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Abstract

In this work the second-order generalized forced Liénard equation x ′′ + (
f (x)+ k(x)x ′) x ′ + g(x) = p(t) is considered and a

new condition for guaranteeing the existence of at least one periodic solution for this equation is given.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In this work we investigate the existence of periodic solutions for a class of second-order generalized forced Liénard
equations

x ′′ + (
f (x)+ k(x)x ′) x ′ + g(x) = p(t), (1.1)

where f, k, and g are real functions on R and p is a T -periodic real function on [0, T ], T > 0. Generalized forced
Liénard equations appear in a number of physical models and an important question is whether these equations can
support periodic solutions. This question has been studied extensively by a number of authors; see for example [1–9].
In particular, there are some existence and multiplicity results for such equations with nonconstant forced terms; see
for example [10–19]. In this direction, we will obtain a new condition to guarantee the existence of at least one periodic
solution for (1.1) with a nonconstant forced term. The main purpose of this work is to prove the following result:

Main Theorem. Suppose f, k, and g are real functions on R which are locally Lipschitz and p is a nonconstant,
continuous, T -periodic real function on [0, T ], T > 0. Also suppose all solutions of the initial value problem (1.1)
can be extended to [0, T ]. If there exist real numbers a1 and a2 for which g(a1) ≤ p(t) ≤ g(a2) holds for each
0 ≤ t ≤ T , then Eq. (1.1) has at least one periodic solution.
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The rest of the work is organized as follows. In Section 2, we prove that (1.1) has a unique solution satisfying
certain conditions by applying Schauder’s Fixed Point Theorem. In Section 3, the existence of at least one periodic
solution for (1.1) when g has the property mentioned in the Main Theorem is proved.

2. An existence and uniqueness type result

We start this section by recalling a famous fixed point theorem which was originally due to Schauder: Let X be a
Banach space and Ω be a closed, bounded, and convex subspace of X . If S : Ω → Ω is a compact operator, then S
has at least one fixed point on Ω .

We now state and prove the following existence and uniqueness type result which is a key tool for proving the Main
Theorem.

Proposition 2.1. Let a1 < a2 and B > 0 be real numbers and consider A = max{2|a1|, 2|a2|}. Suppose f, k, and
g are real functions on R which are locally Lipschitz and at least one of the f, k, or g is nonconstant on |x | ≤ A;
and p is a continuous T -periodic real function on [0, T ], T > 0. Also suppose M0 is the maximum value of |p| on
[0, T ]; M1,M2,M3 are the maximum values of | f |, |k|, |g| on |x | ≤ A; and M ′

1,M ′
2,M ′

3 are the Lipschitz constants
of f, k, g on |x | ≤ A, respectively. Consider

M = 2

M ′
2 B2 + (2M2 + M ′

1)B + M ′
3 + M1

,

N = 1

M2 B2 + M1 B + M3 + M0
, and 0 < T0 < min

{
T, 2

√
AN , 2B N, 2

√
M + 1 − 2

}
.

Then for each a1 ≤ b ≤ a2, Eq. (1.1) has a unique solution x(t), satisfying

x(0) = x(T0) = b, (2.1)

for which |x(t)| ≤ A and |x ′(t)| ≤ B hold for each 0 ≤ t ≤ T0.

Proof. Consider the equation x ′′ = 0 with boundary condition x(0) = x(T0) = b. The existence of a Green’s function
for a typical two-endpoint problem was suggested by a simple physical example in [20] and is as follows:

G(t, s) =
{

s(t − T0)/T0 : if 0 ≤ s ≤ t ≤ T0,

t (s − T0)/T0 : if 0 ≤ t ≤ s ≤ T0.

If we now consider the integral equation

x(t) = b +
∫ T0

0
G(t, s)

((
f (x(s))+ k(x(s))x ′(s)

)
x ′(s)+ g(x(s))− p(s)

)
ds, (2.2)

then it is easy to see that the solutions of (2.2) are exactly the solutions of (1.1) satisfying (2.1). Hence, to prove the
proposition, it is enough to show that (2.2) has a unique solution x(t) satisfying |x(t)| ≤ A and |x ′(t)| ≤ B for each
0 ≤ t ≤ T0. In order to do so, suppose X = C1([0, T0],R), and for φ ∈ X define

‖φ‖ = max
0≤t≤T0

|φ(t)| + max
0≤t≤T0

|φ′(t)|.

It is clear that X is a Banach space. Now, consider

Ω = {
φ ∈ X : |φ(t)| ≤ A and |φ′(t)| ≤ B hold for each 0 ≤ t ≤ T0

}
,

which is obviously a closed, bounded, and convex subspace of X . Define the operator S : Ω → X by mapping φ to
S(φ), where S(φ) is defined by

S(φ)(t) = b +
∫ T0

0
G(t, s)

((
f (φ(s))+ k(φ(s))φ′(s)

)
φ′(s)+ g(φ(s))− p(s)

)
ds.
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First, we show that S maps Ω into itself. In order to do this, note that for each x, x ′, and t such that
|x | ≤ A, |x ′| ≤ B , and 0 ≤ t ≤ T0 we have∣∣( f (x)+ k(x)x ′) x ′ + g(x)− p(t)

∣∣ ≤ M2 B2 + M1 B + M3 + M0

= 1

N
. (2.3)

Also for each 0 ≤ t ≤ T0 we have∫ T0

0
|G(t, s)|ds = 1

2
t (T0 − t) ≤ T0

2

8
, and

∫ T0

0

∣∣∣∣ ∂∂ t
G(t, s)

∣∣∣∣ ds = 1

T0
t2 − t + 1

2
T0 ≤ T0

2
.

Hence (2.3) implies that for each φ ∈ Ω and 0 ≤ t ≤ T0,

|S(φ)(t)| ≤ |b| + 1

N

∫ T0

0
|G(t, s)|ds

≤ |b| + T0
2

8N

≤ A

2
+ A

2
= A, and

|S(φ)′(t)| ≤ 1

N

∫ T0

0

∣∣∣∣ ∂∂ t
G(t, s)

∣∣∣∣ ds

≤ T0

2N
≤ B.

These mean that for each φ ∈ Ω , S(φ) ∈ Ω and therefore S is an operator from Ω to Ω .
Next, we show that S is a compact operator on Ω . For this, it is enough to show that each bounded sequence {φn}

on Ω has a subsequence {φni } for which {S(φni )} is convergent on Ω . Therefore, let {φn} be a given sequence on Ω
which is automatically bounded by definition of Ω . Suppose ε > 0 is given. Since G is a uniformly continuous
function on [0, T0] × [0, T0], there exists δ, 0 < δ < εN , such that (t1, s1), (t2, s2) ∈ [0, T0] × [0, T0] and√
(t1 − t2)2 + (s1 − s2)2 < δ imply that |G(t1, s1) − G(t2, s2)| < εN/2T0. By applying (2.3) we now conclude

that for each n and for each t1, t2 ∈ [0, T0], if |t1 − t2| < δ, then

|S(φn)(t1)− S(φn)(t2)| ≤ 1

N

∫ T0

0
|G(t1, s)− G(t2, s)|ds < ε, and

|S(φn)
′(t1)− S(φn)

′(t2)| ≤ 1

N

∫ T0

0

∣∣∣∣ ∂∂ t
G(t1, s)− ∂

∂ t
G(t2, s)

∣∣∣∣ ds = 1

N
|t1 − t2| < ε.

Hence {S(φn)(t)} and {S(φn)
′(t)} are equicontinuous families of functions on [0, T0] and by the classical

Ascoli–Arzela Theorem, there exists a subsequence {φni (t)} of {φn(t)} for which {S(φni )(t)} and {S(φni )
′(t)} are

uniformly convergent on [0, T0]. This shows that {S(φni )} is convergent on Ω and so S is a compact operator.
Therefore, by Schauder’s Fixed Point Theorem, there exists φ ∈ Ω such that S(φ) = φ. So for each 0 ≤ t ≤ T0,

we have S(φ)(t) = φ(t) which is to say

φ(t) = b +
∫ T0

0
G(t, s)

(
( f (φ(s))+ k(φ(s))φ′(s))φ′(s)+ g(φ(s))− p(s)

)
ds.

This means that φ ∈ Ω is a solution of (2.2). Therefore φ is a solution of (1.1) which satisfies (2.1) in such a way that
|φ(t)| ≤ A and |φ′(t)| ≤ B for each 0 ≤ t ≤ T0.

We now show that φ is the unique solution of (1.1) which satisfies the above conditions. Suppose ψ is another
solution of (1.1) which satisfies the boundary condition (2.1) such that |ψ(t)| ≤ A and |ψ ′(t)| ≤ B hold for each
0 ≤ t ≤ T0. This means that ψ ∈ Ω , ψ 
= φ, and S(ψ) = ψ . By the locally Lipschitz condition for f, k, and g, note
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that for each x, y, x ′, y ′, and t such that |x | ≤ A, |y| ≤ A, |x ′| ≤ B, |y ′| ≤ B , and 0 ≤ t ≤ T0 we have∣∣(( f (x)+ k(x)x ′) x ′ + g(x)− p(t)
)− ((

f (y)+ k(y)y ′) y ′ + g(y)− p(t)
)∣∣

= | ( f (x)− f (y)) x ′ + f (y)(x ′ − y ′)+ (k(x)− k(y)) x ′2 + k(y)(x ′2 − y ′2)+ g(x)− g(y)|
≤ (M ′

2 B2 + M ′
1 B + M ′

3)|x − y| + (2M2 B + M1)|x ′ − y ′|.
Therefore by the above inequality, for each 0 ≤ t ≤ T0,

|S(φ)(t)− S(ψ)(t)| ≤ T0
2

8

(
M ′

2 B2 + (2M2 + M ′
1)B + M ′

3 + M1

)
‖φ − ψ‖

= T0
2

8

2

M
‖φ − ψ‖

= T0
2

4M
‖φ − ψ‖, and

|S(φ)′(t)− S(ψ)′(t)| ≤ T0

2

(
M ′

2 B2 + (2M2 + M ′
1)B + M ′

3 + M1

)
‖φ − ψ‖

= T0

2

2

M
‖φ − ψ‖

= T0

M
‖φ − ψ‖.

Hence,

‖φ − ψ‖ = ‖S(φ)− S(ψ)‖
= max

0≤t≤T0
|S(φ)(t)− S(ψ)(t)| + max

0≤t≤T0
|S(φ)′(t)− S(ψ)′(t)|

≤
(

T0
2

4M
+ T0

M

)
‖φ − ψ‖.

Therefore we obtain T0
2 + 4T0 ≥ 4M , or T0 ≥ 2

√
M + 1 − 2 which is contradictory with the definition of T0. So φ

is the unique solution of (1.1), satisfying the given conditions. �
The above proposition implies the following existence result.

Corollary 2.2. Let k be a locally Lipschitz real function on R which is nonconstant on each compact interval. Then
for each given T0 > 0 and b, the following boundary value problem:{

x ′′ + k(x)x ′2 = 0,
x(0) = x(T0) = b,

has a solution.

Proof. We apply Proposition 2.1 with p = 0, say defined on [0, T ], T > 0. Suppose a1 and a2 are two real numbers
such that a1 < b < a2 and consider A = max{2|a1|, 2|a2|}. Let B > 0 be arbitrary. Suppose M2 is the maximum
value of |k| on |x | ≤ A and M ′

2 is the Lipschitz constant of k on |x | ≤ A. Consider

M = 2

M ′
2 B2 + 2M2 B

,

N = 1

M2 B2 ,

and choose B small enough and also T large enough such that

T0 < min

{
T,

2
√

A

B
√

M2
,

2

M2 B
, 2

√
2

M ′
2 B2 + 2M2 B

+ 1 − 2

}
.

Proposition 2.1 now implies that the given boundary value problem has a solution. Note that this solution with
restrictions |x(t)| ≤ A and |x ′(t)| ≤ B for each 0 ≤ t ≤ T0 is unique. �
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3. Proof of the Main Theorem

In this section we prove the Main Theorem. By the assumption we conclude a1 
= a2 and so without loss of
generality we can suppose that a1 < a2. Define the functions g̃ and ĝ, which are obviously locally Lipschitz, as
follows:

g̃(x) =
{

g(x) : if x ≤ a1,

g(a1)+ a1 − x : if x > a1,

and

ĝ(x) =
{

g(x) : if x ≥ a2,

g(a2)+ a2 − x : if x < a2.

Consider A = max{2|a1|, 2|a2|} and suppose B > 0 is arbitrary. Let M0 be the maximum value of |p| on [0, T ]; M1,
M2, M3, M̃3, M̂3 be the maximum values of | f |, |k|, |g|, |g̃|, |ĝ| on |x | ≤ A; and M ′

1, M ′
2, M ′

3, M̃ ′
3, M̂ ′

3 be the
Lipschitz constants of f, k, g, g̃, ĝ on |x | ≤ A, respectively. Consider

M = 2

M ′
2 B2 + (2M2 + M ′

1)B + M ′
3 + M1

,

N = 1

M2 B2 + M1 B + M3 + M0
,

M̃ = 2

M ′
2 B2 + (2M2 + M ′

1)B + M̃ ′
3 + M1

,

Ñ = 1

M2 B2 + M1 B + M̃3 + M0
,

M̂ = 2

M ′
2 B2 + (2M2 + M ′

1)B + M̂ ′
3 + M1

,

N̂ = 1

M2 B2 + M1 B + M̂3 + M0
, and

0 < T0 < min{L, L̃, L̂}, where

L = min
{

T, 2
√

AN , 2B N, 2
√

M + 1 − 2
}
,

L̃ = min

{
T, 2

√
AÑ , 2B Ñ , 2

√
M̃ + 1 − 2

}
, and

L̂ = min

{
T, 2

√
AN̂ , 2B N̂ , 2

√
M̂ + 1 − 2

}
.

Proposition 2.1 now implies that for each a1 ≤ b ≤ a2, the Eq. (1.1) has a unique solution, say xb(t), satisfying
xb(0) = xb(T0) = b for which |xb(t)| ≤ A and |x ′

b(t)| ≤ B hold for each 0 ≤ t ≤ T0.

Lemma 3.1. For each 0 ≤ t ≤ T0, we have xa1(t) ≤ a1 < a2 ≤ xa2(t).

Proof. First, we prove that xa1(t) ≤ a1 holds for each 0 ≤ t ≤ T0. By Proposition 2.1, the equation

x ′′ + (
f (x)+ k(x)x ′) x ′ + g̃(x) = p(t)

has a unique solution x(t) satisfying x(0) = x(T0) = a1 for which |x(t)| ≤ A and |x ′(t)| ≤ B hold for each
0 ≤ t ≤ T0. We claim that x(t) ≤ a1 holds for each 0 ≤ t ≤ T0. Suppose, for the purpose of a contradiction, there
exists a point 0 ≤ t̃ ≤ T0 such that x(t̃) > a1. Therefore the function x(t)−a1 has a positive maximum on the interval
(0, T0), say at t1. Hence (x(t)− a1)

′|t=t1 = 0, or x ′(t1) = 0. Therefore we have established

x ′′(t1) = − (
f (x(t1))+ k(x(t1))x

′(t1)
)

x ′(t1)− g̃(x(t1))+ p(t1)

= −g̃(x(t1))+ p(t1)
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= −g(a1)− a1 + x(t1)+ p(t1)

= (p(t1)− g(a1))+ (x(t1)− a1)

> 0.

This implies that (x(t) − a1)
′′|t=t1 > 0, which is a contradiction since x(t)− a1 has a maximum at t1. Therefore for

each 0 ≤ t ≤ T0, x(t) ≤ a1 and so by the definition of g̃, g̃(x(t)) = g(x(t)) holds for each 0 ≤ t ≤ T0. This means
that x(t) is a solution of (1.1) satisfying x(0) = x(T0) = a1 for which |x(t)| ≤ A and |x ′(t)| ≤ B hold for each
0 ≤ t ≤ T0. The uniqueness property now implies that for each 0 ≤ t ≤ T0, x(t) = xa1(t) and so xa1(t) ≤ a1 holds
for each 0 ≤ t ≤ T0.

Next, we prove that a2 ≤ xa2(t) holds for each 0 ≤ t ≤ T0. By Proposition 2.1, the equation

x ′′ + (
f (x)+ k(x)x ′) x ′ + ĝ(x) = p(t)

has a unique solution x(t) satisfying x(0) = x(T0) = a2 for which |x(t)| ≤ A and |x ′(t)| ≤ B hold for each
0 ≤ t ≤ T0. We claim that a2 ≤ x(t) holds for each 0 ≤ t ≤ T0. Suppose, for the purpose of a contradiction, there
exists a point 0 ≤ t̂ ≤ T0 such that a2 > x(t̂). Therefore the function x(t)−a2 has a negative minimum on the interval
(0, T0), say at t2. Hence (x(t)− a2)

′|t=t2 = 0, or x ′(t2) = 0. Therefore we have established

x ′′(t2) = − (
f (x(t2))+ k(x(t2))x

′(t2)
)

x ′(t2)− ĝ(x(t2))+ p(t2)

= −ĝ(x(t2))+ p(t2)

= −g(a2)− a2 + x(t2)+ p(t2)

= (p(t2)− g(a2))+ (x(t2)− a2)

< 0.

This implies that (x(t)− a2)
′′|t=t2 < 0, which is a contradiction since x(t)− a2 has a minimum at t2. Therefore for

each 0 ≤ t ≤ T0, a2 ≤ x(t) and so by the definition of ĝ, ĝ(x(t)) = g(x(t)) holds for each 0 ≤ t ≤ T0. This means
that x(t) is a solution of (1.1) satisfying x(0) = x(T0) = a2 for which |x(t)| ≤ A and |x ′(t)| ≤ B hold for each
0 ≤ t ≤ T0. The uniqueness property now implies that for each 0 ≤ t ≤ T0, x(t) = xa2(t) and so a2 ≤ xa2(t) holds
for each 0 ≤ t ≤ T0. �

Lemma 3.2. There exists b̂, a1 ≤ b̂ ≤ a2, such that x ′
b̂(0) = x ′

b̂(T0).

Proof. Define the function θ on [a1, a2] by

θ(b) = x ′
b(0)− x ′

b(T0).

Using the Ascoli–Arzela Theorem, one may easily verify that both xb(t) and x ′
b(t) are continuous on [0, T0]×[a1, a2].

This implies that θ is continuous also. On the other hand, note that for i ∈ {1, 2},
x ′

ai
(0) = lim

t→0+
xai (t)− ai

t
, x ′

ai
(T0) = lim

t→0+
ai − xai (T0 − t)

t
,

and therefore,

θ(ai) = x ′
ai (0)− x ′

ai (T0)

= lim
t→0+

xai (t)+ xai (T0 − t)− 2ai

t
.

So by Lemma 3.1, we obtain θ(a1) ≤ 0 and θ(a2) ≥ 0. Hence there exists b̂, a1 ≤ b̂ ≤ a2, such that θ(b̂) = 0, or
x ′

b̂(0) = x ′
b̂(T0). �

Therefore xb̂(t) is a solution of (1.1) satisfying the following periodic boundary conditions:

xb̂(0) = xb̂(T0),

x ′
b̂(0) = x ′

b̂(T0).

By a method similar to the one used in [21], we now extend xb̂(t) periodically with period T0 to obtain a periodic
solution of the Eq. (1.1). Note that this periodic solution is nontrivial, since p is a nonconstant forced function. �
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