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Abstract

It is known that if an upper semicontinuous multivalued mappingF :X → Y , defined on ann-
dimensional compactumX, hasUV n−1-point images, then every neighbourhood of the graph ofF

(in the productX×Y ) contains the graph of a single-valued continuous mappingf :X→ Y . Similar
result is known to be true whenX is a compact C-space and images ofF have trivial shape. We
extend and unify both of these results in terms of extension theory.
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1. Introduction

Single-valued approximations of multivalued maps are proved to be very useful in
geometric topology, fixed point theory, control theory and others (see a survey [7]).
We consider the problem of single-valued continuous graph-approximation of upper
semicontinuous (u.s.c.) multivalued mappings. We say that a multivalued mapping
F :X → Y admits graph-approximations if every neighborhood of the graph ofF (in the
productX× Y ) contains the graph of a single-valued continuous mappingf :X→ Y .

Essentially there are three types of results concerning our problem. First assumes that
multivalued mappingsF :X → Y haveUV n−1 point-images and dimX � n (see [9,10,
8]). The second type of results deal withUV∞-valued mappings defined on C-spaces [1].
Finally results of the third type considerUV∞-valued mappings defined onANR-spaces
[6,8].
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In this paper we prove an approximation theorem which generalizes and unifies the
known results of the first and second types. Unification is achieved by exploiting recently
created [4,5] theory of extension dimension and associated to it concepts of homotopy and
shape [2]. Precise definitions will be given below in Section 2. Here we only provide some
of the notation related to the extension dimension.

LetL be a CW-complex. A spaceX is said to haveextension dimension � [L] (notation:
e-dimX � [L]) if any mapping of its closed subspaceA⊂X intoL admits an extension to
the whole spaceX. 1 It is known that dimX � n is equivalent to e-dimX � [Sn] and that
dimGX � n is equivalent to e-dimX � [K(G,n)] (K(G,n) stands for the corresponding
Eilenberg–MacLane complex). One can develop homotopy and shape theories specifically
designed to work for at most[L]-dimensional spaces. Compacta of trivial[L]-shape are
preciselyUV [L]-compacta [2].

Now we are ready to formulate our main result.

Theorem. Let L be a countable CW-complex and F :X→ Y be an u.s.c. UV [L]-valued
mapping of a paracompact spaceX to a completely metrizable space Y . IfX is C-space of
extension dimension e-dimX � [L], then every neighborhood of the graph of F contains
the graph of a single-valued continuous mapping f :X→ Y .

Note that ifL is the sphereSn, we obtain an approximation theorem forUV n−1-valued
mappings ofn-dimensional space. And ifL is a point (or any other contractible complex),
we obtain a theorem of Ancel on approximations ofUV∞-valued mappings of C-space [1].

What do we need to construct a mapping from a spaceX? Suppose that we can construct
and, moreover, extend a mapping fromX locally. Then one can try to obtain a fine cover of
X and to construct a global mapping by induction, extending it successively over “skeleta”
of this cover. The problem is to control this process when the cover has infinite order.
Property C gives us a possibility of such a control.

Let us explain this with a bit more detail. A topological spaceX hasproperty C if for
each sequence{ui | i � 1} of open covers ofX, there is an open coverΣ of X of the form⋃∞
i=1σi such that for eachi � 1, σi is a pairwise disjoint collection which refinesui . If

the spaceX is paracompact, we can choose the coverΣ to be locally finite. The coverΣ
has very important property that every “simplex”{s0, . . . , sn} of this cover (i.e., the set of
elements{s0, . . . , sn} such thats0 ∩ · · ·∩ sn �= ∅) has a natural order on its vertices. Indeed,
for any elements ∈Σ denote byσ(s) the integer such thats ∈ σσ(s). Sincesi∩sj �= ∅, then
σ(si) �= σ(sj ) and we can order elementss0, s1, . . . , sn according to the order of numbers
σ(s0), σ (s1), . . . , σ (sn).

We take a coverΣ of X which refines our fine cover so that every simplex〈σ0, . . . , σn〉
of the nerveN(Σ) has a natural order on its vertices. Then every simplex has abasic
vertex (merely the smallest one). For every vertex〈σ 〉 of N(Σ) (i.e., for every elementσ
of the coverΣ) we fix a “rule” of extension of mappings defined on subsets ofσ . Then

1 Everywhere below[L] denotes the class of complexes generated byL with respect to the above extension
property, see [4,5,2] for details.
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the process goes on by induction on dimension of “skeleta” as follows: for a “simplex”
the extension of mapping from the “boundary” to the “interior” is induced by the rule of
the basic vertex of this simplex. Obviously the mapping on a simplex depends only on the
basic vertex of this simplex and does not depend on the dimension of the simplex. This
provides the needed control.

2. Preliminaries

Let us recall some definitions and introduce our notations. We denote by IntA andA the
interior and closure of the setA, respectively. For a coverω of a spaceX and for a subset
A⊆X let St(A,ω) denote the star of the setA with respect toω.

The graph of a multivalued mappingF :X → Y is the subsetΓF = {(x, y) ∈ X ×
Y : y ∈ F(x)} of the productX × Y . A multivalued mappingF :X → Y is calledupper
semicontinuous (notation: u.s.c.) if for any open setU ⊂ Y the set{x ∈X: F(x)⊂ U} is
open inX.

LetL be a CW-complex. A pair of spacesV ⊂U is said to be[L]-connected if for every
paracompact spaceX of extension dimension e-dimX� [L] and for every closed subspace
A⊂ X any mapping ofA into V can be extended to a mapping ofX into U . A compact
subspaceK ⊂ Z is calledUV [L]-compactum in Z if any neighborhoodU of K contains
a neighborhoodV of K such that the pairV ⊂ U is L-connected. A compact-valued
mappingF :X→ Y is calledUV [L]-valued if for any pointx ∈X the setF(x) isUV [L]-
compactum inY . A mappingf :Y → X is said to be[L]-soft if for any paracompact
spaceZ with e-dimZ � [L], its closed subspaceA⊂Z and any mappingsg :Z→X and
g̃A :A→ Y such thatf ◦ g̃A = g|A there exists a mapping̃g :Z→ Y such thatf ◦ g̃ = g.
Finally let AE([L]) denote the class of spaces with[L]-soft constant mappings.

Now we introduce the notion of[L]-extension which will represent a “rule” for
extending mappings in the proof of our theorem. LetV ⊂ U be a pair of spaces. An
[L]-extension of the spaceV with respect toU is a pairV ′ ⊂W of spaces and a mapping
e :W → U such that:

(1) W ∈ AE([L]);
(2) e|V ′ is [L]-soft mapping ontoV .
The following is a key property of[L]-extensions needed in the proof (Section 3) of our

theorem. Let a pairV ′ ⊂W of spaces and a mappinge :W → U represent an[L]-extension
of the pairV ⊂U .

[L]-extension property. Let A⊂ B be a pair of closed subspaces of paracompact space
X of extension dimension e-dimX � [L]. Suppose that we have mappings f :B → U and
g :A→W such that e ◦g= f |A, f (B \A)⊂ V and g(A∩B \A)⊂ V ′. Then there exists
a mapping g′ :X→W such that e ◦ g′|B = f .

We constructg′ in two steps. First, we use[L]-softness ofe overV to extendg to a
mappingg̃ :B →W such thate ◦ g̃ = f (we apply[L]-softness to the[L]-dimensional
pairA∩B \A⊂ B \A). Finally we can extend̃g to the spaceX sinceW is AE([L]).
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Lemma. Let V ⊂ U be [L]-connected pair. If V is completely metrizable space, then V
admits an [L]-extension with respect to U .

Proof. There exists a completely metrizable spaceV ′ with e-dimV ′ � [L] and an[L]-soft
mappingeV :V ′ → V [3]. Consider anAE([L])-spaceW of dimension e-dimW � [L]
containingV ′ as a closed subspace [3]. Since the pairV ⊂ U is [L]-connected, we can
extend the mappingeV to a mappinge :W → U . ✷

3. Proof of the theorem

For a givenUV [L]-valued mappingF :X → Y we fix an arbitrary neighborhoodU ⊂
X× Y of its graphΓF . The proof of our theorem consists of the following two steps.

3.1. Construction of families of rectangles

For every integeri � 0 we construct families of open rectangles{uiλ × Ui
λ}λ∈Λi and

closed rectangles{viµ × V iµ}µ∈Mi in the productX× Y such that:

(1) u0
λ ×U0

λ ⊂ U for everyλ ∈Λ0;
(2) ui = {uiλ}λ∈Λi and vi = {viµ}µ∈Mi are coverings ofX (in fact, {Intviµ}µ∈Mi are

coverings ofX);
(3) F(uiλ)⊂Ui

λ andF(viµ)⊂ IntV iµ for everyi � 0,µ ∈Mi andλ ∈Λi ;
(4) for everyi � 0 and everyµ ∈Mi there existsλ ∈Λi such thatV iµ ⊂ Ui

λ, viµ ⊂ uiλ,

and the pairV iµ ⊂Ui
λ is [L]-connected;

Choice 1. For giveni � 0 andµ ∈ Mi we fix such aλ = λ(µ), and for[L]-
connected pairV iµ ⊂ Ui

λ, by lemma, we can fix[L]-extensioneiµ : (Ṽ iµ,W
i
µ)→

(V iµ,U
i
λ);

(5) for everyi � 0 and everyλ ∈Λi+1 there existsµ ∈Mi such that St(ui+1
λ ,ui+1)⊂

viµ and every rectangleui+1
γ ×Ui+1

γ is contained in the rectangleviµ ×V iµ provided

ui+1
γ ∩ ui+1

λ �= ∅;
Choice 2. For giveni � 0 andλ ∈Λi+1 we fix such aµ= µ(λ).

First, we construct a family{u0
λ ×U0

λ }λ∈Λ0. PutΛ0 =X and for a pointx ∈X consider
a rectangleux ×U0

x ⊂ U such thatF(x)⊂U0
x (existence of such a rectangle follows from

compactness ofF(x)). SinceF is u.s.c., we can choose a neighborhoodu0
x ⊂ ux of the

pointx such thatF(u0
x)⊂U0

x .
The construction of families of rectangles is performed by induction oni. All steps of

induction are similar to the first one. Here we only show how to perform the first step and
to construct the families{v0

µ × V 0
µ}µ∈M0 and{u1

λ ×U1
λ }λ∈Λ1.

PutM0 =X and for a pointx ∈X consider a rectangleu0
λ ×U0

λ containing{x} ×F(x).
By UV [L]-property ofF(x) we find a closed neighborhoodV 0

x of F(x) such that the pair
V 0
x ⊂U0

λ is [L]-connected. SinceF is u.s.c., we can choose a closed neighborhoodv0
x ⊂ u0

λ

of the pointx such thatF(v0
x)⊂ IntV 0

x .
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Now we construct a family{u1
λ × U1

λ }λ∈Λ1. Let α be a locally finite open cover ofX
refiningv0. For every elementA ∈ α take an indexµ ∈M0 such thatA⊂ v0

µ and denote
WA = IntV 0

µ . ThenA×WA lies in v0
µ × V 0

µ . Let u1 = {u1
λ}λ∈Λ1 be an open cover ofX

which is star-refined intoα. Define

U1
λ =

⋂{
WA | St

(
u1
λ,u

1) ⊂A ∈ α}
.

To verify (5), consideru1
λ′ ∈ u1 such thatu1

λ′ ∩ u1
λ �= ∅. Thenu1

λ′ ⊂ St(u1
λ,u

1)⊂ A for
someA ∈ α and by definitionU1

λ′ ⊂WA. Thus,u1
λ′ ×U1

λ′ ⊂A×WA ⊂ v0
µ × V 0

µ .

3.2. Construction of the map f

SinceX is a paracompactC-space, there exists a locally finite open coverΣ of X of
the formΣ = ⋃∞

i=1σi such that fori � 1, σi is pairwise disjoint collection refiningui .
For every integerk � 0 denote byΣ(k) the set of pointsx ∈X such that the coverΣ has
order� k+ 1 atx. Note thatX = ⋃∞

i=0Σ
(k) andΣ(k) is closed inX. We will constructf

inductively extending it over setsΣ(k).
For any elements of the coverΣ we denote byσ(s) the integer number such that

s ∈ σσ(s).
Choice 3. For any elements ∈Σ we fix λ(s) ∈Λσ(s) such thats ⊂ u

σ(s)
λ(s) .

Let s0, s1, . . . , sn be elements of the coverΣ such thats0∩s1∩· · ·∩sn �= ∅. Then this set
of elements could be ordered according to the order of numbersσ(s0), σ (s1), . . . , σ (sn),
and the smallest element of the set{s0, s1, . . . , sn} is called thebasic element. We always
assume thats0 is the basic element of the set{s0, s1, . . . , sn}. We will use the following
notations

[s0, s1, . . . , sn] =X \
⋃{

Σ \ {s0, s1, . . . , sn}
}
,

〈s0, s1, . . . , sn〉 = (s0 ∩ s1 ∩ · · · ∩ sn) ∩Σ(n).

One should understand the set[s0, . . . , sn] as closedn-dimensional “simplex” with interior
〈s0, s1, . . . , sn〉 and boundary

⋃n
m=0[s0, s1, . . . , ŝm, . . . , sk]. It is easy to check thatΣ(n) =⋃[si0, si1, . . . , sin ] and

[s0, . . . , sn] =
n⋃

m=0

[
s0, . . . , ŝm, . . . , sk

] ∪ 〈s0, . . . , sn〉.

Let us construct the mappingf on the setΣ(0) which is a discrete collection of sets of
the type[s0]. We definef independently on every such a set. For a set[s0] we take a point
p ∈ F([s0]) and putf ([s0])= p.

Let us extendf to arbitrary nonempty set〈s0, s1〉. For i = 0,1 we have〈si〉 ⊂ u
σ(si)
λ(si)

and

thenf (〈si〉) ⊂ U
σ(si)
λ(si)

by property (3). According to the choice 2, we takeµ ∈Mσ(s0)−1

such that

[s0, s1] ⊂ St
(
u
σ(s0)
λ(s0)

, uσ(s0)
) ⊂ vσ(s0)−1

µ and

f
([s0]) ∪ f ([s1]) ⊂ V σ(s0)−1

µ .



390 N. Brodsky, A. Chigogidze / Topology and its Applications 125 (2002) 385–391

Choice 1 gives usλ= λ(µ), a setUσ(s0)−1
λ and[L]-extension

eσ(s0)−1
µ :

(
Ṽ σ (s0)−1
µ ,Wσ(s0)−1

µ

) → (
V σ(s0)−1
µ ,U

σ(s0)−1
λ

)
.

Since the mappingeσ(s0)−1
µ |

Ṽ
σ (s0)−1
µ

is [L]-soft, we can lift the mapf |[s0]∪[s1] : [s0] ∪
[s1] → V

σ(s0)−1
µ to a mapg : [s0] ∪ [s1] → Ṽ

σ (s0)−1
µ . Now extendg to a mapping

g̃ : [s0, s1] →W
σ(s0)−1
µ and definef |[s0,s1] aseσ(s0)−1

µ ◦ g̃.
We can continue our construction so that the extension to a set〈s0, s1, . . . , sm〉 uses

[L]-extensioneσ(s0)−1
µ and goes throughWσ(s0)−1

µ resulting asf |[s0,...,sm] = e
σ(s0)−1
µ ◦ g̃.

Therefore, the setf ([s0, . . . , sm]) is contained inUσ(s0)−1
λ while the set[s0, . . . , sm] lies in

u
σ(s0)−1
λ . Note that both indexesλ andµ depend only on the basic elements0 and do not

depend onm. So,[L]-extensioneσ(s0)−1
µ is a “rule” for constructing mapping on each set

〈s0, . . . , sm〉 with basic elements0.
Suppose that the mapf is constructed onΣ(k−1). Let us extendf independently

to every set of type〈s0, . . . , sk〉. Since the differenceΣ(k) \ Σ(k−1) is covered by a
discrete family of such sets, it follows that the so obtained extension off to Σ(k)

would be continuous. Assume thats1 is basic element of the set{s1, s2, . . . , sk}. Then
the setf (〈s1, . . . , sk〉) lies in someUσ(s1)−1

λ1
and uσ(s1)−1

λ1
contains[s1, . . . , sk]. Since

σ(s1)− 1 � σ(s0), the setf (〈s1, . . . , sk〉) lies inV σ(s0)−1
µ by property (5). Let

G=
⋃

1�m�k

[
s0, s1, . . . , ŝm, . . . , sk

]
.

Then, by our construction,f |G has a liftg :G→W
σ(s0)−1
µ . Note that

f
( 〈s1, . . . , sk〉 ∩G) ⊆ V σ(s0)−1

µ = V
σ(s0)−1
µ .

Since the mappingeσ(s0)−1
µ : Ṽ σ (s0)−1

µ → V
σ(s0)−1
µ is [L]-soft, we extend the liftg to the set

〈s1, . . . , sk〉. Now extend it to a mappingg : [s0, . . . , sk] →W
σ(s0)−1
µ and definef |[s0,...,sk]

as the compositioneσ(s0)−1
µ ◦ g.

It only remains to note that the local finiteness ofΣ guarantees the continuity of the
above constructed mapf . Proof is completed.

In conclusion authors would like to thank the referee for several helpful suggestions.
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