Hilbert series of quadratic algebras associated with pseudo-roots of noncommutative polynomials

Israel Gelfand, ${ }^{\text {a }}$ Sergei Gelfand,,${ }^{\mathrm{b}, \mathrm{c}}$ Vladimir Retakh, ${ }^{\text {a, }}{ }^{\text {, }}$ Shirlei Serconek, ${ }^{\text {d }}$ and Robert Lee Wilson ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019, USA
${ }^{\text {b }}$ American Mathematical Society, PO Box 6248, Providence, RI 02940, USA
${ }^{\text {c }}$ Institute for Problems of Information Transmission, 19, Ermolova str., Moscow, 103051, Russia
${ }^{\text {d }}$ IME-UFG CX Postal 131 Goiania - GO CEP 74001-970 Brazil

Received 12 September 2001
Communicated by Efim Zelmanov

Abstract

The quadratic algebras Q_{n} are associated with pseudo-roots of noncommutative polynomials. We compute the Hilbert series of the algebras Q_{n} and of the dual algebras $Q_{n}^{!}$. © 2002 Elsevier Science (USA). All rights reserved.

Introduction

Let $P(x)=x^{n}-a_{1} x^{n-1}+\cdots+(-1)^{n} a_{n}$ be a polynomial over a ring R. Two classical problems concern the polynomial $P(x)$: investigation of the solutions of the equation $P(x)=0$ and the decomposition of $P(x)$ into a product of irreducible polynomials.

[^0]In the commutative case relations between these two problems are well known: when R is a commutative division algebra, x is a central variable, and the equation $P(x)=0$ has roots x_{1}, \ldots, x_{n}, then

$$
\begin{equation*}
P(x)=\left(x-x_{n}\right) \ldots\left(x-x_{2}\right)\left(x-x_{1}\right) . \tag{0.1}
\end{equation*}
$$

In noncommutative case relations between the two problems are highly nontrivial. They were investigated by Ore [11] and others. ([10] is a good source for references; see also the book [3] where matrix polynomials are considered.) More recently, some of the present authors have obtained results [6,7,15] which are important for the present work. For a division algebra R, I. Gelfand and V. Retakh [6-8] studied connections between the coefficients of $P(x)$ and a generic set of solutions x_{1}, \ldots, x_{n} of the equation $P(x)=0$. They showed that for any ordering $I=\left(i_{1}, \ldots, i_{n}\right)$ of $\{1, \ldots, n\}$ one can construct elements y_{k}, $k=1, \ldots, n$, depending on $x_{i_{1}}, \ldots, x_{i_{k}}$ such that

$$
\begin{align*}
a_{1} & =y_{1}+y_{2}+\cdots+y_{n}, \\
a_{2} & =\sum_{i<j} y_{j} y_{i}, \\
& \vdots \\
a_{n} & =y_{n} \ldots y_{2} y_{1} . \tag{0.2}
\end{align*}
$$

These formulas are equivalent to the decomposition

$$
\begin{equation*}
P(t)=\left(t-y_{n}\right) \ldots\left(t-y_{2}\right)\left(t-y_{1}\right) \tag{0.3}
\end{equation*}
$$

where t is a central variable. Formula (0.3) can be viewed as a noncommutative analog of formula (0.1). A decomposition of $P(x)$ for a noncommutative variable x is more complicated (see [7]).

The element y_{k}, which is defined to be the conjugate of $x_{i_{k}}$ by a Vandermonde quasideterminant involving $x_{i_{1}}, \ldots, x_{i_{k}}$, is a rational function in $x_{i_{1}}, \ldots, x_{i_{k}}$; it is symmetric in $x_{i_{1}}, \ldots, x_{i_{k-1}}$. (Quasideterminants were introduced and studied in $[4,5,8]$. We do not need the explicit formula for y_{k} here.) It was shown in [15] that the polynomials in y_{k} for a fixed ordering I which are symmetric in x_{l} can be written as polynomials in the symmetric functions a_{1}, \ldots, a_{n} given by formulas (0.2). Thus these are the natural noncommutative symmetric functions.

It is convenient for our purposes to use the notation $y_{k}=x_{A_{k}, i_{k}}$ where $A_{k}=\left\{i_{1}, \ldots, i_{k-1}\right\}$ for $k=2, \ldots, n, A_{1}=\emptyset$. In the generic case there are n ! decompositions of type (0.3). Such decompositions are given by products of linear polynomials $t-x_{A, i}$ where $A \subset\{1, \ldots, n\}, i \in\{1, \ldots, n\}, i \notin A$. It is natural to call the elements $x_{A, i}$ pseudo-roots of the polynomial $P(x)$. Note that elements $x_{\emptyset, i}=x_{i}, i=1, \ldots, n$, are roots of the polynomial $P(x)$.

In [9] I. Gelfand, V. Retakh, and R. Wilson introduced the algebra Q_{n} of all pseudo-roots of a generic noncommutative polynomial. It is defined by generators
$x_{A, i}, A \subset\{1, \ldots, n\}, i \in\{1, \ldots, n\}, i \notin A$, and relations

$$
\begin{align*}
& x_{A \cup i, j}+x_{A, i}-x_{A \cup j, i}-x_{A, j}, \tag{0.4a}\\
& x_{A \cup i, j} \cdot x_{A, i}-x_{A \cup j, i} \cdot x_{A, j}, \quad i, j \in\{1, \ldots, n\} \backslash A . \tag{0.4b}
\end{align*}
$$

In [9] a natural homomorphism e of Q_{n} into the free skew field generated by x_{1}, \ldots, x_{n} was constructed. We believe that the map e is an embedding.

We consider the algebra Q_{n} as a universal algebra of pseudo-roots of a noncommutative polynomial of degree n. Our philosophy is the following: the algebraic operations of addition, subtraction and multiplication are cheap, but the operation of division is expensive. For our problem we cannot use the "cheap" free associative algebra generated by x_{1}, \ldots, x_{n}, but to use the gigantic free skew field is too expensive. So, we suggest to use an "affordable intermediate" algebra Q_{n}.

Relations (0.4) show (see [9]) that we may define a linearly independent set of generators

$$
r_{A}=x_{A \backslash\left\{a_{1}\right\}, a_{1}}+x_{A \backslash\left\{a_{1}, a_{2}\right\}, a_{2}}+\cdots+x_{\emptyset, a_{k}}
$$

for all nonempty $A=\left\{a_{1}, \ldots, a_{k}\right\} \subseteq\{1, \ldots, n\}$. These generators satisfy the quadratic relations

$$
\begin{aligned}
& \{r(A)(r(A \backslash\{i\})-r(A \backslash\{j\}))+(r(A \backslash\{i\})-r(A \backslash\{j\})) r(A \backslash\{i, j\}) \\
& \left.\quad-r(A \backslash\{i\})^{2}+r(A \backslash\{j\})^{2} \mid i, j \in A \subseteq\{1, \ldots, n\}\right\}
\end{aligned}
$$

Another linearly independent set of generators in $Q_{n},\left\{u_{A} \mid \emptyset \neq A \subseteq\right.$ $\{1, \ldots, n\}\}$, supersymmetric to $\left\{r_{A} \mid \emptyset \neq A \subseteq\{1, \ldots, n\}\right\}$, was used in [2] for a construction of noncommutative algebras related to simplicial complexes.

As a quadratic algebra Q_{n} has a dual quadratic algebra $Q_{n}^{!}$, see [14]. A study of this algebra is of an independent interest. In Section 5 we describe generators and relations for the algebra $Q_{n}^{!}$.

In this paper we compute the Hilbert series of the quadratic algebras Q_{n} and $Q_{n}^{!}$. Recall that if $W=\sum_{i \geqslant 0} W_{i}$ is a graded vector space with dim W_{i} finite for all i then the Hilbert series of W is defined by

$$
H(W, t)=\sum_{i \geqslant 0}\left(\operatorname{dim} W_{i}\right) t^{i}
$$

Any quadratic algebra A has a natural graded structure $A=\sum_{i \geqslant 0} A_{i}$ where A_{i} is the span of all products of i generators. If A is finitely generated then the subspaces A_{i} are finite-dimensional and the Hilbert series $H(A, t)$ of A is defined. Note that the Hilbert series $H\left(A^{!}, t\right)$ is also defined for the dual algebra $A^{!}$.

Recall that if A and $A^{!}$are Koszul algebras then $H(A, t) H\left(A^{!},-t\right)=1$ (see [14]). The converse is not true but the counter-examples are rather superficial (see [12,13]).

The following two theorems, which are the main results of this paper, show that the quadratic algebras Q_{n} satisfy this necessary condition for the Koszulity of Q_{n}.

Theorem 1. $H\left(Q_{n}, t\right)=\frac{1-t}{1-t(2-t)^{n}}$.
Theorem 2. $H\left(Q_{n}^{!}, t\right)=\frac{1+t(2+t)^{n}}{1+t}$.
In the course of proving Theorem 1 we develop results (cf. Lemma 4.4) which describe the structure of Q_{n} in terms of Q_{n-1}. These results appear to be of independent interest. We use these results to compute (Corollary 4.9) the Hilbert series of Q_{n} in terms of the Hilbert series of Q_{n-1}. While proving Theorem 2 we determine (Proposition 6.4) a basis for the dual algebra $Q_{n}^{!}$.

We begin, in Section 1, by recalling, from [9], the construction of Q_{n} (as a quotient of the tensor algebra $T(V)$ for an appropriate vector space V) and developing notation for certain important elements of $T(V)$. We also note that Q_{n} has a natural filtration. In Section 2 we study the associated graded algebra gr Q_{n}, obtaining a presentation for gr Q_{n}. In view of the basis theorem for Q_{n} (in [9]) it is easy to determine a basis for gr Q_{n}. We next, in Section 3, define certain important subalgebras of Q_{n} which we denote $Q_{n}(1)$ and $Q_{n}(\hat{1})$. We show that the structures of these algebras are closely related to the structure of Q_{n-1}. In Section 4 we use these facts to prove Theorem 1 by induction on n. We then begin the study of the dual algebra $Q_{n}^{!}$, recalling generalities about the algebra and finding the space of defining relations in Section 5 and constructing a basis for $Q_{n}^{!}$in Section 6. The proof of Theorem 2, contained in Section 7, is then straightforward.

1. Generalities about Q_{n}

The quadratic algebra Q_{n} is defined in [9]. Here we recall one presentation of Q_{n} and develop some notation. Let V denote the vector space over a field F with basis $\{v(A) \mid \emptyset \neq A \subseteq\{1, \ldots, n\}\}$ and $T(V)$ denote the tensor algebra on V. The symmetric group on $\{1, \ldots, n\}$ acts on V by $\sigma(v(A))=v(\sigma(A))$ and hence also acts on $T(V)$.

Note that

$$
T(V)=\sum_{i \geqslant 0} T(V)_{i}
$$

where

$$
T(V)_{i}=\operatorname{span}\left\{v\left(A_{1}\right) \ldots v\left(A_{i}\right) \mid \emptyset \neq A_{1}, \ldots, A_{i} \subseteq\{1, \ldots, n\}\right\}
$$

is a graded algebra. Each $T(V)_{i}$ is finite-dimensional.

Also, defining

$$
T(V)_{(j)}=\operatorname{span}\left\{v\left(A_{1}\right) \ldots v\left(A_{i}\right)\left|i \geqslant 0,\left|A_{1}\right|+\cdots+\left|A_{i}\right| \leqslant j\right\}\right.
$$

gives an increasing filtration

$$
F .1=T(V)_{(0)} \subset T(V)_{(1)} \subset \cdots
$$

of $T(V)$.
Note that

$$
T(V)_{(j)}=\sum_{i \geqslant 0} T(V)_{i} \cap T(V)_{(j)}
$$

Let $\emptyset \neq B \subseteq A \subseteq\{1, \ldots, n\}$ and write $B=\left\{b_{1}, \ldots, b_{k}\right\}$ where $b_{1}>b_{2}>$ $\cdots>b_{k}$. Let $\operatorname{Sym}(B)$ denote the group of all permutations of B. When convenient we will write $A \backslash b_{1} \ldots \backslash b_{k}$ in place of $A \backslash\left\{b_{1}, \ldots, b_{k}\right\}$. Define $\mathcal{V}(A: B)$ to be

$$
\begin{aligned}
& \sum_{\sigma \in \operatorname{Sym}(B)} \operatorname{sgn}(\sigma) \sigma\left\{v(A) v\left(A \backslash b_{1}\right) v\left(A \backslash b_{1} \backslash b_{2}\right) \ldots v\left(A \backslash b_{1} \ldots \backslash b_{k-1}\right)\right. \\
& +\sum_{u=1}^{k-1}(-1)^{u}\left\{v\left(A \backslash b_{1}\right) \ldots v\left(A \backslash b_{1} \ldots \backslash b_{u-1}\right) v\left(A \backslash b_{1} \ldots \backslash b_{u}\right)^{2}\right. \\
& \left.\times v\left(A \backslash b_{1} \ldots \backslash b_{u+1}\right) \ldots v\left(A \backslash b_{1} \ldots \backslash b_{k-1}\right)\right\} \\
& \left.+(-1)^{k} v\left(A \backslash b_{1}\right) \ldots v\left(A \backslash b_{1} \ldots \backslash b_{k}\right)\right\}
\end{aligned}
$$

Let $\mathcal{Q}=\operatorname{span}\{\mathcal{V}(A: B)|B \subseteq A \subseteq\{1, \ldots, n\},|B|=2\}$ and let $\langle\mathcal{Q}\rangle$ denote the ideal in $T(V)$ generated by \mathcal{Q}. Denote the quotient $T(V) /\langle\mathcal{Q}\rangle$ by Q_{n}. Since $\mathcal{Q} \subseteq T(V)_{2}, Q_{n}$ is a quadratic algebra. Q_{n} is, of course, graded:

$$
Q_{n}=\sum_{i \geqslant 0} Q_{n, i}, \quad \text { where } Q_{n, i}=\left(T(V)_{i}+\langle\mathcal{Q}\rangle\right) /\langle\mathcal{Q}\rangle
$$

Defining

$$
Q_{n,(j)}=\left(T(V)_{(j)}+\langle\mathcal{Q}\rangle\right) /\langle\mathcal{Q}\rangle
$$

gives an increasing filtration

$$
F .1=Q_{n,(0)} \subset Q_{n,(1)} \subset \cdots
$$

of Q_{n}. Note that

$$
Q_{n,(j)}=\sum_{i \geqslant 0} Q_{n, i} \cap Q_{n,(j)} .
$$

Let $r(A)$ denote $v(A)+\langle\mathcal{Q}\rangle$ and $\mathcal{R}(A: B)$ denote $\mathcal{V}(A: B)+\langle\mathcal{Q}\rangle$.
Note that if $|B|=2$ then $\mathcal{R}(A: B)=0\left(\right.$ in $\left.Q_{n}\right)$.

2. The associated graded algebra gr $Q_{\boldsymbol{n}}$

Let $\mathcal{X}=\operatorname{span}\{v(A)(v(A \backslash i)-v(A \backslash j)) \mid i, j \in A \subseteq\{1, \ldots, n\}\}$.

$$
X_{n}=(T(V)+\langle\mathcal{X}\rangle) /\langle\mathcal{X}\rangle
$$

Let $x(A)$ denote $v(A)+\langle\mathcal{X}\rangle$.
Note that X_{n} is graded

$$
X_{n}=\sum_{i \geqslant 0} X_{n, i}, \quad \text { where } X_{n, i}=\left(T(V)_{i}+\langle\mathcal{X}\rangle\right) /\langle\mathcal{X}\rangle
$$

and has an increasing filtration

$$
F .1=X_{n,(0)} \subset X_{n,(1)} \subset \cdots \quad \text { where } X_{n,(j)}=\left(T(V)_{(j)}+\langle\mathcal{X}\rangle\right) /\langle\mathcal{X}\rangle
$$

A string is a finite sequence $\mathcal{B}=\left(B_{1}, \ldots, B_{l}\right)$ of nonempty subsets of $\{1, \ldots, n\}$. We call $l=l(\mathcal{B})$ the length of \mathcal{B} and $|\mathcal{B}|=\sum_{i=1}^{l}\left|B_{i}\right|$ the degree of \mathcal{B}. Let S denote the set of all strings. If $\mathcal{B}=\left(B_{1}, \ldots, B_{l}\right)$ and $\mathcal{C}=\left(C_{1}, \ldots, C_{m}\right) \in S$ define $\mathcal{B C}=\left(B_{1}, \ldots, B_{l}, C_{1}, \ldots, C_{m}\right)$ and $x(\mathcal{B})=x\left(B_{1}\right) \ldots x\left(B_{l}\right)$. For any set $W \subseteq S$ of strings we will denote $\{x(\mathcal{B}) \mid \mathcal{B} \in W\}$ by $x(W)$. Note that S contains the empty string \emptyset. Let $S^{\circ}=S \backslash\{\emptyset\}$. For any subset $U \subseteq S$ let $U^{\circ}=U \cap S^{\circ}$.

We recall from [9], the definition of $Y \subseteq S$. Let $\emptyset \neq A=\left\{a_{1}, \ldots, a_{l}\right\} \subseteq$ $\{1, \ldots, n\}$ where $a_{1}>a_{2}>\cdots>a_{l}$ and $j \leqslant|A|$. Then we write $(A: j)=$ ($A, A \backslash a_{1}, \ldots, A \backslash a_{1} \backslash \cdots \backslash a_{j-1}$), a string of length j.

Consider the following condition on a string $\left(A_{1}: j_{1}\right) \ldots\left(A_{s}: j_{s}\right) \in S$:

$$
\begin{equation*}
\text { if } \quad 2 \leqslant i \leqslant s \text { and } A_{i} \subseteq A_{i-1} \quad \text { then } \quad\left|A_{i}\right| \neq\left|A_{i-1}\right|-j_{i-1} . \tag{2.1}
\end{equation*}
$$

Let $Y=\left\{\left(A_{1}: j_{1}\right) \ldots\left(A_{s}: j_{s}\right) \in S \mid(2.1)\right.$ is satisfied $\}$. It is proved in [9] that $r(Y)$ is a basis for Q_{n}.

Suppose $\mathcal{B}=\left(B_{1}, \ldots, B_{l}\right)$ is a string. Recall, from [9], that we may define by induction a sequence of integers $n(\mathcal{B})=\left(n_{1}, n_{2}, \ldots, n_{t}\right), 1=n_{1}<n_{2}<\cdots<$ $n_{t}=l+1$, as follows:

- $n_{1}=1$,
- $n_{k+1}=\min \left(\left\{j>n_{k} \mid B_{j} \nsubseteq B_{n_{k}}\right.\right.$ or $\left.\left.\left|B_{j}\right| \neq\left|B_{n_{k}}\right|+n_{k}-j\right\} \cup\{l+1\}\right)$,
- and t is the smallest i such that $n_{i}=l+1$.

We call $n(\mathcal{B})$ the skeleton of \mathcal{B}.
Let $\mathcal{B}=\left(B_{1}, \ldots, B_{l}\right)$ be a string with skeleton $\left(n_{1}=1, n_{2}, \ldots, n_{t}=l+1\right)$.
Define \mathcal{B}^{\vee} to be the string $\left(B_{n_{1}}, n_{2}-n_{1}\right)\left(B_{n_{2}}, n_{3}-n_{2}\right) \ldots\left(B_{n_{t-1}}, n_{t}-n_{t-1}\right)$. Note that $l\left(\mathcal{B}^{\vee}\right)=l(\mathcal{B})$ and $\left|\mathcal{B}^{\vee}\right|=|\mathcal{B}|$.

Proposition 2.1. $x(\mathcal{B})=x\left(\mathcal{B}^{\vee}\right)$.
Proof. If $t=1$ then $l=0$ so $\mathcal{B}=\mathcal{B}^{\vee}$ is the empty string and $x(\mathcal{B})=x\left(\mathcal{B}^{\vee}\right)=1$. Assume $t=2$, so $\mathcal{B}^{\vee}=\left(B_{1}, l\right)$. We will proceed by induction on l. If $l=1$ then
$\mathcal{B}=\left(B_{1}\right)=\mathcal{B}^{\vee}$ so there is nothing to prove. If $l=2$, then $\mathcal{B}=\left(B_{1}, B_{1} \backslash i\right)$ for some i and $\mathcal{B}^{\vee}=\left(B_{1}, B_{1} \backslash j\right)$ for some j. Since $x\left(B_{1}\right) x\left(B_{1} \backslash i\right)=x\left(B_{1}\right) x\left(B_{1} \backslash j\right)$ by the defining relations, the result holds in this case.

Now assume $l>2$ and that the result holds for all $\mathcal{C}=\left(C_{1}, \ldots, C_{k}\right)$ with skeleton $(1, k+1)$ and $k<l$. We have $\mathcal{B}=\left(B_{1}, \ldots, B_{l-1}\right)\left(B_{l}\right)$ so $x(\mathcal{B})=$ $x\left(B_{1}, \ldots, B_{l-1}\right) x\left(B_{l}\right)$. Since the skeleton of $\left(B_{1}, \ldots, B_{l-1}\right)$ is $(1, l)$ the induction assumption applies and shows that $x\left(B_{1}, \ldots, B_{l-1}\right)=x\left(B_{1}, l-1\right)$. Let b denote the largest element of B_{1}. Then since $\left(B_{1}, l-1\right)=\left(B_{1}\right)\left(B_{1} \backslash b, l-2\right)$ we have $x(\mathcal{B})=x\left(B_{1}, \ldots, B_{l-1}\right) x\left(B_{l}\right)=x\left(B_{1}, l-1\right) x\left(B_{l}\right)=x\left(B_{1}\right) x\left(B_{1} \backslash b, l-2\right) x\left(B_{l}\right)$. If $b \notin B_{l}$ the induction assumption shows that this is $x\left(B_{1}\right) x\left(B_{1} \backslash b, l-1\right)=$ $x\left(B_{1}, l\right)$ as required. So we may assume $b \in B_{l}$ and then, since $\left|B_{l}\right|<\left|B_{1}\right|$, we may find $c \in B_{1}, c \neq b, c \notin B_{l}$. Then by the induction assumption $x\left(B_{1}, l-1\right)$ $x\left(B_{l}\right)=x\left(B_{1}\right) x\left(B_{1} \backslash c, l-2\right) x\left(B_{l}\right)$ and, again by the induction assumption, this is equal to $x\left(B_{1}\right) x\left(B_{1} \backslash c, l-1\right)$.

Write $\left(B_{1}\right)\left(B_{1} \backslash c, l-1\right)=\left(B_{1}, C_{2}, \ldots, C_{l}\right)$ and note that, as $l>2$, the largest element of B_{1} is not in C_{l}. Then by the previous case $x\left(B_{1}, C_{2}, \ldots, C_{l}\right)=$ $x\left(\left(B_{1}, C_{2}, \ldots, C_{l}\right)^{\vee}\right)$. But $x(\mathcal{B})=x\left(B_{1}, C_{2}, \ldots, C_{l}\right)$ and $\left(B_{1}, C_{2}, \ldots, C_{l}\right)^{\vee}=$ (B_{1}, l) proving the result in case $t=2$.

Finally, suppose $t>2$ and suppose $n(\mathcal{B})=\left(n_{1}, \ldots, n_{t}\right)$. We proceed by induction on t. Let $\mathcal{B}^{\prime}=\left(B_{1}, \ldots, B_{n_{2}-1}\right)$ and $\mathcal{B}^{\prime \prime}=\left(B_{n_{2}}, \ldots, B_{l}\right)$. Note that $n\left(\mathcal{B}^{\prime}\right)=\left(1, n_{2}\right)$ and $n\left(\mathcal{B}^{\prime \prime}\right)=\left(n_{2}, \ldots, n_{t}\right)$, and so, by induction, $x\left(\mathcal{B}^{\prime}\right)=x\left(\mathcal{B}^{\prime \vee}\right)$ and $x\left(\mathcal{B}^{\prime \prime}\right)=x\left(\mathcal{B}^{\prime \prime}\right)$. Then $x(\mathcal{B})=x\left(\mathcal{B}^{\prime}\right) x\left(\mathcal{B}^{\prime \prime}\right)=x\left(\mathcal{B}^{\prime \vee}\right) x\left(\mathcal{B}^{\prime \prime}\right)=x\left(\mathcal{B}^{\vee}\right)$, proving the proposition.

Let $\operatorname{gr} Q_{n}$ denote the associated graded algebra of Q_{n}. For any string \mathcal{B} let $\bar{r}(\mathcal{B})$ denote the element $r(\mathcal{B})+Q_{n,|\mathcal{B}|-1}$ of $\operatorname{gr} Q_{n}$.

For any set S of strings write $\bar{r}(S)=\{\bar{r}(\mathcal{B}) \mid \mathcal{B} \in S\}$.
Lemma 2.2. $\bar{r}(Y)$ is a basis for $\operatorname{gr} Q_{n}$.
Proof. This follows from the fact that $r(Y) \cap Q_{n, i}$ is a basis for $Q_{n, i}$ (Theorem 1.3.8 and Proposition 1.4.1 of [9]).

Corollary 2.3. The linear map $\phi: X_{n} \rightarrow \operatorname{gr} Q_{n}$ defined by $\phi(x(\mathcal{B}))=\bar{r}(\mathcal{B})$ is an isomorphism of algebras.

Proof. Since Q_{n} is generated by $\{r(A) \mid \emptyset \neq A \subseteq\{1, \ldots, n\}\}$, gr Q_{n} is generated by $\{\bar{r}(A) \mid \emptyset \neq A \subseteq\{1, \ldots, n\}\}$. If $i>j$

$$
\begin{aligned}
0= & \mathcal{R}(A:\{i, j\}) \\
= & r(A)(r(A \backslash i)-r(A \backslash j))+(r(A \backslash i)-r(A \backslash j)) r(A \backslash i \backslash j) \\
& -r(A \backslash i)^{2}+r(A \backslash j)^{2},
\end{aligned}
$$

we have

$$
r(A)(r(A \backslash i)-r(A \backslash j)) \in Q_{n, 2|A|-2}
$$

and so $\bar{r}(A)(\bar{r}(A \backslash i)-\bar{r}(A \backslash j))=0$ in gr Q_{n}. Consequently there is a homomorphism from X_{n} into gr Q_{n} that takes $x(A)$ into $\bar{r}(A)$. Since the generating set $\{\bar{r}(A) \mid \emptyset \neq A \subseteq\{1, \ldots, n\}\}$ is contained in the image of this map, the map is onto. Note that $Y=\left\{\mathcal{B} \mid \mathcal{B}=\mathcal{B}^{\vee}\right\}$. Thus by Proposition 2.1, X_{n} is spanned by $x(Y)$. Since the image of this set is the linearly independent set $\bar{r}(Y)$, the map is injective.

3. The subalgebras $Q_{n}(\mathbf{1})$ and $Q_{n}(\hat{\mathbf{1}})$

Let $Q_{n}(\hat{1})$ denote the subalgebra of Q_{n} generated by $\{r(A) \mid \emptyset \neq A \subseteq$ $\{2, \ldots, n\}$. Let

$$
\begin{aligned}
& S(1)=\left\{\mathcal{B}=\left(B_{1}, \ldots, B_{l}\right) \in S \mid 1 \in B_{i} \text { for all } i\right\} \\
& S(1)^{\dagger}=\left\{\mathcal{B}=\left(B_{1}, \ldots, B_{l}\right) \in S(1)| | B_{i} \mid>1 \text { for all } i\right\}, \text { and } \\
& S(\hat{1})=\left\{\mathcal{B}=\left(B_{1}, \ldots, B_{l}\right) \in S \mid B_{1}, \ldots, B_{l} \subseteq\{2, \ldots, n\}\right\}
\end{aligned}
$$

Let $Y(1)=Y \cap S(1), Y(1)^{\dagger}=Y \cap S(1)^{\dagger}$, and $Y(\hat{1})=Y \cap S(\hat{1})$.
Let $Y_{(n-1)}$ denote $\left\{\left(B_{1}, \ldots, B_{l}\right) \in Y(1) \mid B_{1}, \ldots, B_{l} \subseteq\{1, \ldots, n-1\}\right\}$.
Lemma 3.1. Q_{n-1} is isomorphic to $Q_{n}(\hat{1})$.
Proof. For any subset $A \subseteq\{1, \ldots, n-1\}$, let $A+1$ denote $\{a+1 \mid a \in A\}$, a subset of $\{2, \ldots, n\}$. Clearly there is a homomorphism from Q_{n-1} into $Q_{n}(\hat{1})$ that takes $r(A)$ into $r(A+1)$. This map is injective since the " $r(Y)$-basis" for Q_{n-1} maps into a subset of $r(Y) \subseteq Q_{n}$. Since the generators for $Q_{n}(\hat{1})$ are contained in the image of this map, it is onto.

Corollary 3.2. $Y(\hat{1})$ is a basis for $Q_{n}(\hat{1})$.
Let $Q_{n}(1)$ denote the subalgebra of Q_{n} generated by $\{r(A) \mid 1 \in A \subseteq$ $\{1, \ldots, n\}\}$.

Lemma 3.3. The map from $\operatorname{gr} Q_{n}(\hat{1})$ into $\operatorname{gr} Q_{n}(1)$ that takes $\bar{r}(A)$ into $\bar{r}(A \cup\{1\})$ is an injective homomorphism and $\bar{r}\left(Y(1)^{\dagger}\right)$ is a basis for the image.

Proof. gr $Q_{n}(\hat{1})$ has generators $\{\bar{r}(A) \mid \emptyset \neq A \subseteq\{2, \ldots, n\}\}$ and relations $\{\bar{r}(A)(\bar{r}(A \backslash i)-\bar{r}(A \backslash j)) \mid i, j \in A \subseteq\{2, \ldots, n\}\}$. Since

$$
\bar{r}(A \cup\{1\})(\bar{r}(A \backslash i \cup\{1\})-\bar{r}(A \backslash j \cup\{1\}))=0 \quad \text { in } \operatorname{gr} Q_{n}(1),
$$

the required homomorphism exists. Since the homomorphism maps $\bar{r}(Y(\hat{1}))$ injectively to $\bar{r}\left(Y(1)^{\dagger}\right)$, a subset of $\bar{r}(Y)$, the homomorphism is injective and $\bar{r}\left(Y(1)^{\dagger}\right)$ is a basis for the image.

Lemma 3.4. (a) $\bar{r}(Y(1))$ is a basis for $\mathrm{gr} Q_{n}(1)$.
(b) $r(Y(1))$ is a basis for $Q_{n}(1)$.

Proof. (a) Since $\bar{r}(Y(1)) \subseteq \bar{r}(Y)$ it is linearly independent. Hence it is sufficient to show that $\bar{r}(Y(1))$ spans $\operatorname{gr} Q_{n}(1)$. But $\operatorname{gr} Q_{n}(1)$ is spanned by the elements $\bar{r}(\mathcal{B})$ where $\mathcal{B}=\left(B_{1}, \ldots, B_{l}\right), 1 \in B_{1}, \ldots, B_{l}$. By Proposition $2.1 \bar{r}(\mathcal{B})=\bar{r}\left(\mathcal{B}^{\vee}\right)$ where $\left(n_{1}, \ldots, n_{t}\right)$ is the skeleton of \mathcal{B} and

$$
\mathcal{B}^{\vee}=\left(B_{n_{1}}, n_{2}-n_{1}\right)\left(B_{n_{2}}, n_{3}-n_{2}\right) \ldots\left(B_{n_{t-1}}, n_{t}-n_{t-1}\right) .
$$

Since $1 \in B_{j}$ for each $j, \mathcal{B}^{\vee} \in Y(1)$ giving the result.
Part (b) is immediate from (a).
If A and B are algebras, let $A * B$ denote the free product of A and B (cf. [1, Chapter 3, Section 5, Exercise 6]). Thus there exist homomorphisms $\alpha: A \rightarrow A * B$ and $\beta: B \rightarrow A * B$ such that if G is any associative algebra and $\mu: A \rightarrow G, v: B \rightarrow G$ are homomorphisms then there exists a unique homomorphism $\lambda: A * B \rightarrow G$ such that $\lambda \alpha=\mu$ and $\lambda \beta=\nu$. Furthermore, if A and B have identity element $1,\{1\} \cup \Gamma_{A}$ is a basis for A and $\{1\} \cup \Gamma_{B}$ is a basis for B then $A * B$ has a basis consisting of 1 and all products $g_{1} \ldots g_{m}$ or $g_{2} \ldots g_{m+1}$ where $n \geqslant 1$ and $g_{t} \in \alpha\left(\Gamma_{A}\right)$ if t is even and $g_{t} \in \beta\left(\Gamma_{B}\right)$ if t is odd.

Lemma 3.5. gr $Q_{n}(1)$ is isomorphic to $\operatorname{gr} Q_{n-1} * F[\bar{r}(1)]$.
Proof. Let $\alpha: \operatorname{gr} Q_{n-1} \rightarrow \operatorname{gr} Q_{n-1} * F[\bar{r}(1)]$ and $\beta: F[\bar{r}(1)] \rightarrow \operatorname{gr} Q_{n-1} * F[\bar{r}(1)]$ be the homomorphisms occurring in the definition of gr $Q_{n-1} * F[\bar{r}(1)]$.

If $\emptyset \neq A=\left\{a_{1}, \ldots, a_{k}\right\} \subseteq\{1, \ldots, n-1\}$ define

$$
\delta(A)=\left\{1,1+a_{1}, \ldots, 1+a_{k}\right\} .
$$

Then define a map $\mu:\{\bar{r}(A) \mid \emptyset \neq A \subseteq\{1, \ldots, n-1\}\} \rightarrow \operatorname{gr} Q_{n}(1)$ by

$$
\mu(\bar{r}(A))=\bar{r}(\delta(A)) .
$$

In view of Lemma 2.2, μ extends to a linear map

$$
\mu: \operatorname{gr} Q_{n-1} \rightarrow \operatorname{gr} Q_{n}(1)
$$

By Corollary 2.3, μ preserves the defining relations for $\mathrm{gr} Q_{n-1}$ and so is a homomorphism. Lemma 3.4 implies that μ is injective. Note that $\bar{r}(1) \in \operatorname{gr} Q_{n}(1)$ generates a subalgebra isomorphic to the polynomial algebra $F[\bar{r}(1)]$. Thus there is an injection

$$
\nu: F[\bar{r}(1)] \rightarrow \operatorname{gr} Q_{n}(1)
$$

Consequently there is a homomorphism

$$
\lambda: \operatorname{gr} Q_{n-1} * \Gamma[\bar{r}(1)] \rightarrow \operatorname{gr} Q_{n}(1)
$$

such that $\lambda \alpha=\mu$ and $\lambda \beta=v$. We claim that λ is an isomorphism.
Let \mathcal{T} denote the set of all strings $\mathcal{G}_{1} \ldots \mathcal{G}_{n}$ or $\mathcal{G}_{2} \ldots \mathcal{G}_{n+1}$ where $\mathcal{G}_{i}=\mathcal{B}_{i} \in$ $Y(1)^{\dagger}$ if i is odd and $\mathcal{G}_{i}=\{1\}^{j_{i}}$ if i is even. Note that $\mathcal{T} \subseteq S(1)$. Define

$$
\Phi: \mathcal{T} \rightarrow Y(1)
$$

by $\Phi(\mathcal{B})=\mathcal{B}^{\vee}$. Define $\Psi: Y(1) \rightarrow \mathcal{T}$ by $\Psi((A, j))=(A, j)$ if $j<|A|$, $\Psi((A, j))=(A, j-1)\{1\}$ if $j=|A|$, and

$$
\Psi\left(\left(A_{1}, j_{1}\right) \ldots\left(A_{s}, j_{s}\right)\right)=\Psi\left(\left(A_{1}, j_{1}\right)\right) \ldots \Psi\left(\left(A_{s}, j_{s}\right)\right)
$$

if $\left(A_{1}, j_{1}\right) \ldots\left(A_{s}, j_{s}\right)$ satisfies (2.1). Then Φ and Ψ are inverse mappings.
Let $\gamma_{i}=\alpha$ if i is odd and $\gamma_{i}=\beta$ if i is even. Then $\operatorname{gr} Q_{n-1} * F[\bar{r}(1)]$ has basis consisting of 1 and all products $\gamma_{1} \bar{r}\left(\mathcal{H}_{1}\right) \ldots \gamma_{m} \bar{r}\left(\mathcal{H}_{m}\right)$ or $\gamma_{2} \bar{r}\left(\mathcal{H}_{2}\right) \ldots \gamma_{m} \bar{r}\left(\mathcal{H}_{m+1}\right)$ where $\mathcal{H}_{i} \in Y_{(n-1)}$ if i is odd and $\mathcal{H}_{i}=\{1\}^{j_{i}}$ if i is even. Then

$$
\begin{aligned}
\lambda\left(\gamma_{1} \bar{r}\left(\mathcal{H}_{1}\right) \ldots \gamma_{m} \bar{r}\left(\mathcal{H}_{m}\right)\right) & =\bar{r}\left(\delta\left(\mathcal{H}_{1}\right) \bar{r}\left(\mathcal{H}_{2}\right) \ldots\right)=\bar{r}\left(\delta\left(\mathcal{H}_{1}\right) \mathcal{H}_{2} \ldots\right) \\
& =\bar{r}\left(\left(\delta\left(\mathcal{H}_{1}\right) \mathcal{H}_{2} \ldots\right)^{\vee}\right)
\end{aligned}
$$

and $\delta\left(\mathcal{H}_{1}\right) \mathcal{H}_{2} \ldots \in \mathcal{T}$. Also, $\lambda\left(\gamma_{2} \bar{r}\left(\mathcal{H}_{2}\right) \ldots \gamma_{m+1} \bar{r}\left(\mathcal{H}_{m+1}\right)=\bar{r}\left(\mathcal{H}_{2} \delta\left(\mathcal{H}_{3}\right) \ldots\right)=\right.$ $\left.\bar{r}\left(\mathcal{H}_{2} \delta\left(\mathcal{H}_{3}\right) \ldots\right)^{\vee}\right)$ and $\mathcal{H}_{2} \delta\left(\mathcal{H}_{3}\right) \ldots \in \mathcal{T}$. Every element of \mathcal{T} arises in this way. Since $\Phi: \mathcal{T} \rightarrow Y(1)$ is a bijection, we see that λ maps a basis of gr $Q_{n-1} * F[\bar{r}(1)]$ bijectively onto the basis $\bar{r}(Y(1))$ of $\operatorname{gr} Q_{n}(1)$, proving the lemma.

4. Proof of Theorem 1

Let $\theta: S \times S \rightarrow S$ be defined by

$$
\theta\left(\left(B_{1}, \ldots, B_{l}\right),\left(C_{1}, \ldots, C_{k}\right)\right)=\left(B_{1}, \ldots, B_{l}, C_{1}, \ldots, C_{k}\right)
$$

Lemma 4.1. If $\mathcal{B}=\left(B_{1}, \ldots, B_{l}\right), \mathcal{C}=\left(C_{1}, \ldots, C_{k}\right) \in Y, 1 \notin B_{l}$ and $1 \in C_{1}$, then $\mathcal{B C} \in Y$.

Proof. Since $\mathcal{B} \in Y$ we may write $\mathcal{B}=\left(A_{1}, j_{1}\right) \ldots\left(A_{s}, j_{s}\right)$ where (2.1) is satisfied. Since $1 \notin B_{l}$ we have $1 \notin A_{s}$. Similarly since $\mathcal{C} \in Y$ we may write $\mathcal{C}=\left(D_{1}, m_{1}\right) \ldots\left(D_{t}, m_{t}\right)$ where condition (2.1) holds. Since $1 \in C_{1}$ we have $1 \in D_{1}$. Then $\mathcal{B C}=\left(A_{1}, j_{1}\right) \ldots\left(A_{s}, j_{s}\right)\left(D_{1}, m_{1}\right) \ldots\left(D_{t}, m_{t}\right)$. Since (2.1) holds for \mathcal{B} and \mathcal{C}, and since $D_{1} \nsubseteq A_{s}$ (for $1 \in D_{1}, 1 \notin A_{s}$), (2.1) is satisfied for $\mathcal{B C}$ and so $\mathcal{B C} \in Y$.

Let $\mathcal{B}=\left(B_{1}, \ldots, B_{l}\right) \in S$. Define $A(\mathcal{B})=\left\{i \mid 1 \leqslant i \leqslant l-1,1 \in B_{i}, 1 \notin B_{i+1}\right\}$ and $a(\mathcal{B})=|A(\mathcal{B})|$. Set $S_{\{i\}}=\{\mathcal{B} \in S \mid a(\mathcal{B})=i\}$. Then S is equal to the disjoint union $\bigcup_{i \geqslant 0} S_{\{i\}}$.

Lemma 4.2. $\left(S S(1)^{\circ} \cap S_{\{0\}}\right) \times\left(S(\hat{1})^{\circ} S \cap S_{\{i\}}\right)$ injects into $S_{\{i+1\}}$.
Proof. Let $\mathcal{B}=\left(B_{1}, \ldots, B_{l}\right) \in S_{\{i+1\}}$. There are $l+1$ pairs in $S \times S$ which θ maps to \mathcal{B}, namely $\left(B_{1}, \ldots, B_{j}\right) \times\left(B_{j+1}, \ldots, B_{l}\right)$ for $0 \leqslant j \leqslant l$. Now $\left(B_{1}, \ldots, B_{j}\right) \in S_{\{0\}}$ implies $j \leqslant \min A(\mathcal{B})$ while $\left(B_{1}, \ldots, B_{j}\right) \in S S(1)^{\circ}$ and $\left(B_{j+1}, \ldots, B_{l}\right) \in S(\hat{1})^{\circ} S$ implies $j \in A(\mathcal{B})$ and the lemma follows.

Let $L(1)=S(1)^{\circ} \times S(\hat{1})^{\circ}$, and $L(i+1)=L(1) \times L(i), i \geqslant 1$.
Corollary 4.3. $\bigcup_{i \geqslant 0} S(\hat{1}) \times L(i) \times S(1)$ injects into S.
Proof. The i th term in the union maps into $S_{\{i\}}$, so it is enough to prove that this is an injection. Write this term as $\left(S(\hat{1}) \times S(1)^{\circ}\right) \times\left(S(\hat{1})^{\circ} \times L(i-1) \times S(1)\right)$ and observe that the result follows by the lemma and by induction on i.

Let M denote the span of $Y(1)^{\circ} Y(\hat{1})^{\circ} \cap Y$ and let N denote the subalgebra of Q_{n} generated by M.

Lemma 4.4. N is isomorphic to the free algebra generated by M and the map

$$
Q_{n}(\hat{1}) \otimes N \otimes Q_{n}(1) \rightarrow Q_{n}
$$

induced by multiplication is an isomorphism of graded vector spaces.
Proof. Let $W=Y(1)^{\circ} Y(\hat{1})^{\circ} \cap Y$ and let $W^{i}=W \times \cdots \times W$ (i times). Then W, being linearly independent, is a basis for M. By Lemma 4.2, $\bigcup_{i \geqslant 0} W^{i}$ injects into S. Indeed, Lemma 4.1 shows that the image is in Y. Thus $\bigcup_{i \geqslant 0} W^{i}$ injects onto a basis for N, so N is isomorphic to the free algebra generated by M. Again by Lemma 4.1 we have that $\bigcup_{i \geqslant 0} Y(\hat{1}) \times W^{i} \times Y(1)$ maps into Y. Since any substring of an element of Y is again in Y, this map is onto. By Corollary 4.3 the map is an injection. This proves the final statement of the lemma.

We now recall some well-known facts about Hilbert series (cf. [14, Section 3.3]).

Lemma 4.5. (a) If W_{1} and W_{2} are graded vector spaces then

$$
H\left(W_{1} \otimes W_{2}, t\right)=H\left(W_{1}, t\right) H\left(W_{2}, t\right)
$$

(b) If W is a graded vector space, then

$$
H(T(W), t)=\frac{1}{1-H(W, t)}
$$

(c) If $A=\sum_{i \geqslant 0} A_{i}$ and $B=\sum_{i \geqslant 0} B_{i}$ are graded algebras with $A_{0}=B_{0}=$ $F .1$, then

$$
\frac{1}{H(A * B, t)}=\frac{1}{H(A, t)}+\frac{1}{H(B, t)}-1 .
$$

Let $U(A: j)$ denote the span of all strings $\left(A_{1}: j_{1}\right) \ldots\left(A_{s}: j_{s}\right)$ satisfying (2.1) such that $1 \in A_{i}$ for all i and $\left(A_{s}: j_{s}\right)=(A, j)$.

Lemma 4.6. $H(U(A: j), t)=t^{j}(1-t)^{n-|A|} H\left(Q_{n}(1), t\right)$.
Proof. Since whenever the string $\left(A_{1}: j_{1}\right) \ldots\left(A_{s-1}: j_{s-1}\right)$ satisfies (2.1) then the string $\left(A_{1}: j_{1}\right) \ldots\left(A_{s-1}: j_{s-1}\right)(\{1, \ldots, n\}, j)$ also satisfies (2.1), we have

$$
H(U(\{1, \ldots, n\}, j), t)=t^{j} H\left(Q_{n}(1), t\right)
$$

We now proceed by downward induction on $|A|$, assuming the result is true whenever $|A|>l$. Let $|A|=l$. Then

$$
H(U(A: j), t)=t^{j} H\left(Q_{n}(1), t\right)-t^{j} \sum_{C \supseteq A,|C|=|A|+m, m \geqslant 1} H(U(C: m), t) .
$$

By the induction assumption this is

$$
t^{j}\left(1-\sum_{C \supseteq A,|C|=|A|+m, m \geqslant 1} t^{m}(1-t)^{n-|C|}\right) H\left(Q_{n}(1), t\right) .
$$

Let $C=D \cup A$ where $D \subseteq\{1, \ldots, n\} \backslash A$. Then the expression becomes

$$
t^{j}\left(1-\sum_{\emptyset \neq D \subseteq\{1, \ldots, n\} \backslash A} t^{|D|}(1-t)^{n-|A|-|D|}\right) H\left(Q_{n}(1), t\right) .
$$

By the binomial theorem the quantity in parenthesis is $(1-t)^{n-|A|}$, proving the result.

Let $B \subseteq\{2, \ldots, n\}$ and let $Z(B)$ denote the span of all strings $\left(A_{1}: j_{1}\right) \ldots$ $\left(A_{s}: j_{s}\right)$ such that $1 \in A_{1}, \ldots, A_{s},\left(A_{1}: j_{1}\right) \ldots\left(A_{s}: j_{s}\right)$ satisfies $(2.1),|B|=$ $\left|A_{s}\right|-j_{s}, A_{s} \supseteq B$.

Lemma 4.7. $H(Z(B), t)=t H\left(Q_{n}(1), t\right)$.
Proof. Write $A_{s}=B \cup E \cup\{1\}$ where $B \cap E=\emptyset$ and $E \subseteq\{2, \ldots, n\}$. Then

$$
Z(B)=\sum_{E \subseteq\{2, \ldots, n\} \backslash B} U(B \cup E \cup\{1\},|E|+1)
$$

and so

$$
H(Z(B), t)=\sum_{E \subseteq\{2, \ldots, n\} \backslash B} t^{|E|+1}(1-t)^{n-|B|-|E|-1} H\left(Q_{n}(1), t\right) .
$$

By the binomial theorem this is $t H\left(Q_{n}(1), t\right)$.

Lemma 4.8. $H(M, t)=\left(H\left(Q_{n}(\hat{1}), t\right)-1\right)\left(H\left(Q_{n}(1), t\right)-1\right)-t H\left(Q_{n}(1), t\right) \times$ $\left(H\left(Q_{n}(\hat{1}), t\right)-1\right)$.

Proof. M is the span of $Y(1)^{\circ} Y(\hat{1})^{\circ} \cap Y$. The complement \mathcal{Z} of $Y(1)^{\circ} Y(\hat{1})^{\circ} \cap Y$ in $Y(1)^{\circ} Y(\hat{1})^{\circ}$ is the set of all strings $\left(A_{1}: j_{1}\right) \ldots\left(A_{s}: j_{s}\right)\left(B_{1}, \ldots, B_{l}\right)$ such that $\left(A_{1}: j_{1}\right) \ldots\left(A_{s}: j_{s}\right) \in Y(1)^{\circ}$ satisfies (2.1), $\left|B_{1}\right|=\left|A_{s}\right|-j_{s}, A_{s} \supseteq B_{1}$, $\left(B_{1}, \ldots, B_{l}\right) \in Y(\hat{1})$. Let Z denote the span of \mathcal{Z}. The lemma follows from showing that

$$
H(Z, t)=t H\left(Q_{n}(1), t\right)\left(H\left(Q_{n}(\hat{1}), t\right)-1\right) .
$$

For $\emptyset \neq B \subseteq\{2, \ldots, n\}$ let $P(B)$ denote the span of all strings in \mathcal{Z} such that $B_{1}=B$ and $P_{0}(B)$ denote the span of all strings $\left(B_{1}, \ldots, B_{l}\right) \in$ $Y(\hat{1})$ such that $B_{1}=B$. Then $Z=\sum_{\emptyset \neq B \subseteq\{2, \ldots, n\}} P(B)$ and $H(P(B), t)=$ $H(Z(B), t) H\left(P_{0}(B), t\right)$. By Lemma 4.7, this equals to $t H\left(Q_{n}(1), t\right) H\left(P_{0}(B), t\right)$. Thus

$$
\begin{aligned}
H(Z, t) & =\sum_{\emptyset \neq B \subseteq\{2, \ldots, n\}} H(P(B), t) \\
& =\sum_{\emptyset \neq B \subseteq\{2, \ldots, n\}} t H\left(Q_{n}(1), t\right) H\left(P_{0}(B), t\right) \\
& =t H\left(Q_{n}(1), t\right) \sum_{\emptyset \neq B \subseteq\{2, \ldots, n\}} H\left(P_{0}(B), t\right) .
\end{aligned}
$$

But $\sum_{\emptyset \neq B \subseteq\{2, \ldots, n\}} H\left(P_{0}(B), t\right)=H\left(Q_{n}(\hat{1}), t\right)-1$ and the lemma is proved.
Corollary 4.9. $\frac{1}{H\left(Q_{n}, t\right)}=(2-t) \frac{1}{H\left(Q_{n-1}, t\right)}-1$.
Proof. $H\left(Q_{n}, t\right)=H\left(Q_{n}(\hat{1}), t\right) H(N, t) H\left(Q_{n}(1), t\right)$ by Lemma 4.4. For brevity we write $H\left(Q_{n}(\hat{1}), t\right)=a$ and $H\left(Q_{n}(1), t\right)=b$. Then

$$
H(N, t)=\frac{1}{1-H(M, t)}=\frac{1}{(1-t) b+a+(t-1) a b}
$$

and so

$$
\frac{1}{H\left(Q_{n}, t\right)}=\frac{(1-t) b+a+(t-1) a b}{a b}=\frac{1-t}{a}+\frac{1}{b}+t-1 .
$$

Since

$$
\frac{1}{b}=\frac{1}{a}-t
$$

(by Lemmas 3.5 and 4.5(c)) this gives

$$
\frac{1}{H\left(Q_{n}, t\right)}=\frac{1-t}{a}+\frac{1}{a}-1=\frac{2-t}{a}-1 .
$$

Now $a=H\left(Q_{n}(\hat{1}), t\right)=H\left(Q_{n-1}, t\right)$, so the corollary follows.

Theorem 1 now follows from Corollary 4.9 and the fact that $Q_{0}=F$.

5. Generalities about the dual algebra $Q_{n}^{!}$

Let V^{*} denote the dual space of V. Thus V^{*} has basis

$$
\left\{v^{*}(A) \mid \emptyset \neq A \subseteq\{1, \ldots, n\}\right\} \quad \text { where }\left\langle v(A), v^{*}(B)\right\rangle=\delta_{A, B}
$$

Note that $T\left(V^{*}\right)=\sum_{i \geqslant 0} T\left(V^{*}\right)_{i}$ is a graded algebra where $T\left(V^{*}\right)_{i}=$ $\operatorname{span}\left\{v^{*}\left(A_{1}\right) \ldots v^{*}\left(A_{i}\right) \mid \emptyset \neq A_{1}, \ldots, A_{i} \subseteq\{1, \ldots, n\}\right\}$. Also, $T\left(V^{*}\right)$ has a decreasing filtration

$$
T\left(V^{*}\right)=T\left(V^{*}\right)_{(0)} \supset T\left(V^{*}\right)_{(1)} \supset \cdots \supset T\left(V^{*}\right)_{(j)} \supset \cdots
$$

where

$$
T\left(V^{*}\right)_{(j)}=\operatorname{span}\left\{v^{*}\left(A_{1}\right) \ldots v^{*}\left(A_{i}\right)| | A_{1}\left|+\cdots+\left|A_{i}\right| \geqslant j\right\} .\right.
$$

In fact

$$
T\left(V^{*}\right)_{(j+1)}=\left(T(V)_{(j)}\right)^{\perp} \quad \text { for } j \geqslant 0
$$

Define $Q_{n}^{!}=T\left(V^{*}\right) /\left\langle\mathcal{Q}^{\perp}\right\rangle$.
We may explicitly describe \mathcal{Q}^{\perp} and thus give a presentation of $Q_{n}^{!}$. To do this define the following subsets of $T\left(V^{*}\right)_{2}$:

$$
\begin{aligned}
& S_{1}=\left\{v^{*}(A) v^{*}(B) \mid B \nsubseteq A \text { or }|B| \neq|A|,|A|-1\right\}, \\
& S_{2}=\left\{v^{*}(C)\left(\sum_{i \in C} v^{*}(C \backslash i)\right)+v^{*}(C)^{2}| | C \mid \geqslant 2\right\}, \\
& S_{3}=\left\{\left(\sum_{i \notin C} v^{*}(C \cup i) v^{*}(C)\right)+v^{*}(C)^{2} \mid C \neq\{1, \ldots, n\}\right\}, \\
& S_{4}=\left\{v^{*}(\{1, \ldots, n\})^{2}\right\} .
\end{aligned}
$$

Theorem 5.1. $S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$ spans \mathcal{Q}^{\perp}. Therefore, $Q_{n}^{!}$is presented by generators $\left\{v^{*}(A) \mid \emptyset \neq A \subseteq\{1, \ldots, n\}\right\}$ and relations $S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$.

Before beginning the proof of this theorem, we present some examples and develop some notation. Set

$$
s(A)=\left(v^{*}(A)+\left\langle\mathcal{Q}^{\perp}\right\rangle\right) /\left\langle\mathcal{Q}^{\perp}\right\rangle \in Q_{n}^{!}
$$

Write $s(i)$ for $s(\{i\}), s(i j)$ for $s(\{i, j\})$, etc.
Example. (a) $Q_{2}^{!}$is 5-dimensional with basis

$$
\{1, s(1), s(2), s(12), s(12) s(1)\} .
$$

(b) $Q_{3}^{!}$is 14 -dimensional with basis

$$
\begin{aligned}
& \{1, s(1), s(2), s(3), s(12), s(13), s(23), s(123), s(123) s(12) \\
& \quad s(123) s(13), s(12) s(1), s(13) s(1), s(23) s(2), s(123) s(12) s(1)\}
\end{aligned}
$$

These assertions follow from Proposition 6.4.

Note that $Q_{n}^{!}=\sum_{i \geqslant 0} Q_{n, i}^{!}$is graded where

$$
Q_{n, i}^{!}=\left(T\left(V^{*}\right)_{i}+\left\langle\mathcal{Q}^{\perp}\right\rangle\right) /\left\langle\mathcal{Q}^{\perp}\right\rangle
$$

and that $Q_{n}^{!}$has a decreasing filtration

$$
Q_{n}^{!}=Q_{n,(0)}^{!} \supseteq Q_{n,(1)}^{!} \supseteq \cdots \supseteq Q_{n,(j)}^{!} \supseteq \cdots
$$

where

$$
Q_{n,(j)}^{!}=\left(T\left(V^{*}\right)_{(j)}+\left\langle\mathcal{Q}^{\perp}\right\rangle\right) /\left\langle\mathcal{Q}^{\perp}\right\rangle
$$

Clearly

$$
Q_{n,(j)}^{!}=\sum_{i \geqslant 0} Q_{n, i}^{!} \cap Q_{n,(j)}^{!} \quad \text { and } \quad Q_{n, i}^{!} \cap Q_{n,(j)}^{!}=(0) \quad \text { if } j>n i
$$

Let $\operatorname{gr} Q_{n}^{!}=\sum_{j=0}^{\infty} Q_{n,(j)}^{!} / Q_{n,(j+1)}^{!}$, the associated graded algebra of $Q_{n}^{!}$. Denote $s(A)+Q_{n,(|A|+1)}^{!} \in \operatorname{gr} Q_{n}^{!}$by $\bar{s}(A)$. Then $\{\bar{s}(A) \mid \emptyset \neq A \subseteq\{1, \ldots, n\}\}$ generates gr $Q_{n}^{!}$.

Proof of Theorem 5.1. We first show that each $S_{h}, 1 \leqslant h \leqslant 4$, is contained in \mathcal{Q}^{\perp}, i.e., that $\left\langle\mathcal{V}(A:\{c, d\}), u_{h}\right\rangle=0$ whenever $c<d, c, d \in A \subseteq\{1, \ldots, n\}$ and $u_{h} \in S_{h}$. For $h=1$ or 4 this is clear.

If $h=2$, we note that

$$
\left\langle\mathcal{V}(A:\{c, d\}), v^{*}(C)\left(\sum_{i \in C} v^{*}(C \backslash i)\right)+v^{*}(C)^{2}\right\rangle=0
$$

unless $A=C, A \backslash c=C$, or $A \backslash d=C$. In the first case,

$$
\begin{aligned}
& \left\langle\mathcal{V}(A:\{c, d\}), v^{*}(C)\left(\sum_{i \in C} v^{*}(C \backslash i)\right)+v^{*}(C)^{2}\right\rangle \\
& \quad=\left\langle v(A) v(A \backslash d)-v(A) v(A \backslash c), v^{*}(A)\left(\sum_{i \in A} v^{*}(A \backslash i)\right)\right\rangle=0 .
\end{aligned}
$$

In the second case,

$$
\begin{aligned}
\langle\mathcal{V} & \left.(A:\{c, d\}), v^{*}(C)\left(\sum_{i \in C} v^{*}(C \backslash i)\right)+v^{*}(C)^{2}\right\rangle \\
= & \left\langle-v(A \backslash c) v(A \backslash c \backslash d), v^{*}(A \backslash c)\left(\sum_{i \in A \backslash c} v^{*}(A \backslash c \backslash i)\right)\right\rangle \\
& +\left\langle v(A \backslash c)^{2}, v^{*}(A \backslash c)^{2}\right\rangle \\
= & -1+1=0 .
\end{aligned}
$$

In the third case,

$$
\begin{aligned}
\langle\mathcal{V} & \left.(A:\{c, d\}), v^{*}(C)\left(\sum_{i \in C} v^{*}(C \backslash i)\right)+v^{*}(C)^{2}\right\rangle \\
= & \left\langle v(A \backslash d) v(A \backslash c \backslash d), v^{*}(A \backslash d)\left(\sum_{i \in A \backslash d} v^{*}(A \backslash d \backslash i)\right)\right\rangle \\
& +\left\langle-v(A \backslash d)^{2}, v^{*}(A \backslash d)^{2}\right\rangle \\
= & 1-1=0 .
\end{aligned}
$$

If $h=3$, we note that

$$
\left\langle\mathcal{V}(A:\{c, d\}),\left(\sum_{i \notin C} v^{*}(C \cup i) v^{*}(C)\right)+v^{*}(C)^{2}\right\rangle=0
$$

unless $A \backslash c=C, A \backslash d=C$, or $A \backslash c \backslash d=C$. In the first case,

$$
\begin{aligned}
\langle\mathcal{V} & \left.(A:\{c, d\}),\left(\sum_{i \notin C} v^{*}(C \cup i) v^{*}(C)\right)+v^{*}(C)^{2}\right\rangle \\
= & \left\langle-v(A) v(A \backslash c), \sum_{i \notin A \backslash c} v^{*}(A \cup i \backslash c) v^{*}(A \backslash c)\right\rangle \\
& +\left\langle v(A \backslash c)^{2}, v^{*}(A \backslash c)^{2}\right\rangle \\
= & -1+1=0 .
\end{aligned}
$$

In the second case,

$$
\begin{aligned}
& \left\langle\mathcal{V}(A:\{c, d\}),\left(\sum_{i \notin C} v^{*}(C \cup i) v^{*}(C)\right)+v^{*}(C)^{2}\right\rangle \\
& =\left\langle v(A) v(A \backslash d), \sum_{i \notin A \backslash d} v^{*}(A \cup i \backslash d) v^{*}(A \backslash d)\right\rangle \\
& \quad+\left\langle-v(A \backslash d)^{2}, v^{*}(A \backslash d)^{2}\right\rangle \\
& = \\
& =1-1=0 .
\end{aligned}
$$

In the third case,

$$
\begin{gathered}
\left\langle\mathcal{V}(A:\{c, d\}),\left(\sum_{i \notin C} v^{*}(C \cup i) v^{*}(C)\right)+v^{*}(C)^{2}\right\rangle \\
=\langle v(A \backslash d) v(A \backslash c \backslash d)-v(A \backslash c) v(A \backslash c \backslash d) \\
\left.\sum_{i \notin A \backslash c \backslash d} v^{*}(A \cup i \backslash c \backslash d) v^{*}(A \backslash c \backslash d)\right\rangle=0
\end{gathered}
$$

We will now use downward induction on l to show that $\left(S_{1} \cup S_{2} \cup S_{3} \cup S_{4}\right) \cap$ $T\left(V^{*}\right)_{(l)}$ spans $\mathcal{Q}^{\perp} \cap T\left(V^{*}\right)_{(l)}$ for all $l \geqslant 0$. Note that, since $T\left(V^{*}\right)=T\left(V^{*}\right)_{(0)}$, this will complete the proof of the lemma. Now \mathcal{Q}^{\perp} is contained in $T\left(V^{*}\right)_{2}$ and $T\left(V^{*}\right)_{2} \cap T\left(V^{*}\right)_{(2 n+1)}=(0)$, so the result holds for $l=2 n+1$. Assume the result holds whenever $l>m$ and let $u \in \mathcal{Q}^{\perp} \cap T\left(V^{*}\right)_{(m)}$. Suppose that m is even. Then by subtracting an element in the span of S_{1} we may assume that $u \in \sum_{|C|=m / 2} a_{C} v^{*}(C)^{2}+T\left(V^{*}\right)_{(m+1)}$ for some scalars a_{C}. Then by subtracting an element in the span of $S_{3} \cup S_{4}$ we may assume that $u \in T\left(V^{*}\right)_{(m+1)}$. Hence the induction assumption gives our result in this case. Now suppose that m is odd. Then by subtracting an element in the span of S_{1} we may assume that

$$
u \in \sum_{|C|=(m+1) / 2, i \in C} b_{C, i} v^{*}(C) v^{*}(C \backslash i)+T\left(V^{*}\right)_{(m+1)}
$$

for some scalars $b_{C, i}$. Since $0=\langle\mathcal{V}(C:\{c, d\}), u\rangle$ for all C with $|C|=(m+1) / 2$ we see that $b_{C, c}=b_{C, d}$ for all $c, d \in C$. Then by subtracting an element in the span of S_{2} we may assume that $u \in T\left(V^{*}\right)_{(m+1)}$. Hence the induction assumption gives our result in this case and the proof of the lemma is complete.

6. A basis for $\boldsymbol{Q}_{\boldsymbol{n}}$!

Let $B=\left\{b_{1}, \ldots, b_{k}\right\} \subseteq A \subseteq\{1, \ldots, n\}$ with $b_{1}>\cdots>b_{k}$. Define $\mathcal{S}(A: B) \in$ $Q_{n}^{!}$by

$$
\mathcal{S}(A: B)=s(A) s\left(A \backslash b_{1}\right) \ldots s\left(A \backslash b_{1} \ldots \backslash b_{k}\right)
$$

Let $\min A$ denote the smallest element of A. Define

$$
\begin{aligned}
& \mathcal{S}=\{\mathcal{S}(A: B) \mid B \subseteq A \subseteq\{1, \ldots, n\}, \min A \notin B\}, \\
& \overline{\mathcal{S}}(A: B)=\mathcal{S}(A: B)+Q_{n,(1+(|B|+1)(2|A|-|B|) / 2)}^{!}
\end{aligned}
$$

and

$$
\overline{\mathcal{S}}=\{\overline{\mathcal{S}}(A: B) \mid B \subseteq A \subseteq\{1, \ldots, n\}, \min A \notin B\} .
$$

Lemma 6.1. $\overline{\mathcal{S}} \cup\{\bar{s}(\emptyset)\}$ spans $\operatorname{gr} Q_{n}^{!}$and $\mathcal{S} \cup\{s(\emptyset)\}$ spans $Q_{n}^{!}$.

Proof. It is sufficient to show the first assertion. We know that $\{\bar{s}(A) \mid \emptyset \neq$ $A \subseteq\{1, \ldots, n\}\}$ generates $\operatorname{gr} Q_{n}^{!}$. Since the sets S_{1}, S_{3}, and S_{4} are contained in \mathcal{Q}^{\perp}, we see that $\bar{s}(A) \bar{s}(B)=0$ unless $B \subset A$ and $|B|=|A|-1$. Furthermore, since the set S_{2} is contained in \mathcal{Q}^{\perp}, we have $\bar{s}(A)\left(\sum_{i \in A} \bar{s}(A \backslash i)\right)=0$ for all $A \subseteq\{1, \ldots, n\},|A| \geqslant 2$. Then if $i, j \in A \subseteq\{1, \ldots, n\}$ we have

$$
\begin{aligned}
\bar{s}(A) \bar{s}(A \backslash i) \bar{s}(A \backslash i \backslash j) & =-\bar{s}(A)\left(\sum_{l \in A, l \neq i} \bar{s}(A \backslash l)\right) \bar{s}(A \backslash i \backslash j) \\
& =-\bar{s}(A) \bar{s}(A \backslash j) \bar{s}(A \backslash i \backslash j)
\end{aligned}
$$

The lemma is then immediate.

Lemma 6.2. Let $B=\left\{b_{1}, \ldots, b_{k}\right\} \subseteq A \subseteq\{1, \ldots, n\}$ with $b_{1}>\cdots>b_{k}$ and $k>2$. Then, for $0 \leqslant m \leqslant k-3$,

$$
\begin{aligned}
& \left\langle\sum_{\sigma \in \operatorname{Sym}(B)} \operatorname{sgn}(\sigma) \sigma\left\{v\left(A \backslash b_{1}\right) \ldots v\left(A \backslash b_{1} \ldots \backslash b_{k-1}\right)\right\},\right. \\
& \left.V^{* m} \mathcal{Q}^{\perp} V^{* k-m-3}\right\rangle=0
\end{aligned}
$$

Proof. If $k=3$ then

$$
\begin{aligned}
& \sum_{\sigma \in \operatorname{Sym}(B)} \operatorname{sgn}(\sigma) \sigma\left\{v\left(A \backslash b_{1}\right) \ldots v\left(A \backslash b_{1} \ldots \backslash b_{k-1}\right)\right\} \\
& \quad=\mathcal{V}\left(A:\left\{b_{1}, b_{2}\right\}\right)+\mathcal{V}\left(A:\left\{b_{2}, b_{3}\right\}\right)+\mathcal{V}\left(A:\left\{b_{3}, b_{1}\right\}\right) \in \mathcal{Q}
\end{aligned}
$$

so the result holds. Now assume that $k>3$ and that the result holds for $k-1$. Then it is sufficient to show that

$$
\begin{aligned}
& \left\langle\sum_{\sigma \in \operatorname{Sym}(B)} \operatorname{sgn}(\sigma) \sigma\left\{v\left(A \backslash b_{1}\right) \ldots v\left(A \backslash b_{1} \ldots \backslash b_{k-1}\right)\right\},\right. \\
& \left.v^{*}\left(A \backslash b_{1}\right) V^{* m-1} \mathcal{Q}^{\perp} V^{* k-m-3}\right\rangle=0
\end{aligned}
$$

whenever $m>0$ and that

$$
\begin{aligned}
& \left\langle\sum_{\sigma \in \operatorname{Sym}(B)} \operatorname{sgn}(\sigma) \sigma\left\{v\left(A \backslash b_{1}\right) \ldots v\left(A \backslash b_{1} \ldots \backslash b_{k-1}\right)\right\}\right. \\
& \left.\quad \mathcal{Q}^{\perp} V^{* k-4} v^{*}\left(A \backslash b_{1} \backslash \ldots \backslash b_{k-1}\right)\right\rangle=0
\end{aligned}
$$

Both of these are immediate from the induction assumption.

Lemma 6.3. Let $B \subseteq A \subseteq\{1, \ldots, n\}$ and $|B|=k \geqslant 2$. Then

$$
\mathcal{V}(A: B) \in \bigcap_{m=0}^{k-2} V^{m} \mathcal{Q} V^{k-m-2}
$$

Proof. It is enough to show that $\left\langle\mathcal{V}(A: B), V^{* m} \mathcal{Q}^{\perp} V^{* k-m-2}\right\rangle=0$ for all m, $0 \leqslant m \leqslant k-2$. This is immediate if $k=2$. We will proceed by induction on k. Thus we assume $k>2$ and that the assertion is true for $k-1$. Now if $m>0$ then $V^{* m} \mathcal{Q}^{\perp} V^{* k-m-2}=\sum_{C \subseteq\{1, \ldots, n\}} v^{*}(C) V^{* m-1} \mathcal{Q}^{\perp} V^{* k-m-2}$. Now $v^{*}(C) V^{* m-1} \mathcal{Q}^{\perp} V^{* k-m-2}$ is orthogonal to $\mathcal{V}(A: B)$ unless $A \supseteq C \supseteq A \backslash B$ and $|C|=|A|$ or $|A|-1$. But if $|C|=|A|$ then $v^{*}(C) V^{* m-1} \mathcal{Q}^{\perp} V^{* k-m-2}$ is orthogonal to $\mathcal{V}(A: B)$ by Lemma 6.2 and if $|C|=|A|-1$, the induction assumption yields the same result. Thus, the assertion holds if $m>0$. For $m=0$ we must consider $\mathcal{Q}^{\perp} V^{* k-2}=\sum_{C \subseteq\{1, \ldots, n\}} \mathcal{Q}^{\perp} V^{* k-3} v^{*}(C)$. Now, $\mathcal{Q}^{\perp} V^{* k-3} v^{*}(C)$ is orthogonal to $\mathcal{V}(A: B)$ unless $A \supseteq C \supseteq A \backslash B$ and $|C|=|A|-|B|$ or $|A|-|B|+1$. If $|C|=|A|-|B|$ then $\mathcal{Q}^{\perp} V^{* k-3} v^{*}(C)$ is orthogonal to $\mathcal{V}(A: B)$ by Lemma 6.2 and if $|C|=|A|-|B|+1$ the induction assumption yields the same result. This completes the proof of the lemma.

Let \mathcal{V} denote the span of $\{\mathcal{V}(A: B) \mid B \subseteq A \subseteq\{1, \ldots, n\}\}$. The lemma shows that \mathcal{V} is orthogonal to $\left\langle\mathcal{Q}^{\perp}\right\rangle$ and so, the pairing of $T(V)$ and $T\left(V^{*}\right)$ induces a pairing of \mathcal{V} and $Q_{n}^{!}$.

Proposition 6.4. \mathcal{S} is a basis for $Q_{n}^{!}$.
Proof. Suppose min $A \notin B \subseteq A \subseteq\{1, \ldots, n\}$. Then

$$
\langle\mathcal{V}(A: B \cup\{\min A\}), \mathcal{S}(A: B)\rangle=1
$$

and

$$
\langle\mathcal{V}(C, D), \mathcal{S}(A: B)\rangle=0
$$

if $|C|<|A|$ or if $|C|=|A|$ and $C \neq A$ or if $\min A \in D$ and $D \neq B$. It is then easy to see that \mathcal{S} is linearly independent. In view of Lemma 6.3, this proves the proposition.

Corollary 6.5. gr $Q_{n}^{!}$is presented by generators $\left\{v^{*}(A) \mid \emptyset \neq A \subseteq\{1, \ldots, n\}\right\}$ and relations $\bar{S}_{1} \cup \bar{S}_{2} \cup \bar{S}_{3}$ where

$$
\begin{aligned}
& \bar{S}_{1}=\left\{v^{*}(A) v^{*}(B) \mid B \nsubseteq A \text { or }|B| \neq|A|,|A|-1\right\}, \\
& \bar{S}_{2}=\left\{v^{*}(C) \sum_{i \in C} v^{*}(C \backslash i)| | C \mid \geqslant 2\right\}, \\
& \bar{S}_{3}=\left\{v^{*}(C)^{2} \mid \emptyset \neq C \subseteq\{1, \ldots, n\}\right\} .
\end{aligned}
$$

7. Proof of Theorem 2

Clearly if $i>0$ then $\mathcal{S} \cap Q_{n, i}^{!}$is a basis for $Q_{n, i}^{!}$. Thus, for $i>0, \operatorname{dim} Q_{n, i}^{!}$is equal to $\left|\mathcal{S} \cap Q_{n, i}^{!}\right|$. This is the same as $|\{\mathcal{S}(A: B) \in \mathcal{S}||B|=i-1\} \mid$. Now

$$
\mid\{\mathcal{S}(A: B) \in \mathcal{S}| | B \mid=i-1 \text { and }|A|=u\} \left\lvert\,=\binom{n}{u}\binom{u-1}{i-1} .\right.
$$

Thus

$$
\begin{aligned}
H\left(Q_{n}^{!}, t\right) & =1+\sum_{i>0}\left(\sum_{u=i}^{n}\binom{n}{u}\binom{u-1}{i-1}\right) t^{i} \\
& =1+t \sum_{i>0}\left(\sum_{u=i}^{n}\binom{n}{u}\binom{u-1}{i-1}\right) t^{i-1} \\
& =1+t \sum_{v=0}^{n-1}\left(\sum_{u=v+1}^{n}\binom{n}{u}\binom{u-1}{v}\right) t^{v} \\
& =1+t \sum_{u=1}^{n} \sum_{v=0}^{u-1}\binom{n}{u}\binom{u-1}{v} t^{v} \\
& =1+t \sum_{u=1}^{n}\binom{n}{u} \sum_{v=0}^{u-1}\binom{u-1}{v} t^{v} \\
& =1+t \sum_{u=1}^{n}\binom{n}{u}(t+1)^{u-1} \\
& =1+\frac{t}{t+1} \sum_{u=1}^{n}\binom{n}{u}(t+1)^{u} \\
& =1+\frac{t}{t+1}\left((2+t)^{n}-1\right)=\frac{1}{t+1}\left(t+1+t(2+t)^{n}-t\right) \\
& =\frac{1}{t+1}\left(1+t(2+t)^{n}\right)
\end{aligned}
$$

This completes the proof of Theorem 2.

References

[1] N. Bourbaki, in: Algebra, Vol. I, Springer-Verlag, New York, 1989, Chapters 1-3.
[2] I. Gelfand, S. Gelfand, V. Retakh, Noncommutative algebras associated to complexes and graphs, Selecta Math. 7 (2001) 525-531.
[3] I. Gohberg, P. Lancaster, L. Rodman, Matrix Polynomials, Academic Press, 1982.
[4] I. Gelfand, V. Retakh, Determinants of matrices over noncommutative rings, Funct. Anal. Appl. 25 (2) (1991) 91-102.
[5] I. Gelfand, V. Retakh, A theory of noncommutative determinants and characteristic functions of graphs, Funct. Anal. Appl. 26 (4) (1992) 1-20.
[6] I. Gelfand, V. Retakh, Noncommutative Vieta theorem and symmetric functions, in: Gelfand Math. Sem. 1993-95, Birkhäuser, Boston, 1996.
[7] I. Gelfand, V. Retakh, A theory of noncommutative determinants and characteristic functions of graphs. I, in: Publ. LACIM, UQAM, Vol. 14, 1993, pp. 1-26.
[8] I. Gelfand, V. Retakh, Quasideterminants, I, Selecta Math. 3 (1997) 417-546.
[9] I. Gelfand, V. Retakh, R.L. Wilson, Quadratic-linear algebras associated with factorizations of noncommutative polynomials and noncommutative differential polynomials, Selecta Math. 7 (2001) 493-523.
[10] T.Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, 1991.
[11] O. Ore, Theory of non-commutative polynomials, Ann. of Math. 34 (1933) 480-508.
[12] L. Positselski, The correspondence between Hilbert series of quadratically dual algebras does not imply their having the Koszul property, Funct. Anal. Appl. 29 (3) (1995) 213-217.
[13] J.-E. Roos, On the characterization of Koszul algebras. Four counter-examples, C.R. Acad. Sci. Paris Ser. I 321 (1995) 15-20.
[14] V.A. Ufnarovskij, Combinatorial and asymptotic methods in algebra, in: A.I. Kostrikin, I.R. Shafarevich (Eds.), in: Algebra, Vol. VI, Springer-Verlag, New York, 1995, pp. 1-196.
[15] R.L. Wilson, Invariant polynomials in the free skew field, Selecta Math. 7 (2001) 565-586.

[^0]: * Corresponding author.

 E-mail addresses: igelfand@math.rutgers.edu (I. Gelfand), sxg@ams.org (S. Gelfand), vretakh@math.rutgers.edu (V. Retakh), shirlei@mat.ufg.br (S. Serconek), rwilson@math.rutgers.edu (R.L. Wilson).

