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Abstract

This paper investigates the role of structure on Young’s modulus of open cell materials of relative densities between 0.1
and 0.3. The cellular solid is obtained by generating mixture size of spherical voids using the Random Sequential Addition
– RSA algorithm. The relative density of the material is controlled by increasing void number and overlap. Structural
effects consider mainly a Gaussian distribution of spherical void size of varying width, distribution centre and void overlap
distance. Finite element method is used to calculate effective Young’s modulus using a regular meshing scheme of 3D typ-
ical cellular solids and Conjugate Gradient solver. It is found that sphere overlap has the largest effect compared to sphere
distribution width for a given density. A large scatter in the wall thickness distribution is predicted when overlapping is
increased or when the width of sphere size distribution is decreased. Increased rigidity is found to be correlated to partic-
ular arrangement of mixture size spheres which is pointed out using the Pair Correlation Function. Experimental evidence
of the role of void overlapping is treated in the case of bread crumbs structures determined using X-ray tomography. The
scatter of effective Young’s modulus for a given relative density is sensitive to void overlapping.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Cellular solids and particularly foams are used in many applications where thermal insulation, light weight
structures, filtering, flotation are needed. A basic understanding of the mechanical properties of cellular solids
is a prerequisite to allow product design with improved end-uses properties.

Linear elasticity of open-cell and close-cell foams was already described (Gibson and Ashby, 1997; Evans
et al., 1998; Roberts and Garboczi, 2001; Roberts and Garboczi, 2002). Power laws relating the mechanical
properties to the relative density were suggested, either numerically, or experimentally. But they concern gen-
erally ordered materials and arrangements with small cell wall irregularities (Chen et al., 1999) or with struc-
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tural imperfections (Grenestedt, 1998). Attempts to consider the random structure of open-cell structures were
undertaken (Poutet et al., 1996; Roberts and Garboczi, 2002). However, few of them considered the charac-
terisation of the complex network of the void structures in terms of structural attributes. In this paper, the
random void media is represented by random arrangement of spherical voids. The idea is to control both cell
size distribution and void connectivity parameters of the open cellular solid, in addition to relative density.
Then, these structural attributes are related to the effective Young’s modulus in order to suggest improvement
of the scaling law relating the mechanical properties to the relative density of the cellular solid.

This approach is all the more important in the field of biopolymer based solid foams for which the exper-
imental generation of cellular structures with controlled characteristics is still a challenge (Kanit et al., 2006).
Furthermore, their mechanical properties, specially for food products (bread, biscuits, etc.) which have gen-
erally a very low relative density (<0.3), control the texture and, finally, consumer’s acceptance.
2. Mathematical model

2.1. Void structure generation

In many situations, cellular solids exhibit major structural changes during material processing. One of the
major processes is foaming by bubble nucleation, growth and coalescence upon supersaturated solution of gas
dissolved in a matrix (Amon and Denson, 1984). Random packing of spherical voids is then a realistic model
to generate such foam structure. In this study, the RSA is used as it represents a good approximation of bub-
ble arrangements induced by such processes, as illustrated by the comparison between cellular structures gen-
erated using this technique and the image of a bread crumb determined using X-ray tomography (Fig. 1). A
review of the Random Sequential Addition (RSA) algorithm can be found in works by Evans (1993), Talbot
et al. (1991), for instance.

Random packing of non-overlapping spheres has been shown to lead to relative density of the solid foam
larger than 0.4 (Lavalle et al., 1999; Williams and Philipse, 2003; Donev et al., 2004; Gan et al., 2004). The
largest fraction of sphere arrangement related to random close packing (RCP) is 0.64 for spheres of equal size
(Williams and Philipse, 2003; Donev et al., 2004), whereas with ordered packing like fcc or hcp lattices, it
reaches about 0.74. Then, material relative density is larger than 0.26, which is still large regarding the field
of applications of solid foams.

Nevertheless, such a technique leads to low sphere fractions (less than 0.64) and, in some conditions,
requires large sample size in order to guarantee the isotropy of the structures (Clarke and Wiley, 1987). Thus,
the use of the RSA to generate open cell structures requires a specific handling of the cells size if low relative
density (<0.3) is aimed.

The technique is improved to randomly generate spherical voids of different sizes, according to a Gaussian
distribution of voids with controlled centre position r0 and width r/r0, expressed with respect to r0 (Fig. 1a).
Periodic boundary conditions are used so that any sphere in contact with any face of the volume is replicated
in the opposite face. The use of such type of boundary conditions allows to minimize the required sample size.

In order to lower the density of the material, void spheres of various sizes are mixed and allowed to overlap
at a controlled distance using the RSA technique. This is obtained with an inter-sphere spacing lower than the
sum of sphere radii. Thus, we define an overlap distance d by the distance from centre to centre Cij separating
the centres of adjacent sphere i and j minus the sum of sphere radii ri and rj:
d ¼ Cij � ðri þ rjÞ ð1Þ
d takes negative values when spheres overlap, which is always the case if relative density is lower than 0.36
(i.e., void fraction larger than 0.64 in the case of monomodal void sphere distribution). In the following,
we refer to large overlap when d is negative and has a large absolute value.

The packing starts by selecting a random position of the first sphere. Further sphere addition is allowed if
the distance between any of the existing spheres and the new one is larger than the overlap distance. In our
RSA algorithm, if an addition of a sphere is not possible over 105 trials, the whole sphere configuration is
rejected. This event occurs especially in the case of a large number of spheres and lowest relative densities,



Fig. 1. Cellular structure generated using random sequential addition (RSA) algorithm showing (a) spherical packing, (b) virtual 3D
structure and (c) a 3D image of a bread dough determined using X-ray tomography (relative density = 0.4, volume = 0.7 cm3) (ESRF-
Grenoble, France).
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because few sphere configurations are available. Large overlaps values allow to vary the relative density over a
large range.

The generated solid foam is represented by a 3D image discretized by a cubic grid which contains a max-
imum number of voxels V. The void structure is created by counting up the voxel units in the spheres knowing
their positions and radius, so that each remaining voxel corresponds to a solid element (Roberts and Garboczi,
2001, 2002). The amount of solid elements defines the relative density (q), which is calculated as the sum of
solid units in the cellular structure:
q ¼
X

i=V ð2Þ
where i is a solid phase element. V is the total volume of the solid expressed in voxels.
Overlap distance and size distribution are both parameters of the relative density. But they also modify

the number of void spheres required to obtain the cellular structure, as illustrated in Fig. 2. Relative density
values lower than 0.3 cannot be obtained for jdj < 3 voxels in these conditions. Each sphere configuration is
validated if the number of trials necessary to find a position for any sphere in the structure does not reach
105. Then, five structures are generated for each configuration to obtain the variability of the overall density
at a fixed value of the number of sphere voids. Changing the number of spheres would modify slightly the
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effective properties. At this stage, the variability of sphere number is not described in the ensuing discussion
and all it stands for.

The variability of relative density depends on d value and represents 1% for small overlaps (jdj > 3) and 6%
for large overlaps (jdj > 5). Overall, the smallest possible q value is also sensitive to void size distribution
parameters (r0, r/r0). In the case of large r0 and small r/r0 values, lowest q values are obtained with large over-
lap distances d.

When jdj values are small, typically less than 2% with respect to the sample size, low values of relative den-
sity are obtained only when a transition occurred from fully random to slightly ordered packing. The long-
range ordering appears mostly as a finite-size effect which can be avoided by using large sample sizes (Sher-
wood, 1997).

The time spent to generate spheres is also a matter of concern as RSA technique is known to be time con-
suming. For example, when applying the conditions (relative density q = 0.2, distribution centre r0 = 7.14, dis-
tribution width r/r = 0.1), only 20 trials per sphere position are needed to obtain the void structure for
d = �10, whereas this number increases to 102 for d = �7 and to 104 for d = �5. So, obtaining ordered struc-
tures with small overlaps is meaningful because a reasonable simulation time of sphere packing is obtained
only with small box sizes, which favours ordered structures (Sherwood, 1997).

Fig. 3a shows the number of void spheres for a typical volume V = 1003 and three different values of rel-
ative density. The number of spheres is less than 300 for the distribution centre r0 = 14.29, which means that,
in such distributions, large spheres are not well represented, statistically. Meanwhile, with r0 = 7.14, large
numbers of large spheres are available but smaller ones are less spherical, because of voxel size. The radii
gap noticed between r = 9 and r = 11 is due to the truncation performed to preserve void size distribution
symmetry. Indeed, the simulated distributions are characterized by tail truncation because large spheres
add large volume fraction, as shown by the sphere volume distribution represented for various relative density
values in Fig. 3b. Selecting large radii classes are no more possible when the associated sphere number is lower
than unity, so, truncation is also imposed to small size classes in order to guarantee the distribution symmetry.
Increasing the distribution width increases the number of spheres per unit volume, for a given relative density
(Fig. 3c).

2.2. Wall thickness distribution

The main characteristics of the open cell structures are calculated for different sphere distribution widths
and overlap distances. The first structural attribute calculated is the wall thickness. Cell wall size distribution
is obtained using 3D granulometry analysis. An iterative process is applied on binarised structures using suc-
cessive erosion and dilation operators with an octahedral structuring element which size is associated to wall
thickness class (Russ, 1990; Jahne, 1997). Histograms are obtained representing the volumic fraction of solid
phase are obtained as function of wall thickness value.
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Fig. 3. (a) Cumulative number of spherical voids as function of sphere radius for two size distribution centres showing the spherical void
number used to generate cellular solids. (b) Volume distribution as function of relative density. (c) Cumulative number of spherical void as
function of sphere radius for various distribution widths.
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Fig. 4 shows wall thickness distributions for various values of relative density, sphere distribution width
and overlap distance. Broader distributions are associated to large q values. Assuming the condition
(d = �20, r0 = 14.29, r/r = 0.1), average wall thickness increases from 12 to 22 units for q increasing from
0.10 to 0.38. Despite the wall thickness increase, the cellular structures still remains open.

A less significant influence is found for sphere width distribution on wall thickness distribution (Fig. 4b).
When r/r decreases from 0.4 to 0.1, average wall thickness is found to increase from 8.2 to 10.5. Size distri-
butions exhibit large end tails including classes of larger size, suggesting that large scatter of wall thickness
values is correlated to lower r/r values and that ‘‘sphere packing” is improved when radii are more dispersed.
Here, packing is related to the lowest distance which allows spheres to be close to each other. This argument
has a special meaning which is treated in details when calculating the Pair Correlation Functions (PCF) of the
open structures.

Fig. 4c shows the effect of overlap distance on wall thickness. An increase of jdj is found to shift the whole
distribution towards large thickness classes, and average thickness varies from 7.5 to 12.25 when jdj increases
from 10 to 20), which suggests an increase of the disorder of cellular structures, as further assessed by the PCF.
Overall, d has more significant effect on cellular structure, than q and r/r parameters.
2.3. Pair correlation function

In order to describe the characteristics of sphere overlapping, the pair correlation function g(r) is used as a
second structural attribute (Stillinger and Torquato, 2004). This function is related to the probability of find-
ing the centre of a given sphere at a given distance from the centre of another sphere.
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gðrÞ ¼

P
i

P
j 6¼i

Dhr�Ciji
� �

4pr2dr
N tot

V

ð3Þ
where Ntot is the total number of spheres in the volume V. Cij has the same meaning as in (Eq. (1)).
This function is roughly characterized by nearest neighbour peaks, followed by possible secondary peaks, if

the cellular structure has any cell order. In particular, random or glass like structures are characterized by a
short distance peak and vanishing fluctuations towards g(r) = 1 when r increases. Multiple peak profile indi-
cates that the structure displays a long range order, like crystallinity for instance. Thus, g(r) is used here to
assess the randomness of cell distribution or the tendency to organised packing.
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In fact, analytical expressions for g(r) are available for several random media models such as Boolean mod-
els (Mattfeldt and Stoyan, 2000; Monetto and Drugan, 2004). However, g(r) evaluation assumes that we are
able to compute the two-point phase probability function (Quintanilla, 2006). This is a quite difficult task, if
we consider that RSA is a selective process, for which the phase probability function depends on generation
time. Even if this problem is solved, analytical expressions are normally not available in the case where void
polydispersity is implemented (Quintanilla, 2006).

Fig. 5 shows two examples of PCF for different values of r/r and d parameters. Here, we use the cor-
rection g(r) � 1 instead of g(r). A zero value tail is found common to all sketches indicating the absence
of sphere centres at short distances (r < 5 voxels). This limiting distance depends on d, r0 and r/r. Indeed,
the tail is wide when jdj is small (Fig. 5a) or when r/r is large (Fig. 5b). Both results indicate a repulsive
character of the sphere overlapping following (Eq. (1)), either for larger void size distribution or for decreas-
ing the absolute value of overlap distance. The presence of a large first peak in the case of d = �20 dem-
onstrates the large disordered cellular structure pointed out by the predicted large variability in wall
thickness distribution (Fig. 4c).
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Randomness decreases when the ratio r/r increases (Fig. 5b), indicating that large spheres tends to be sur-
rounded by small spheres and reciprocally. Thus, a tendency to organized overlapping occurs with large r/r
values.
3. Finite element calculation

3.1. Meshing, boundary conditions and computation time

Finite element method (FEM) is used to estimate the relative Young’s modulus E of the cellular structures.
The ANSYS1 code is used to solve the linear elastic problem for homogeneous isotropic conditions of the solid
phase. The elastic energy is minimised, through an iterative process, using a preconditioned conjugate gradient
solver (PCG). The density of the solid phase is given an arbitrary value, and only relative density q is modified.
Young’s modulus of the solid material is attributed an arbitrary value and the result of computations is a rel-
ative Young’s modulus value. The periodic boundary conditions are used with a combination of a finite dis-
placement applied on given face nodes, and fully constrained nodes against displacement on the opposite face
through the same axis. These conditions correspond to a uniaxial compression test. For example, loading in X
direction assumes that UX = 0 for X = 0 and UX = U for X = L where L is the edge length. Constraint equa-
tions are UYi + UYj = 0 and UZi + UZj = 0 for homologue nodes i,j belonging to lateral faces.

The solid phase of the open cell structures is meshed using the structured mesh generation technique (Top-
ping et al., 2000; Maire et al., 2003) assuming that each voxel is a 8-node cubic element (Solid45 under
ANSYS). Such meshing does not provide the best quality meshing compared to irregular schemes but it avoids
significant meshing errors in the case of impenetrable particles models. It is assumed that the material elasticity
model is isotropic.

The discretisation level of the system corresponds to the maximum number of elements per edge for a fixed
volume V = L3. It corresponds to the spatial resolution used for the microscopic analysis, like X-ray micro-
tomography for instance (Kanit et al., 2003).

For q < 0.2, a typical grid V = 1503 on a 3 GHz computer with 1 Gbytes of RAM gives a calculation time
of 210 min. A smaller grid (1003) allows a relative error, with respect to the modulus (Fig. 6a), lower than 10%
for q P 0.2 with typical runs taking less than 60 min.

Fig. 6b–d illustrate typical structures under different discretisation levels for a given density and void sphere
distribution (q = 0.1,r/r = 0.1,). In the case of Fig. 6b, some discontinuities in the solid phase appear and this
may affect significantly the finite element calculation. Even for the largest discretisation levels (Fig. 6c and d),
some discontinuities still remain which are correlated to the amount of missing walls in the structure. One way
to avoid discontinuity effects is to keep only the largest connected solid object. However, with this method,
large variations of relative density are expected, especially with large overlap distances. The other way, as
much arbitrary, is to introduce link units which do not induce large variation of relative density and keep
the main characteristics of the cellular solid. In the following, this methodology is experienced.
3.2. Meshing resolution and determination of REV in FE calculation

The resolution and the REV are determined according to the relative variations of relative density and
modulus. The scatter in q and E is calculated based on the variation of the effective properties as function
of the discretisation level L:
1 AN
% ij ¼ AVE
STDði; LÞ
AVEði; LÞ ; j
� �

ð4Þ
where AVE and STD refer to the average value and standard deviation operator on variable i with respect to
L. j represents one of the studied parameters (r/r, d, r0). i represents either q or E, with E being the average of
SYS, Inc. Southpoint 275 Technology Drive, Canonsburg, PA 15317.
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the moduli values calculated in the three main directions x, y and z. The variability of E in space direction is
calculated by:
Table
Varia

Param

q
r/r
d
r0

a R
MAX½ð% Exj;% Eyj;% EzjÞ �% Ej� ð5Þ
where MAX is the maximum operator.
The lower is the discretisation level, i.e. the coarser the mesh, the higher is Young’s modulus variability.

Results in Table 1 show that the variability of E, with respect to the generation parameters (q, r/r,d, r0), is
larger (between 8% and 16%) than that of q and than the contribution due to space directions. Overall, the
sensitivity to space directions X, Y and Z represents less than 3%. The small variability of q (<0.5%) is attrib-
uted to the link units which increases the connectivity of the solid phase. Finally, r0 has the largest effect on the
variability of E and q, in the range tested.

Sampling is performed on meshed structures, for same discretisation L, by selecting a small cubic region
representing a volume fraction (sampling ratio) from the whole structure (Fig. 7). This volume fraction is rep-
resentative of the sample (REV) when the variable computed is constant with the sampling ratio, defined by:
1
bility of relative density and Young’s modulus as function of discretisation level and generation parameters

etera Variability of E in X,Y, Z Variability of E as function of L (L > 50) Variability of q as function of L (L > 50)

— 8 0.06
1.55 11 0.40
1.54 14 0.32
2.33 16 0.39

ange of parameters: q (0.1, 0.3), r/r (0.1, 0.4), d (�5, �12) voxels, r0 (4,14) voxels.



Fig. 7. Typical meshed structures showing sample size effect in open cellular solids (r/r = 0.1, q = 0.3).

Table
Variab

Param

q
r/r
d
r0

a Ra
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V ¼ ðL � S=100Þ3 ð6Þ

where S is the sampling ratio.

The predicted variation ratios are calculated in a similar way to that related to discretisation levels (Table 2).
The variability of relative density and modulus in space directions is larger than that predicted for the dis-

cretisation level (Tables 1 and 2). The variability of q with respect to generation parameters represents up to
5% and is attributed to the fact that sampling adds discontinuities at the frontiers of the cellular structure.
2
ility of Young’s modulus as function of sampling ratio and generation variables

etera Variability of E in X, Y, Z Variability of E as function of S (S > 50) Variability of q as function of S (S > 50)

— 16 2.11
1.99 12 4.50
5.00 11 3.27
8.91 25 4.87

nge of parameters: q (0.1–0.3), r/r (0.1–0.4), d (�6, �9) voxels, r0 (4, 14) voxels.
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The effect of sampling is significant in the case of q with typical variation of the elasticity modulus and rel-
ative density of about 40% and 13% for sampling ratios larger than 10%. These variations decrease to about
16% and 2%, respectively, for S values >50. Like for discretisation, r0 is found to be the most influent on var-
iability of q and E. This is due to sampling, which can be expressed as the effect of the ratio of the cell size to
the sample size. The relative density is not significantly affected by S and L because of the unit links introduced
in the structure. These links improve the connectivity in the cellular structure. In the following, no sampling is
performed because of the large variations of E when S < 100%. Moreover, this choice guarantees the conser-
vation of the geometric boundary conditions used in the generation. The resolution of the system is taken as
L = 100, which represents a good compromise to avoid large variations of E and a suitable calculation time.

4. Results and discussion

4.1. Influence of structure parameters

Fig. 8 shows the decrease of the Young’s modulus as function of the value of the centre of the spheres dis-
tribution r0. For a given volume of the material, the decrease of r0 permits to increase the number of cells and
thus to decrease the sample size with respect to cell size. Such correlation is then related to scaling effect in the
cellular solid. Brezny and Green (1990a) studied the effect of cell size on the effective Young’s modulus and
predicted a variability of the modulus with no clear correlation. This variability was attributed to the variabil-
ity of the solid phase Young’s modulus rather than to scaling effects. Other structural considerations explain-
ing the cell size effect were reported (Brezny and Green, 1990b). In open cell alumina, Hagiwara and Green
(1987) related the size effect to the increase of the ratio of close cells when the cell size decreases. Dam
et al. (1990) attributed the correlation to the decrease of the solid phase Young’s modulus, due to the presence
of microcracks which appear mostly in the struts surrounding small cells.

Scaling effects can be also predicted by the Cosserat elasticity described by six variables in contrast to the
classic elastic solid in which there are only two independent variables (Lakes, 1995). Cosserat effects can be
responsible for the increase of the Young’s modulus with the decrease of the sample size with respect of cell
size (Lakes, 1995; Onck et al., 2001). More recently, Onck et al. (2001) studied the scaling effect in a 2D regular
honeycomb. The idea was to attribute the scaling effect to the small contribution of the outer surfaces of the
cellular solid which contain walls less constrained. In our case, the slight increase of the effective Young’s mod-
ulus for smaller cell size can be attributed to the fact that the cellular solid ‘‘remembers” less surface effects
when the cell size is small (i.e., large number of cells). The contribution of the core region where stiffness is
not affected by the end effects becomes then predominant. Our result is qualitatively in good agreement with
the result of Onck et al. (2001). A large decrease of the relative modulus is expected when dealing with large
spheres (r0� 10), because the sample is no more a REV. In the present case (Fig. 8) Young’s modulus var-
iation is small because of using periodic boundary conditions.
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Fig. 9 shows the overall Young’s modulus results as function of relative density for different sphere distri-
bution widths and overlap distances.

It is found particularly that an increased stiffness is correlated to cellular structures with large sphere dis-
persion (Fig. 9a), typically by a factor of 2, when dispersion is increased by 4, for a relative density of 0.15.
Because wall thickness profiles indicate that the wall thickness distribution is larger for a decreasing r/r value
(Fig. 4b), the low stiffness is due to a combination of bending and uniaxial deformation mechanisms. The
work of Grenestedt and Bassinet (2000) gives a qualitative interpretation of cell wall thickness distribution
in the case of close cell solids. They predicted a slight decrease (20%) of stiffness parameters with the increase
of the wall thickness dispersion. Another possible interpretation to this result would be related to other geo-
metric considerations as suggested in Fig. 5b. Indeed, organized overlapping can be obtained with large dis-
tributions of sphere radii. This result was already reported by Clarke and Wiley (1987) for hard spheres, where
packing is found to be improved when increasing the difference between sphere radii. Such organized sphere
arrangement is suggested to confer better rigidity to the cellular solid, which can also be explained by a nar-
rower distribution of cell wall size (Fig. 4b).

In the range tested, overlap distance has the largest discriminating effect on the dependence of Young’s
modulus upon density. The largest modulus values are obtained for the smallest jdj value whatever the relative
density is (Fig. 9b), and typically increase by a factor of 3, when overlap is increased by 2, for a relative den-
sity of 0.15. Again, this result can be interpreted by the decrease of wall thickness dispersion as indicated in
Fig. 4c.

Quantitative interpretation of the former results can be given by considering the equation of Gibson and
Ashby (1997) which relates Young’s modulus to relative density for open cell structures:
E ¼ cqn ð7Þ



Table 3
Dependence of generation parameters to the exponent and prefactor of the power law relating Young’s modulus to relative density

d (�) �20 �15 �10

r/r 0.1 0.2 0.3 0.4 0.2 0.2
Exponent n 3.97 ± 0.47 3.44 ± 0.25 3.31 ± 0.17 3.25 ± 0.39 3.15 ± 0.52 2.96 ± 0.22
Constant C

MIN 1.55 1.24 1.27 1.14 1.10 1.18
MAX 3.08 1.63 1.58 1.85 2.29 1.58
AVE 2.18 1.42 1.42 1.45 1.58 1.37

Correlation coefficient R2 0.89 0.99 0.99 0.96 0.97 0.99
Standard deviation SD (%) 34 15 12 25 10 6
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where C is a prefactor close to unity and n is an exponent which varies between 1 and 4, depending on whether
cells are open or close (Roberts and Garboczi, 2001). The graphs presented in Fig. 9 well show that our results
are in line with this theory as confirmed by the correlation factors shown in Table 3.

Coefficients n and C are sensitive to the cellular structure : sphere arrangement and size distribution (Rob-
erts and Garboczi, 2001, 2002). Based on a dimensional analysis of an assembly of beams under flexure, simple
models assume that n = 2 for open solids with arrangement of isotropic cells (Gibson and Ashby, 1997). Rob-
erts and Garboczi (2002) found that 1.3 < n < 3, suggesting a lack of fit to the power law with n = 2 for open-
cell solids, obtained by different random isotropic models. Deviation from the quadratic correlation was
pointed out by several authors claiming the role of imperfections, irregularities or anisotropy in the cell
arrangement (Grenestedt, 1998; Chen et al., 1999; Andrews et al., 1999).

Table 3 gives an outline of the results of the correlations obtained in the case of the studied parameters.
Exponent values are significantly larger than the theoretical value for open cell solids. Although we can sup-
pose that the cellular structures generated here are open over the range studied (q < 0.35), it is particularly
noticed that n is sensitive to the value of q and that a fixed value of n is not possible in this range. This is
inherent to structure generation which considers sphere packing instead of periodic arrangement of defined
unit cells (Gibson and Ashby, 1997) and also probably to missing walls which decreases the value of Young’s
modulus for lower values of q (Silva and Gibson, 1997; Scanlon and Zghal, 2001). Nevertheless, a linear fitting
procedure permitted to estimate n value as function of overlap distance and distribution width with an accept-
able correlation factor (r2 = 0.88):
n ¼ 2:675� 0:975� d� 2:240� r
r

ð8Þ
4.2. Comparison with experimental results obtained on food foams

In order to validate the approach of RSA in describing the structural features of open cell solids and relat-
ing them to elasticity modulus, the following application is tested. X-ray tomography structures of bread
crumbs baked from different compositions are considered in order to obtain different cell structures
(Fig. 10). The relative density varies in the range 0.17–0.31 (Table 4) and compression tests allowed to estimate
the experimental values of Young’s modulus, in the range 0.033–0.1 MPa (Fig. 11). Note that the relative den-
sity estimated experimentally using the procedure described in Babin et al. (2005) is less accurate than that
directly calculated from tomography structures. Structures are meshed using the regular scheme described
in Section 2.2 and the compression test is simulated under the same conditions as explained in Section 2.2.
Young’s modulus of the intrinsic material is calculated from the slope of stress–strain curve in the densifica-
tion stage form compression tests of studied bread crumbs (Babin et al., 2005). A common average value of
0.64 MPa is obtained for all studied samples and is comparable to what is customary reported (Keetels et al.,
1996; Scanlon and Zghal, 2001). Since no converging data are available from these references, an average
value of the Poisson ratio is arbitrary fixed to 0.33.

An attempt to relate the Young’s modulus predictions to structural effects is made by considering the equiv-
alent RSA cellular solids. Firstly, the parameters r/r, r0 and average wall thickness are estimated from the 3D



Fig. 10. Bread crumb porous structures determined using X-ray tomography and related meshed structures. (a) Sample #2 (q = 0.17). (b)
Sample #3 (q = 0.27).

Table 4
Structure parameters and Young’s modulus data of bread crumbs

Bread Young’s modulus q Wall thickness (lm) r (mm) r/r0 d (mm) r0 (mm)

Pred.a (�) Exp. (Pa) Exp. From 3D structures

1 0.056 34925 0.20 0.18 241 1.5176 0.996 �0.21 1.523
2 0.029 33510 0.20 0.17 187 1.4173 1.123 �0.21 1.262
3 0.071 38865 0.21 0.27 219 1.4231 1.410 �0.14 1.010
4 0.022 34915 0.20 0.22 197 1.5000 1.577 �0.28 0.951
5 0.086 100705 0.31 0.31 209 1.5452 0.620 �0.07 0.84
6 0.055 47500 0.26 0.24 249 0.8866 0.900 �0.14 0.986

a The predicted relative Young’s modulus is calculated with respect to an arbitrary solid phase Young’s modulus.
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images using the granulometry technique (Babin et al., 2005). Unfortunately, two-point correlation functions
can not be derived using this technique and compared to PCF of simulated structures. The reason is inherent
to the technique (Lassoued et al., 2007) and can be bypassed only if exact positions of overlapping voids are
known. Labelling techniques fail in such computation whereas complex morphological operators as watershed
(Russ and Russ, 1988; Serra, 1982) not addressed in this paper are of major interest. Secondly, a routine is
used to calculate the lowest possible jdj value corresponding to the set of experimental values for r/r, q
and r0. In Table 4 are summarized the values of these parameters.

The comparison of the average predicted Young’s modulus to the experimental one shows that despite a
good agreement for two points (q = 0.17 and 0.24), a significant scatter is found. This scatter can be related
to several factors. First, scaling effects might be inferred since computations were performed on cellular struc-
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tures derived from 3D images having a volume of 0.15 cm3, which might not be fully representative of the real
crumb. The error on relative density might be linked to this preceding statement and it adds to the incertitude
related to the experimental method of density measurement. Finally, the different crumbs were obtained from
various formulations, the intrinsic Young’s modulus of which may vary significantly although its experimental
determination is difficult. Given these uncertainties, Fig. 11 reflects a fair agreement. It also indicates the pre-
dicted optimal d values for each structure. The difference of jdj values (0.28 and 0.14) explains the difference of
stiffness obtained for close density values (q = 0.22–0.24 g cm3, respectively), in agreement with the trend pre-
viously suggested (Fig. 9b).

5. Overall conclusions

The use of RSA to generate typical cellular solids suggests that cell organisation can vary significantly from
random to organised architecture and cell wall size variability is expected. Anticipating the mechanical prop-
erties of cellular solids based on 3D image analysis requires not only an accurate estimation of mean size and
dispersion of void size, but also indicators about void overlaps. This feature seems to control the overall
Young’s modulus of the open cell cellular solids having similar density. This variability explains the large devi-
ation from the expected quadratic correlation between relative density and effective elasticity property.

Experimental evidence of the studied structural effects is not yet proved. The predicted results give only fair
correlation with experimental ones in the case of bread crumbs, when taking the overlap distance into account.
Apart from the effects discussed above, other effects such as cell wall waviness, plateau border variations can
explain the observed scatter.

In a future work, a full structural characterization of real cellular products during deformation is planned
in order to assess deformation mechanisms with respect to product design history.
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