 1∈Ai for all i and(As : js)= (A, j).

Lemma 4.6. H(U(A : j), t)= tj (1− t)n−|A|H(Qn(1), t).

Proof. Since whenever the string(A1 : j1) . . . (As−1 : js−1) satisfies(2.1) then
the string(A1 : j1) . . . (As−1 : js−1)({1, . . . , n}, j) also satisfies(2.1), we have

H
(
U
({1, . . . , n}, j), t)= tjH

(
Qn(1), t

)
.

We now proceed by downward induction on|A|, assuming the result is true
whenever|A|> l. Let |A| = l. Then

H
(
U(A : j), t)= tjH

(
Qn(1), t

)− tj
∑

C⊇A, |C|=|A|+m,m�1

H
(
U(C :m), t

)
.

By the induction assumption this is

tj
(

1−
∑

C⊇A, |C|=|A|+m,m�1

tm(1− t)n−|C|
)
H
(
Qn(1), t

)
.

Let C =D ∪A whereD ⊆ {1, . . . , n} \A. Then the expression becomes

tj
(

1−
∑

∅�=D⊆{1,...,n}\A
t |D|(1− t)n−|A|−|D|

)
H
(
Qn(1), t

)
.

By the binomial theorem the quantity in parenthesis is(1− t)n−|A|, proving the
result. ✷

Let B ⊆ {2, . . . , n} and letZ(B) denote the span of all strings(A1 : j1) . . .

(As : js) such that 1∈ A1, . . . ,As , (A1 : j1) . . . (As : js) satisfies(2.1), |B| =
|As | − js , As ⊇ B.

Lemma 4.7. H(Z(B), t)= tH (Qn(1), t).

Proof. Write As = B ∪E ∪ {1} whereB ∩E = ∅ andE ⊆ {2, . . . , n}. Then

Z(B)=
∑

E⊆{2,...,n}\B
U
(
B ∪E ∪ {1}, |E| + 1

)
and so

H(Z(B), t)=
∑

E⊆{2,...,n}\B
t |E|+1(1− t)n−|B|−|E|−1H

(
Qn(1), t

)
.

By the binomial theorem this istH (Qn(1), t). ✷
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Lemma 4.8. H(M, t)= (H(Qn(1̂), t)− 1)(H(Qn(1), t)− 1)− tH (Qn(1), t)×
(H(Qn(1̂), t)− 1).

Proof. M is the span ofY (1)◦Y (1̂)◦ ∩ Y. The complementZ of Y (1)◦Y (1̂)◦ ∩ Y

in Y (1)◦Y (1̂)◦ is the set of all strings(A1 : j1) . . . (As : js)(B1, . . . ,Bl) such
that (A1 : j1) . . . (As : js) ∈ Y (1)◦ satisfies(2.1), |B1| = |As | − js , As ⊇ B1,
(B1, . . . ,Bl) ∈ Y (1̂). Let Z denote the span ofZ. The lemma follows from
showing that

H(Z, t)= tH
(
Qn(1), t

)(
H
(
Qn(1̂), t

)− 1
)
.

For ∅ �= B ⊆ {2, . . . , n} let P(B) denote the span of all strings inZ
such thatB1 = B and P0(B) denote the span of all strings(B1, . . . ,Bl) ∈
Y (1̂) such thatB1 = B. Then Z = ∑

∅�=B⊆{2,...,n}P(B) and H(P(B), t) =
H(Z(B), t)H(P0(B), t). By Lemma 4.7, this equals totH (Qn(1), t)H(P0(B), t).
Thus

H(Z, t) =
∑

∅�=B⊆{2,...,n}
H
(
P(B), t

)
=

∑
∅�=B⊆{2,...,n}

tH
(
Qn(1), t

)
H
(
P0(B), t

)
= tH

(
Qn(1), t

) ∑
∅�=B⊆{2,...,n}

H
(
P0(B), t

)
.

But
∑
∅�=B⊆{2,...,n}H(P0(B), t)=H(Qn(1̂), t)−1 and the lemma is proved.✷

Corollary 4.9.
1

H(Qn, t)
= (2− t)

1

H(Qn−1, t)
− 1.

Proof. H(Qn, t)=H(Qn(1̂), t)H(N, t)H(Qn(1), t) by Lemma 4.4. For brevity
we writeH(Qn(1̂), t)= a andH(Qn(1), t)= b. Then

H(N, t)= 1

1−H(M, t)
= 1

(1− t)b+ a + (t − 1)ab
,

and so
1

H(Qn, t)
= (1− t)b+ a + (t − 1)ab

ab
= 1− t

a
+ 1

b
+ t − 1.

Since
1

b
= 1

a
− t,

(by Lemmas 3.5 and 4.5(c)) this gives

1

H(Qn, t)
= 1− t

a
+ 1

a
− 1= 2− t

a
− 1.

Now a =H(Qn(1̂), t)=H(Qn−1, t), so the corollary follows. ✷
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Theorem 1 now follows from Corollary 4.9 and the fact thatQ0= F.

5. Generalities about the dual algebra Q!
n

Let V ∗ denote the dual space ofV . ThusV ∗ has basis{
v∗(A) | ∅ �= A⊆ {1, . . . , n}} where

〈
v(A), v∗(B)

〉= δA,B.

Note that T (V ∗) = ∑
i�0T (V

∗)i is a graded algebra whereT (V ∗)i =
span{v∗(A1) . . .v

∗(Ai) | ∅ �= A1, . . . ,Ai ⊆ {1, . . . , n}}. Also, T (V ∗) has a de-
creasing filtration

T (V ∗)= T (V ∗)(0) ⊃ T (V ∗)(1) ⊃ · · · ⊃ T (V ∗)(j) ⊃ · · ·
where

T (V ∗)(j) = span
{
v∗(A1) . . . v

∗(Ai) | |A1| + · · · + |Ai |� j
}
.

In fact

T (V ∗)(j+1) =
(
T (V )(j)

)⊥
for j � 0.

DefineQ!n = T (V ∗)/〈Q⊥〉.
We may explicitly describeQ⊥ and thus give a presentation ofQ!n. To do this

define the following subsets ofT (V ∗)2:

S1=
{
v∗(A)v∗(B)

∣∣ B �⊆A or |B| �= |A|, |A| − 1
}
,

S2=
{
v∗(C)

(∑
i∈C

v∗(C \ i)
)
+ v∗(C)2

∣∣∣ |C|� 2

}
,

S3=
{(∑

i /∈C
v∗(C ∪ i)v∗(C)

)
+ v∗(C)2

∣∣∣C �= {1, . . . , n}},
S4=

{
v∗
({1, . . . , n})2}.

Theorem 5.1. S1 ∪ S2 ∪ S3 ∪ S4 spansQ⊥. Therefore,Q!n is presented by
generators{v∗(A) | ∅ �=A⊆ {1, . . . , n}} and relationsS1 ∪ S2 ∪ S3 ∪ S4.

Before beginning the proof of this theorem, we present some examples and
develop some notation. Set

s(A)= (v∗(A)+ 〈Q⊥〉)/〈Q⊥〉 ∈Q!n.

Write s(i) for s({i}), s(ij) for s({i, j }), etc.

Example. (a)Q!2 is 5-dimensional with basis{
1, s(1), s(2), s(12), s(12)s(1)

}
.
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(b)Q!3 is 14-dimensional with basis

{
1, s(1), s(2), s(3), s(12), s(13), s(23), s(123), s(123)s(12),

s(123)s(13), s(12)s(1), s(13)s(1), s(23)s(2), s(123)s(12)s(1)
}
.

These assertions follow from Proposition 6.4.

Note thatQ!n =
∑

i�0Q
!
n,i is graded where

Q!n,i =
(
T (V ∗)i +

〈
Q⊥

〉)/〈
Q⊥

〉
and thatQ!n has a decreasing filtration

Q!n =Q!n,(0) ⊇Q!n,(1) ⊇ · · · ⊇Q!n,(j) ⊇ · · ·
where

Q!n,(j) =
(
T (V ∗)(j) +

〈
Q⊥

〉)/〈
Q⊥

〉
.

Clearly

Q!n,(j) =
∑
i�0

Q!n,i ∩Q!n,(j) and Q!n,i ∩Q!n,(j) = (0) if j > ni.

Let grQ!n =
∑∞

j=0Q
!
n,(j)/Q

!
n,(j+1), the associated graded algebra ofQ!n.

Denotes(A) + Q!n,(|A|+1) ∈ grQ!n by s̄(A). Then {s̄(A) | ∅ �= A ⊆ {1, . . . , n}}
generates grQ!n.

Proof of Theorem 5.1. We first show that eachSh, 1 � h � 4, is contained
in Q⊥, i.e., that〈V(A: {c, d}), uh〉 = 0 wheneverc < d, c, d ∈ A ⊆ {1, . . . , n}
anduh ∈ Sh. Forh= 1 or 4 this is clear.

If h= 2, we note that〈
V
(
A : {c, d}), v∗(C)(∑

i∈C
v∗(C \ i)

)
+ v∗(C)2

〉
= 0

unlessA= C, A \ c= C, orA \ d = C. In the first case,〈
V
(
A : {c, d}), v∗(C)(∑

i∈C
v∗(C \ i)

)
+ v∗(C)2

〉

=
〈
v(A)v(A \ d)− v(A)v(A \ c), v∗(A)

(∑
i∈A

v∗(A \ i)
)〉
= 0.

In the second case,
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〈
V
(
A : {c, d}), v∗(C)(∑

i∈C
v∗(C \ i)

)
+ v∗(C)2

〉

=
〈
−v(A \ c)v(A \ c \ d), v∗(A \ c)

( ∑
i∈A\c

v∗(A \ c \ i)
)〉

+ 〈v(A \ c)2, v∗(A \ c)2〉
=−1+ 1= 0.

In the third case,〈
V
(
A : {c, d}), v∗(C)(∑

i∈C
v∗(C \ i)

)
+ v∗(C)2

〉

=
〈
v(A \ d)v(A \ c \ d), v∗(A \ d)

( ∑
i∈A\d

v∗(A \ d \ i)
)〉

+ 〈−v(A \ d)2, v∗(A \ d)2〉
= 1− 1= 0.

If h= 3, we note that〈
V
(
A : {c, d}), (∑

i /∈C
v∗(C ∪ i)v∗(C)

)
+ v∗(C)2

〉
= 0

unlessA \ c= C, A \ d = C, orA \ c \ d = C. In the first case,〈
V
(
A : {c, d}), (∑

i /∈C
v∗(C ∪ i)v∗(C)

)
+ v∗(C)2

〉

=
〈
−v(A)v(A \ c),

∑
i /∈A\c

v∗(A∪ i \ c)v∗(A \ c)
〉

+ 〈v(A \ c)2, v∗(A \ c)2〉
=−1+ 1= 0.

In the second case,〈
V
(
A : {c, d}), (∑

i /∈C
v∗(C ∪ i)v∗(C)

)
+ v∗(C)2

〉

=
〈
v(A)v(A \ d),

∑
i /∈A\d

v∗(A∪ i \ d)v∗(A \ d)
〉

+ 〈−v(A \ d)2, v∗(A \ d)2〉
= 1− 1= 0.

In the third case,
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〈
V
(
A : {c, d}), (∑

i /∈C
v∗(C ∪ i)v∗(C)

)
+ v∗(C)2

〉

=
〈
v(A \ d)v(A \ c \ d)− v(A \ c)v(A \ c \ d),
∑

i /∈A\c\d
v∗(A∪ i \ c \ d)v∗(A \ c \ d)

〉
= 0.

We will now use downward induction onl to show that(S1 ∪ S2 ∪ S3 ∪ S4) ∩
T (V ∗)(l) spansQ⊥ ∩ T (V ∗)(l) for all l � 0. Note that, sinceT (V ∗)= T (V ∗)(0),
this will complete the proof of the lemma. NowQ⊥ is contained inT (V ∗)2
andT (V ∗)2 ∩ T (V ∗)(2n+1) = (0), so the result holds forl = 2n + 1. Assume
the result holds wheneverl > m and letu ∈ Q⊥ ∩ T (V ∗)(m). Suppose thatm
is even. Then by subtracting an element in the span ofS1 we may assume that
u ∈∑|C|=m/2aCv

∗(C)2+ T (V ∗)(m+1) for some scalarsaC . Then by subtracting
an element in the span ofS3 ∪ S4 we may assume thatu ∈ T (V ∗)(m+1). Hence
the induction assumption gives our result in this case. Now suppose thatm is odd.
Then by subtracting an element in the span ofS1 we may assume that

u ∈
∑

|C|=(m+1)/2, i∈C
bC,iv

∗(C)v∗(C \ i)+ T (V ∗)(m+1)

for some scalarsbC,i. Since 0= 〈V(C : {c, d}), u〉 for all C with |C| = (m+ 1)/2
we see thatbC,c = bC,d for all c, d ∈ C. Then by subtracting an element in the
span ofS2 we may assume thatu ∈ T (V ∗)(m+1). Hence the induction assumption
gives our result in this case and the proof of the lemma is complete.✷

6. A basis for Q!
n

Let B = {b1, . . . , bk} ⊆ A⊆ {1, . . . , n} with b1 > · · ·> bk. DefineS(A : B) ∈
Q!n by

S(A : B)= s(A)s(A \ b1) . . . s(A \ b1 . . . \ bk).
Let minA denote the smallest element ofA. Define

S = {S(A : B) ∣∣ B ⊆A⊆ {1, . . . , n}, minA /∈ B
}
,

$S(A : B)= S(A : B)+Q!n,(1+(|B|+1)(2|A|−|B|)/2),

and

$S = {$S(A : B) ∣∣ B ⊆A⊆ {1, . . . , n}, minA /∈ B
}
.

Lemma 6.1. $S ∪ {s̄(∅)} spansgrQ!n andS ∪ {s(∅)} spansQ!n.
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Proof. It is sufficient to show the first assertion. We know that{s̄(A) | ∅ �=
A ⊆ {1, . . . , n}} generates grQ!n. Since the setsS1, S3, and S4 are contained
in Q⊥, we see that̄s(A)s̄(B)= 0 unlessB ⊂ A and|B| = |A| − 1. Furthermore,
since the setS2 is contained inQ⊥, we haves̄(A)(

∑
i∈A s̄(A \ i)) = 0 for all

A⊆ {1, . . . , n}, |A|� 2. Then if i, j ∈A⊆ {1, . . . , n} we have

s̄(A)s̄(A \ i)s̄(A \ i \ j) = −s̄(A)
( ∑

l∈A, l �=i
s̄(A \ l)

)
s̄(A \ i \ j)

= −s̄(A)s̄(A \ j)s̄(A \ i \ j).
The lemma is then immediate.✷
Lemma 6.2. LetB = {b1, . . . , bk} ⊆ A⊆ {1, . . . , n}with b1 > · · ·> bk andk > 2.
Then, for0 �m � k − 3,〈 ∑

σ∈Sym(B)

sgn(σ )σ
{
v(A \ b1) . . .v(A \ b1 . . . \ bk−1)

}
,

V ∗mQ⊥V ∗k−m−3
〉
= 0.

Proof. If k = 3 then∑
σ∈Sym(B)

sgn(σ )σ
{
v(A \ b1) . . . v(A \ b1 . . . \ bk−1)

}
= V

(
A : {b1, b2}

)+ V
(
A : {b2, b3}

)+ V
(
A : {b3, b1}

) ∈Q,

so the result holds. Now assume thatk > 3 and that the result holds fork − 1.
Then it is sufficient to show that〈 ∑

σ∈Sym(B)

sgn(σ )σ
{
v(A \ b1) . . .v(A \ b1 . . . \ bk−1)

}
,

v∗(A \ b1)V
∗m−1Q⊥V ∗k−m−3

〉
= 0

wheneverm> 0 and that〈 ∑
σ∈Sym(B)

sgn(σ )σ
{
v(A \ b1) . . .v(A \ b1 . . . \ bk−1)

}
,

Q⊥V ∗k−4v∗(A \ b1 \ . . . \ bk−1)

〉
= 0.

Both of these are immediate from the induction assumption.✷
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Lemma 6.3. LetB ⊆A⊆ {1, . . . , n} and|B| = k � 2. Then

V(A : B) ∈
k−2⋂
m=0

V mQV k−m−2.

Proof. It is enough to show that〈V(A : B),V ∗mQ⊥V ∗k−m−2〉 = 0 for all m,
0 � m � k − 2. This is immediate ifk = 2. We will proceed by induction
on k. Thus we assumek > 2 and that the assertion is true fork − 1. Now
if m > 0 thenV ∗mQ⊥V ∗k−m−2 =∑C⊆{1,...,n} v∗(C)V ∗m−1Q⊥V ∗k−m−2. Now

v∗(C)V ∗m−1Q⊥V ∗k−m−2 is orthogonal toV(A : B) unlessA⊇ C ⊇ A \ B and
|C| = |A| or |A| − 1. But if |C| = |A| thenv∗(C)V ∗m−1Q⊥V ∗k−m−2 is orthog-
onal toV(A : B) by Lemma 6.2 and if|C| = |A| − 1, the induction assumption
yields the same result. Thus, the assertion holds ifm > 0. Form = 0 we must
considerQ⊥V ∗k−2 =∑C⊆{1,...,n}Q⊥V ∗k−3v∗(C). Now, Q⊥V ∗k−3v∗(C) is or-
thogonal toV(A : B) unlessA⊇ C ⊇A \B and|C| = |A|− |B| or |A|− |B|+1.
If |C| = |A| − |B| thenQ⊥V ∗k−3v∗(C) is orthogonal toV(A : B) by Lemma 6.2
and if |C| = |A| − |B| + 1 the induction assumption yields the same result. This
completes the proof of the lemma.✷

Let V denote the span of{V(A : B) | B ⊆ A⊆ {1, . . . , n}}. The lemma shows
that V is orthogonal to〈Q⊥〉 and so, the pairing ofT (V ) andT (V ∗) induces
a pairing ofV andQ!n.

Proposition 6.4. S is a basis forQ!n.

Proof. Suppose minA /∈B ⊆A⊆ {1, . . . , n}. Then〈
V
(
A : B ∪ {minA}), S(A : B)〉= 1

and 〈
V(C,D),S(A : B)〉= 0

if |C| < |A| or if |C| = |A| andC �= A or if minA ∈ D andD �= B. It is then
easy to see thatS is linearly independent. In view of Lemma 6.3, this proves the
proposition. ✷
Corollary 6.5. grQ!n is presented by generators{v∗(A) | ∅ �=A⊆ {1, . . . , n}} and
relations$S1 ∪$S2 ∪$S3 where

$S1=
{
v∗(A)v∗(B) | B �⊆A or |B| �= |A|, |A| − 1

}
,

$S2=
{
v∗(C)

∑
i∈C

v∗(C \ i)
∣∣∣ |C|� 2

}
,

$S3=
{
v∗(C)2

∣∣ ∅ �= C ⊆ {1, . . . , n}}.
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7. Proof of Theorem 2

Clearly if i > 0 thenS ∩Q!n,i is a basis forQ!n,i . Thus, fori > 0, dimQ!n,i is

equal to|S ∩Q!n,i |. This is the same as|{S(A : B) ∈ S | |B| = i − 1}|. Now∣∣∣{S(A : B) ∈ S
∣∣ |B| = i − 1 and|A| = u

}∣∣∣= (n
u

)(
u− 1

i − 1

)
.

Thus

H
(
Q!n, t

) = 1+
∑
i>0

(
n∑

u=i

(
n

u

)(
u− 1

i − 1

))
t i

= 1+ t
∑
i>0

(
n∑

u=i

(
n

u

)(
u− 1

i − 1

))
t i−1

= 1+ t

n−1∑
v=0

(
n∑

u=v+1

(
n

u

)(
u− 1

v

))
tv

= 1+ t

n∑
u=1

u−1∑
v=0

(
n

u

)(
u− 1

v

)
tv

= 1+ t

n∑
u=1

(
n

u

) u−1∑
v=0

(
u− 1

v

)
tv

= 1+ t

n∑
u=1

(
n

u

)
(t + 1)u−1

= 1+ t

t + 1

n∑
u=1

(
n

u

)
(t + 1)u

= 1+ t

t + 1

(
(2+ t)n − 1

)= 1

t + 1

(
t + 1+ t (2+ t)n − t

)
= 1

t + 1

(
1+ t (2+ t)n

)
.

This completes the proof of Theorem 2.
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