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a b s t r a c t

When analyzing materials that exhibit different mechanical behaviors in tension and compression, an
iterative approach is required due to material nonlinearities. Because of this iterative strategy, numerical
instabilities may occur in the computational procedure. In this paper, we analyze the reason why iterative
computation sometimes does not converge. We also present a method to accelerate convergence. This
method is the introduction of a new pattern of shear modulus that was strictly derived according to
the constitutive model based on the bimodular elasticity theory presented by Ambartsumyan. We test
this procedure with a numerical example concerning a plane stress problem. Results obtained from this
example show that the proposed method reduces the cost of computation and accelerates the conver-
gence of the solution.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Classical elasticity theory assumes that materials have the same
elastic properties in tension and compression, but this is only a
simplified interpretation, and does not account for material nonlin-
earities. Many studies have indicated that most materials, includ-
ing concrete, ceramics, graphite, and some composites, exhibit
different tensile and compressive strains given the same stress ap-
plied in tension or compression. Thus, materials exhibit different
elastic moduli in tension and compression. These materials are
known as bimodular materials (Jones, 1977). Overall, there are
two basic material models widely used in theoretical analysis
within the engineering profession. One of these models is the cri-
terion of positive–negative signs in the longitudinal strain of fibers
put forward by Bert (1977). This model is mainly applicable to
orthotropic materials, and is therefore widely used for research
on laminated composites (Bruno et al., 1994; Tseng and Lee,
1995; Tseng and Jiang, 1998; Zinno and Greco, 2001). Another
model is the criterion of positive–negative signs of principal stress
put forward by Ambartsumyan (1986). This model is mainly appli-
cable to isotropic materials. In civil engineering, the stress state in
a principal direction is a key point in the analysis of some compo-
nents like beams and columns. However, shear stresses and the
resulting diagonal tension must also be carefully considered in
ll rights reserved.
the design of reinforced concrete. This paper will focus on discus-
sions of the latter model based on principal direction.

The elasticity theory of different tension–compression moduli
presented by Ambartsumyan (1986) asserts that Young’s modulus
depends not only on material properties, but also on the stress
state of the point in question. Therefore, the elastic modulus is re-
lated to the material, shape, boundary conditions, and external
loads of the structure, and hence has nonlinear characteristics. This
bimodular theory assumes small deformations and follows the
common rules of elastic continuum mechanics. In this model, the
differential equations of equilibrium and the geometrical equa-
tions are the same as those of classical materials theory, with the
exception of the physical equations.

Ambartsumyan (1986) linearized the nonlinear model, the sec-
ond material model mentioned above, into two straight lines whose
tangents at the origin are discontinuous, as shown in Fig. 1. This
bimodular theory defines its constitutive model based on principal
directions, and therefore inevitably neglects a description of the
shear modulus. This model also lacks the ability to describe exper-
imental results of elastic coefficients in complex states of stress.
Analytical solutions are available in a few cases, although they only
concern beams and columns (Yao and Ye, 2004a,b; He et al.,
2007a,b; He et al., 2008). In some complex problems, it is necessary
to resort to finite element method (FEM) based on an iterative tech-
nique (Zhang and Wang, 1989; Ye et al., 2004; He and Chen, 2005).
Because the stress state of the point in question is unknown in
advance, we have to begin with a single modulus problem, thus
gaining the initial stress state to form a corresponding elasticity
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Fig. 1. Constitutive model of bimodular materials: (a) nonlinear model from actual
state; (b) bilinear model when E+ > E�and (c) bilinear model when E+ < E�.

X.-t. He et al. / International Journal of Solids and Structures 46 (2009) 3734–3740 3735
matrix for each element. Generally, direct iterative methods based
on an incrementally evolving stiffness have been adopted by many
researchers. The convergence problem is, however, hard to solve.

Zhang and Wang (1989) presented FEM for solving problems
with different moduli, pointed out that the elasticity matrix ½D� is
essentially different from the counterpart in classical theory, and
introduced the basic idea of accelerative convergence. Yang et al.
(1992) transformed bimodular problems into initial stress prob-
lems to allow for their solution. Ye (1997) put forward a new algo-
rithm in which the elasticity matrix is modified while the Poisson
ratio is assumed to be constant. Based on the idea of accelerative
convergence presented by Zhang and Wang (1989), Gao and Liu
(1998) analyzed a bending plate with different tension–compres-
sion moduli. Based on the analysis of shear modulus, Liu and Zhang
(2000) put forward a shear modulus pattern used for numerical
computation. Yang and Zhu (2006) presented a new algorithm
based on the smooth function technique. Although the initial stress
method (Yang et al., 1992) and smooth function technique (Yang
and Zhu, 2006) avoided inconveniences introduced by shear stiff-
ness, the computational effort and the iterative convergence rate
depend greatly on the selection of initial values and parameters.
Therefore, determination of the shear modulus in numerical com-
putations is still an important problem. However, all current shear
modulus patterns are empirical and lack strict theoretical backing.
To eliminate the randomness in determining the shear modulus,
we derive a new pattern of shear modulus in this paper. Numerical
examples indicate that the new pattern is effective for accelerating
convergence, and that the symmetric features of elastic structures
will change due to the introduction of a bimodulus.

2. Regression of the bimodular elasticity matrix

Studies indicate that bimodular elasticity theory is consistent
with classical theory, i.e., formulas and basic equations may return
to their counterparts in classical theory when E+ = E�, l+ = l�,
where E+ and E� are the tensile and compressive elasticity moduli,
and l+ and l� are the tensile and compressive Poisson ratios,
respectively.

In bimodular elasticity theory, given a principal stress and a
principal strain {rI} and {eI}, the constitutive relation built on the
principal direction may be written as

feIg ¼ ½a�frIg; frIg ¼ ½D�feIg; ð1Þ

where, [a] is a matrix of flexibility coefficients determined by the
signs of the principal stresses, and [D] is the elasticity matrix in
the principal direction. These matrices satisfy the following relation

½D� ¼ ½a��1
: ð2Þ

The elasticity matrix ½D�, mapped onto general coordinates via con-
version, may be written as

½D� ¼ ½L�T ½D�½L�; ð3Þ
where [L] is the converting matrix and [L]T is its transpose.
In a plane stress problem, the formulations of [L], [a], and [D]

are, respectively,

½L� ¼
l2
1 m2

1 l1m1

l2
2 m2

2 l2m2

" #
; ½a� ¼

a11 a12

a21 a22

� �
; ½D� ¼

d11 d12

d21 d22

� �
;

ð4Þ

where, l1, m1 are directional cosines of one principal direction, a,
with respect to the initial coordinates x, y, and l2, m2 are the direc-
tional cosines of another principal direction, b. According to basic
assumptions from bimodular elasticity theory, the elements of [a]
and [D] are as follows:

r For ra > 0,rb > 0, the constitutive model in the principal
direction is

ea

eb

� �
¼

1
Eþ � lþ

Eþ

� lþ
Eþ

1
Eþ

" #
ra

rb

� �
: ð5Þ

So a11 ¼ a22 ¼ 1
Eþ ; a12 ¼ a21 ¼ � lþ

Eþ and d11 ¼ d22 ¼ Eþ

1�ðlþÞ2
;

d12 ¼ d21 ¼ lþEþ

1�ðlþÞ2
.

s For ra < 0,rb < 0, the constitutive model in the principal
direction is

ea

eb

� �
¼

1
E� � l�

E�

� l�
E�

1
E�

" #
ra

rb

� �
: ð6Þ

So a11 ¼ a22 ¼ 1
E� ; a12 ¼ a21 ¼ � l�

E� and d11 ¼ d22 ¼ E�

1�ðl�Þ2
;

d12 ¼ d21 ¼ l�E�

1�ðl�Þ2
.

t For ra > 0,rb < 0, the constitutive model in the principal
direction is

ea

eb

� �
¼

1
Eþ � l�

E�

� lþ
Eþ

1
E�

" #
ra

rb

� �
: ð7Þ

So a11 ¼ 1
Eþ ; a22 ¼ 1

E� ; a12 ¼ � l�
E� ; a21 ¼ � lþ

Eþ and d11 ¼ Eþ

1�lþl� ;

d12 ¼ lþE�

1�lþl� ; d21 ¼ l�Eþ

1�lþl� ; d22 ¼ E�

1�lþl�.

If the point in question is in case r or s, the problem is the
same as classical theory. If the point in question is in case t, a
new characteristic concerning different moduli in tension and
compression is inevitably introduced here. We will therefore focus
our discussion on this latter case.

Under the assumption that l+/E+ = l�/E� (Ambartsumyan,
1986), substituting Eq. (4) into Eqs. (2) and (3), we obtain a sym-
metrical matrix ½D�. While E+ = E� = E, and l+ = l� = l, we have
d11 = d22 = E/(1 � l2) and d12 = d21 = lE/(1 � l2). Hence, the regres-
sive elasticity matrix, ½D�0, is

½D�0 ¼ E
1� l2

D011 D012 D013

D021 D022 D023

D031 D032 D033

2
64

3
75; ð8Þ

where,

D011 ¼ l4
1 þ 2l21l2

2lþ l4
2

D012 ¼ l2
1m2

1 þ ðl
2
2m2

1 þ l21m2
2Þlþ l2

2m2
2 ¼ D021

D013 ¼ l3
1m1 þ ðl1l2

2m1 þ l2
1l2m2Þlþ l3

2m2 ¼ D031
D022 ¼ m4

1 þ 2m2
1m2

2lþm4
2

D023 ¼ l1m3
1 þ ðl1m1m2

2 þ l2m2
1m2Þlþ l2m3

2 ¼ D032

D033 ¼ l2
1m2

1 þ 2l1l2m1m2lþ l2
2m2

2

8>>>>>>><
>>>>>>>:

ð9Þ

Based on the consistency of the two elasticity theories, when
E+ = E� = E and l+ = l� = l, Eq. (8) should return to its counterpart
from classical theory, i.e., it should return to the familiar matrix
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½D�0 ¼ E
1� l2

1 l 0
l 1 0
0 0 ð1� lÞ=2

2
64

3
75: ð10Þ

However, Eq. (8) fails this test.
This unsatisfied regression shows that it is not preferable to di-

rectly derive the elasticity matrix from the initial model. With re-
gard to the FEM process, this may be the fundamental reason why
convergence is always slow.

3. Basic ideas of accelerative convergence

To satisfy the regression and accelerate convergence, we can let
the matrices have an integral feature. Shear stress and shear strain
are set equal to zero to formulate physical Eq. (1), so the principal
stress and the principal strain (in a plane problem) may be written
as

frIg ¼ ½ra rb sab�T ; feIg ¼ ½ea eb eab�T : ð11Þ

In Eq. (11), sab = eab = 0. The relation between stress and strain in
the principal direction and the corresponding elasticity matrix
are, respectively,

frIg ¼ ½D�feIg; ½D� ¼
d11 d12 0
d21 d22 0
0 0 d33

2
64

3
75: ð12Þ

The strain energy is formulated as

U ¼ 1
2
feIgT ½D�feIg: ð13Þ

The corresponding converting matrix [L] should be written as

½L� ¼
l21 m2

1 l1m1

l22 m2
2 l2m2

2l1l2 2m1m2 l1m2 þ l2m1

2
64

3
75: ð14Þ

The elements of the elasticity matrix on general coordinates are
computed as follows

D11 ¼ l4
1d11 þ 2l2

1l2
2d12 þ l4

2d22 þ 4l2
1l2

2d33

D12 ¼ l2
1m2

1d11 þ ðl22m2
1 þ l2

1m2
2Þd12 þ l2

2m2
2d22

þ4l1l2m1m2d33 ¼ D21

D13 ¼ l3
1m1d11 þ ðl1l2

2m1 þ l2
1l2m2Þd12 þ l3

2m2d22

þ2l1l2ðl1m2 þ l2m1Þd33 ¼ D31

D22 ¼ m4
1d11 þ 2m2

1m2
2d12 þm4

2d22 þ 4m2
1m2

2d33

D23 ¼ l1m3
1d11 þ ðl1m1m2

2 þ l2m2
1m2Þd12 þ l2m3

2d22

þ2m1m2ðl1m2 þ l2m1Þd33 ¼ D32

D33 ¼ l2
1m2

1d11 þ 2l1l2m1m2d12 þ l22m2
2d22 þ ðl1m2 þ l2m1Þ2d33

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

:

ð15Þ

The elasticity matrix is also a symmetrical matrix under
l+/E+ = l�/E�. The elements in Eq. (15) are supplemented by

item d33, which is essentially the shear modulus. For E+ = E� = E,
l+ = l� = l, we have

d11 ¼ d22 ¼
E

1� l2 ; d12 ¼
lE

1� l2 ; d33 ¼
E

2ð1þ lÞ : ð16Þ

The directional cosines l1, m1, l2, m2 satisfy the following relations

l2
1 þ l2

2 ¼ 1; m2
1 þm2

2 ¼ 1; l2
1 þm2

1 ¼ 1; l22 þm2
2 ¼ 1;

l1l2 þm1m2 ¼ 0; l1m1 þ l2m2 ¼ 0; l1m2 � l2m1 ¼ 1: ð17Þ

Substituting Eqs. (16) and (17) into (15), we find that the elements
of the elasticity matrix return to Eq. (10). This fact indicates that, in
the constitutive model defined in the principal direction, the regres-
sion of the elasticity matrix is easily satisfied once we consider
influences introduced by the shear modulus.
4. Constitutional conditions of the shear modulus pattern

In bimodular elasticity theory, the constitutive relation of each
point depends on the stress state of that point. The shear modulus,
G, of each point is a nonlinear function involving principal stresses
ra, rb, rc, the tensile and compressive moduli of elasticity E+, E�,
and the tensile and compressive Poisson ratios l+, l�. The shear
modulus may, therefore, be written as

G ¼ f ðra;rb;rc; E
þ; E�;lþ;l�Þ: ð18Þ

When the point in question belongs to the first class discussed
above, all principal stresses are uniformly positive

(G+ = E+/2(1 + l+)) or uniformly negative (G� = E�/2(1 + l�)).
The two shear moduli are essentially the same as those of classical
theory, and they are thus easily obtained. However, when the point
in question belongs to the second class discussed above, the signs
of the three principal stresses are different. Because of this, we will
inevitably encounter difficulties when determining the shear mod-
ulus pattern. In past computations, G has been taken as an average
over the tensile–compressive elasticity moduli and the tensile–
compressive Poisson ratios, i.e.,

G ¼ ðEþ þ E�Þ=2
2 1þ ðlþ þ l�Þ=2½ � ¼

Eþ þ E�

2ð2þ lþ þ l�Þ

¼ Eþ þ E�

2ð1þ lþÞ þ 2ð1þ l�Þ : ð19Þ

Eq. (19) neglects the influences brought about by the stress state of
the point in question, so it is not an optimal solution. Based on the
idea that G should be weighted according to the ratio of tensile or
compressive principal stresses to the sum of all principal stresses
in absolute value, the following pattern was proposed (Liu and
Zhang, 2000)

Gxy ¼
gEþ þ ð1� gÞE�

2gð1þ lþÞ þ 2ð1� gÞð1þ l�Þ ; ð20Þ

where, g is a factor for accelerating convergence, and its value is the
ratio of positive principal stress to the sum of the three principal
stresses in absolute value, such that 0 6 g 6 1. There are four cases,
as follows:

Case 1: while ra > 0,rb > 0,rc < 0, g ¼ raþrb

raþrbþjrc j;
Case 2: while ra > 0;rb < 0;rc < 0;g ¼ ra

raþjrb jþjrc j;
Case 3: while ra > 0,rb > 0,rc > 0,g = 1;
Case 4: while ra < 0,rb < 0,rc < 0,g = 0.

By multiplying the items E+ and 2(1 + l+) by g, and multiplying
the items E� and 2(1 + l�) by 1 � g, we easily obtain Eq. (20) from
Eq. (19). Consequently, a strict derivation in theory is necessary in
order to eliminate the need for a priori assumptions.

5. Theoretical derivation of shear modulus patterns

In a spatial problem, let the stress and strain components in
general coordinates x, y, z be, respectively,

frg ¼ ðrx ry rz syz szx sxyÞT ; ð21Þ

and

feg ¼ ðex ey ez eyz ezx exyÞT : ð22Þ
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Let the stress and strain components in the principal coordinates a,
b, c be, respectively,

frIg ¼ ðra rb rcÞT ; ð23Þ

and

feIg ¼ ðea eb ecÞT : ð24Þ

The constitutive model of bimodular materials presented by
Ambartsumyan is

ea

eb

ec

8><
>:

9>=
>; ¼

a11 a12 a13

a21 a22 a23

a31 a32 a33

2
64

3
75

ra

rb

rc

8><
>:

9>=
>;; ð25Þ

where, aij(i, j = 1,2,3) denotes the flexibility coefficients determined
by the polarity of the signs of the principal stress. For instance, if
ra > 0, rb < 0, rc > 0, the physical equation should be

ea

eb

ec

8><
>:

9>=
>; ¼

1
Eþ � l�

E� � lþ
Eþ

� lþ
Eþ

1
E� � lþ

Eþ

� lþ
Eþ � l�

E�
1

Eþ

2
664

3
775

ra

rb

rc

8><
>:

9>=
>;: ð26Þ

The rest of the physical equations may be deduced analogously. Due
to the fact that l+/E+ = l�/E�, the symmetry of the flexibility matrix
is assured. Therefore, a12 = a21 = a13 = a31 = a23 = a32. Eq. (25) may be
rewritten as

ea ¼ a11ra þ a12rb þ a12rc

eb ¼ a12ra þ a22rb þ a12rc

ec ¼ a12ra þ a12rb þ a33rc

8><
>: ; ð27Þ

where only four flexibility coefficients, a11, a22, a33, a12, are indepen-
dent. The directional cosines relating the principal coordinates, a, b,
c, to the general coordinates x, y, z are shown in Table 1. (Note that
the definitions of the directional cosines here are different from
those in Sections 2 and 3.)

The three shear stresses in general coordinates may be formu-
lated using principal stresses and directional cosines as

syz ¼ l2l3ra þm2m3rb þ n2n3rc

szx ¼ l1l3ra þm1m3rb þ n1n3rc

sxy ¼ l1l2ra þm1m2rb þ n1n2rc

8><
>: : ð28Þ

Similarly, the shear strains may be formulated in terms of principal
strains and directional cosines as

eyz ¼ 2ðl2l3ea þm2m3eb þ n2n3ecÞ
ezx ¼ 2ðl1l3ea þm1m3eb þ n1n3ecÞ
exy ¼ 2ðl1l2ea þm1m2eb þ n1n2ecÞ

8><
>: : ð29Þ

Now, let us derive the shear modulus. Substituting Eq. (27) into the
first formula in Eq. (29), we have the following computational
process
Table 1
Direction cosines (in Section 6).

Coordinates a b c

x l1 m1 n1

y l2 m2 n2

z l3 m3 n3
eyz ¼ 2l2l3ða11ra þ a12rb þ a12rcÞ þ 2m2m3ða22rb þ a12ra þ a12rcÞ
þ 2n2n3ða33rc þ a12rb þ a12raÞ
¼ 2a11ðl2l3ra þm2m3rb þ n2n3rcÞ þ 2ða22 � a11Þm2m3rb

þ 2ða33 � a11Þn2n3rc þ 2a12 ðl2l3 þm2m3 þ n2n3Þðra þ rb þ rcÞ
�

�ðl2l3ra þm2m3rb þ n2n3rcÞ
�

ð30Þ
Considering l2l3 + m2m3 + n2n3 = 0 and the first expression in Eq.
(28), we have

eyz ¼ 2ða11 � a12Þsyz þ 2ða22 � a11Þm2m3rb þ 2ða33 � a11Þn2n3rc:

ð31Þ

Similarly, ezx and exy may be derived by analogy to give

eyz ¼ 2ða11 � a12Þsyz þ 2ða22 � a11Þm2m3rb þ 2ða33 � a11Þn2n3rc

ezx ¼ 2ða11 � a12Þszx þ 2ða22 � a11Þm1m3rb þ 2ða33 � a11Þn2n3rc

exy ¼ 2ða11 � a12Þsxy þ 2ða22 � a11Þm1m2rb þ 2ða33 � a11Þn2n3rc

8><
>: :

ð32Þ
In the state of general stress, the sign of a certain principal

stress can be different from the sign of the other two principal
stresses. In three-dimensional spatial problems, Ambartsumyan
(1986) assumes that the sign of the principal stress rb is different
from the signs of ra and rc, i.e., if rb > 0 then ra < 0,rc < 0, alterna-
tively, if rb < 0 then ra > 0,rc > 0. In this case, a33 � a11 = 0, so Eq.
(32) may be simplified as

eyz ¼ 2ða11 � a12Þsyz þ 2ða22 � a11Þm2m3rb

ezx ¼ 2ða11 � a12Þszx þ 2ða22 � a11Þm1m3rb

exy ¼ 2ða11 � a12Þsxy þ 2ða22 � a11Þm1m2rb

8><
>: : ð33Þ

Substituting Eq. (28) into (33), we obtain

eyz ¼ 2 ða11 � a12Þl2l3ra þ ða11 � a12Þn2n3rc þ ða22 � a12Þm2m3rb

�
ezx ¼ 2 ða11 � a12Þl1l3ra þ ða11 � a12Þn1n3rc þ ða22 � a12Þm1m3rb

�
exy ¼ 2 ða11 � a12Þl1l2ra þ ða11 � a12Þn1n2rc þ ða22 � a12Þm1m2rb

�
8><
>:

ð34Þ

The right ends of Eq. (34) are multiplied by the corresponding shear
stress components syz, szx, sxy and then divided by the same compo-
nents as in Eq. (28). After these operations, we obtain

eyz ¼ 2½ða11�a12Þl2 l3raþða11�a12Þn2n3rcþða22�a12Þm2m3rb �
l2 l3raþm2m3rbþn2n3rc

syz

ezx ¼ 2½ða11�a12Þl1 l3raþða11�a12Þn1n3rcþða22�a12Þm1m3rb �
l1 l3raþm1m3rbþn1n3rc

szx

exy ¼ 2½ða11�a12Þl1 l2raþða11�a12Þn1n2rcþða22�a12Þm1m2rb �
l1 l2raþm1m2rbþn1n2rc

sxy

8>>><
>>>:

: ð35Þ

If eik ¼ G�1
ik sik, the shear modulus Gik should depend mainly on the

state of the principal stress. The resulting formulas in the planes
yoz, zox, xoy are as follows.

Gyz ¼ l2 l3raþm2m3rbþn2n3rc

2 ða11�a12Þl2 l3raþða11�a12Þn2n3rcþða22�a12Þm2m3rb½ �
Gzx ¼ l1 l3raþm1m3rbþn1n3rc

2 ða11�a12Þl1 l3raþða11�a12Þn1n3rcþða22�a12Þm1m3rb½ �
Gxy ¼ l1 l2raþm1m2rbþn1n2rc

2 ða11�a12Þl1 l2raþða11�a12Þn1n2rcþða22�a12Þm1m2rb½ �

8>>>>><
>>>>>:

: ð36Þ

In a state of plane stress, rc = rz = sxz = syz = 0. Only stresses and
strains in plane xoy are non-zero when the principal direction c is
coincident with axis z. Obviously, the directional cosines should
satisfy the following

n1 ¼ n2 ¼ l3 ¼ m3 ¼ 0;n3 ¼ 1;
l2
1 þm2

1 ¼ 1; l22 þm2
2 ¼ 1; l1m1 þ l2m2 ¼ 0;

l2
1 þ l2

2 ¼ 1;m2
1 þm2

2 ¼ 1; l1l2 þm1m2 ¼ 0:

8><
>: ð37Þ

Therefore, from the third formula in Eq. (35), we obtain

exy ¼ 2 ða11 � a12Þ
ra

ra � rb
� ða22 � a12Þ

rb

ra � rb

� �
sxy: ð38Þ



Fig. 2. Elastic plane stress problem with bimodulus (antisymmetry).

Table 2
Nodal displacements u and v (a rightward load).

Nodes Horizontal displacements u (lm) Vertical displacements v (lm)

Problem S
1 0.319949E�19 0.109732E�18
2 0.194151E+00 �0.367601E�06
3 0.319949E�19 �0.109732E�18
4 0.102090E+02 0.611571E+01
5 0.102090E+02 �0.611571E+01
6 0.404478E+02 �0.200846E�06

Problem D
1 0.281691E�19 0.133413E�18
2 �0.247341E�01 0.201055E+01
3 0.342126E�19 �0.946459E�19
4 0.101218E+02 0.872081E+01
5 0.109312E+02 �0.408509E+01
6 0.425152E+02 0.392227E+01
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The shear modulus Gxy in the plane xoy is

1
Gxy
¼ 2 ða11 � a12Þ

ra

ra � rb
� ða22 � a12Þ

rb

ra � rb

� �
: ð39Þ

In order to determine the flexibility coefficients, we may assume
ra > 0 and rb < 0 or ra < 0 and rb > 0. If we firstly assume ra > 0
and rb < 0, the flexibility coefficients may be determined uniquely
as follows

a11 ¼
1

Eþ
; a22 ¼

1
E�
; a12 ¼ �

lþ

Eþ
¼ �l�

E�
: ð40Þ

Substituting Eq. (40) into (39), we have

Gxy ¼
EþE�ðra � rbÞ

2ð1þ lþÞE�ra � 2ð1þ l�ÞEþrb
: ð41Þ

Due to the fact that ra > 0, rb < 0, ra, rb may be rewritten as
ra = jraj and rb = �jrbj. Substituting the formulas above into Eq.
(41) and dividing the numerator and denominator by jraj + jrbj,
we obtain

Gxy ¼
jra j

jra jþjrb j
EþE� þ jrb j

jra jþjrb j
EþE�

2 jra j
jra jþjrb j

ð1þ lþÞE� þ 2 jrb j
jra jþjrb j

ð1þ l�ÞEþ
: ð42Þ

Introducing the factor g, we have

jraj
jraj þ jrbj

¼ g;
jrbj

jraj þ jrbj
¼ 1� g: ð43Þ

Therefore, Eq. (42) may be rewritten as

Gxy ¼
gEþE� þ ð1� gÞEþE�

2gð1þ lþÞE� þ 2ð1� gÞð1þ l�ÞEþ
: ð44Þ

The numerator and denominator of Eq. (44) are both divided by
E+E�, giving

Gxy ¼
1

g 2ð1þlþÞ
Eþ þ ð1� gÞ 2ð1þl�Þ

E�
¼ 1

g
Gþ
þ 1�g

G�
; ð45Þ

where, G+ = E+/2(1 + l+) and G� = E�/2(1 + l�) may be interpreted as
the tensile and compressive shear moduli, respectively. Note that if
we assume ra < 0 and rb > 0, the same results can also be obtained
by repeating the derivative steps from Eq. (40) to (45). Eq. (44) or
(45) is a new pattern of shear modulus, and is strictly derived from
the bimodular material model.

Eqs. (44) and (45) satisfy the following two conditions: r The
shear modulus depends on not only the magnitude and direction
of the resulting principal stresses, but also on their signs. This con-
dition satisfies the fundamental assumption that the constitutive
relation is determined by the stress state of the point in question;
s The shear modulus can satisfy the regression characteristic
while E+ = E�, and can satisfy the requirement of consistency be-
tween the bimodular theory and classical theory. Therefore, Eqs.
(44) and (45) eliminate the use of a priori assumptions. Compared
to Eq. (20), Eq. (45) is concise, as it may be expressed using only g
and G+,G�.

When g = 0 or g = 1, Eqs. (45) and (20) are the same, but, when
0 < g < 1, they are different. This difference is especially pro-
nounced when the point in question is in a state of pure shear,
ra = s,rb = � s and g = 0.5. From Eq. (45), we obtain

Gxy ¼
EþE�

ð1þ lþÞE� þ ð1þ l�ÞEþ
¼ 2GþG�

Gþ þ G�
; ð46Þ

while from Eq. (20), we obtain

Gxy ¼
Eþ þ E�

2ð1þ lþÞ þ 2ð1þ l�Þ ¼
Gþ

1þ 1þl�
1þlþ
þ G�

1þ 1þlþ
1þl�

: ð47Þ

Obviously, Eqs. (46) and (47) are different.
6. Numerical examples

6.1. Comparisons of convergence

In this paper, we adopted a computational example (Zhang and
Wang, 1989) concerning a bimodular plane stress problem to dem-
onstrate the efficiency of our new shear modulus pattern at accel-
erating convergence. This problem is illustrated in Fig. 2. The object
studied is made of bimodular materials, for example, organic glass
and its top is subjected to a horizontal force, P = 10KN. The values
of the mechanical parameters are E+ = 2.2 GPa, E� = 3.22
GPa, l+ = 0.22, l� = 0.322, respectively. For convenience of analysis
and comparison, the elastic problem with different moduli is called
problem D, while the classical problem with a single modulus is
called problem S. In problem S, E = (E+ + E�)/2 = 2.71 GPa and
l = 0.22. A FEM program based on different moduli in tension
and compression was worked out to compute problem D. To exam-
ine the effect on accelerating convergence, both the pattern pre-
sented by Liu and Zhang (2000) and the new pattern derived in
this paper were considered. The computational results are listed
in Tables 2 and 3, and the iterative numbers are listed in Table 4.

From Tables 2 and 3, we see that the inclusion of a bimodulus
greatly influences the results: The sign of the horizontal displace-
ment, u, of node 2 is changed. The vertical displacements, v, of
nodes 4 and 5 are changed greatly. The vertical displacements, v,
of nodes 2 and 6 are changed from zero to 2.0106 and 3.9223
lm, respectively. The maximum stress change is in the principal
stress r1 of element t. The maximum displacement change
reaches (8.7208-6.1157)/6.1157=42.6%, which happens in the ver-
tical displacements, v, of node 4. We conclude that the introduction
of a bimodulus has a significant influence on the calculated stiff-
ness of an elastic structure.



Table 3
Normal stress rx ;ry , shear stress sxy , principal stress r1;r2 and principal direction of r1 to axis x (a rightward load).

Elements rx (KPa) ry (KPa) sxy (KPa) r1 (KPa) r2 (KPa) a (rad)

Problem S
r 0.1462E+01 0.5846E+01 0.3744E+01 0.7992E+01 �0.6845E+00 60.1766
s 0.2698E�07 0.1226E�06 �0.8206E+00 0.8206E+00 �0.8206E+00 �45.0000
t �0.1462E+01 �0.5846E+01 0.3744E+01 0.6845E+00 �0.7992E+01 29.8234
u 0.7847E�08 0.3567E�07 0.6667E+01 0.6667E+01 �0.6667E+01 45.0000

Problem D
r 0.9974E+00 0.5799E+01 0.3767E+01 0.7865E+01 �0.1069E+01 61.2554
s 0.6314E+00 0.3153E+00 �0.7098E+00 0.1201E+01 �0.2538E+00 �38.7234
t �0.1981E+01 �0.6115E+01 0.3609E+01 0.1115E+00 �0.8207E+01 30.1021
u �0.5526E+00 �0.1711E�06 0.6667E+01 0.6396E+01 �0.6949E+01 46.1867

Table 4
Comparison of iterative numbers.

Optional stop Iterative numbers

k(lm) Shear modulus
pattern in Eq. (20)

Shear modulus
pattern in Eq. (45)

1E�1 4 3
5E�2 4 3
1E�2 6 3
5E�3 6 5
1E�3 14 12
9E�4 15 12
8E�4 15 12
7E�4 >100000 12
6E�4 >100000 12
5E�4 >100000 12
4E�4 >100000 >100000
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If we take no any methods, the convergence speed is too slow to
obtain stable results. The convergent effect will be quite obvious
once the elastic matrix is modified. However, the form of the shear
modulus introduced here will also directly influence convergence
speed. In the iterative computation, the optional stop is defined
as uiþ1 � uij j < k, i.e., the difference of the continuous two compu-
tations is less than a given small value k (lm). From Table 4, we see
that if we take Eq. (20) as the shear modulus, the convergence
speed becomes slow at k = 7E�4 lm. If we take Eq. (45) as the
shear modulus, the convergence speed will become slow at
k = 4E�4 lm. These results show that the convergence of shear
modulus using the equations derived in this paper may be superior
to convergence using conventional equations.
Table 5
6.2. Symmetry and antisymmetry

It is also interesting to study the symmetry of elastic structures
possessing bimodulus. An example of this, as shown in Fig. 3, is
easily obtained by simply modifying the direction of load P in
Fig. 2. Thus, the original antisymmetric problem is converted into
Fig. 3. Elastic plane stress problem with bimodulus (symmetry).
a symmetric one. The computational results of the displacements
are listed in Table 5 and the computational results of the stresses
are listed in Table 6.

In classical elasticity, if the shape and boundary conditions of an
elastic structure are symmetric to an axis, and the applied external
loads are also symmetric or antisymmetric to the same axis, the
stress and displacement components will satisfy the following
relations

r Symmetric problem
On the symmetric axis,

u ¼ 0; sxy ¼ 0: ð48Þ

In areas off the symmetric axis,

uðx; yÞ ¼ �uð�x; yÞ;vðx; yÞ ¼ vð�x; yÞ;
rxðx; yÞ ¼ rxð�x; yÞ;ryðx; yÞ ¼ ryð�x; yÞ;
sxyðx; yÞ ¼ �sxyð�x; yÞ:

8><
>: ð49Þ

s Antisymmetric problem
On the antisymmetric axis,

v ¼ 0;rx ¼ 0ðry ¼ 0Þ: ð50Þ

In areas off the antisymmetric axis,

uðx; yÞ ¼ uð�x; yÞ;vðx; yÞ ¼ �vð�x; yÞ;
rxðx; yÞ ¼ �rxð�x; yÞ;ryðx; yÞ ¼ �ryð�x; yÞ;
sxyðx; yÞ ¼ sxyð�x; yÞ:

8><
>: ð51Þ

By comparing the results from Tables 2, 3, 5 and 6, we find that,
in problem S, symmetry and antisymmetry hold. In problem D,
symmetry of the elastic structure still holds but antisymmetry
does not. Consequently, the superposition theorem will fail. This
Nodal displacements u and v (an upward load).

Nodes Horizontal displacements u (lm) Vertical displacements v (lm)

Problem S
1 0.151320E�19 0.548662E�19
2 �0.413010E�07 0.500520E+01
3 �0.151320E�19 0.548662E�19
4 �0.607919E�01 0.566884E+01
5 0.607917E�01 0.566884E+01
6 �0.200846E�06 0.126650E+02

Problem D
1 0.143167E�19 0.667137E�19
2 0.823375E�07 0.605853E+01
3 �0.143167E�19 0.667137E�19
4 �0.755744E�01 0.696329E+01
5 0.755754E�01 0.696329E+01
6 0.111548E�05 0.155809E+02



Table 6
Normal stress rx;ry , shear stress sxy , principal stress r1 ;r2 and principal direction of r1 to axis x (an upward load).

Elements rx (KPa) ry (KPa) sxy (KPa) r1 (KPa) r2 (KPa) a (rad)

Problem S
r 0.6612E+00 0.3006E+01 0.1831E+01 0.4007E+01 �0.3402E+00 61.3171
s 0.2540E+00 0.6554E+00 �0.1950E�06 0.6554E+00 0.2540E+00 90.0000
t 0.6612E+00 0.3006E+01 �0.1831E+01 0.4007E+01 �0.3402E+00 �61.3171
u 0.1576E+01 0.6667E+01 �0.2171E�06 0.6667E+01 0.1576E+01 90.0000

Problem D
r 0.5425E+00 0.2972E+01 0.1847E+01 0.3968E+01 �0.4538E+00 61.6632
s 0.2699E+00 0.7229E+00 0.1242E�06 0.7229E+00 0.2699E+00 90.0000
t 0.5425E+00 0.2972E+01 �0.1847E+01 0.3968E+01 �0.4538E+00 �61.6632
u 0.1578E+01 0.6667E+01 0.1863E�06 0.6667E+01 0.1578E+01 90.0000
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phenomenon is caused by the introduction of different moduli in
tension and compression. Thus, we should devote attention to
the analysis of bimodular elastic structures.
7. Conclusions

In this paper, we analyzed the convergence of a finite element
method based on different moduli in tension and compression.
The new pattern of shear modulus derived in this paper is able
to improve the convergence of a finite element computation for a
2-D continuum exhibiting a bimodular behavior. Several important
conclusions are summarized in the following.

(1) The introduction of the shear modulus can accelerate con-
vergence speed, and the shear modulus should be determined
theoretically in order to eliminate the need for a priori
assumptions.
(2) The theoretical derivation to shear modulus in this paper
may be regarded as a supplement to the bimodular elasticity
theory.
(3) From the results of the numerical example in this paper, the
convergence of shear modulus using the equations derived in
this paper is superior to convergence using conventional
equations.

It should be point out that, because this paper is devoted to the
theoretical derivation of the shear modulus, no more computa-
tional examples are given. The results of accelerating convergence
are limited to a single case; therefore, future works will be done in
order to check the efficiency of the proposed methodology in other
circumstances.

This work will be helpful for predicting the mechanical behav-
iors of bimodular materials. In particular, these results may be
useful to analyze concrete-like materials and fiber-reinforced com-
posite materials that contain cracks and undergoing contact,
whose macroscopic constitutive behavior depends on the direction
of the macroscopic strain, similarly to the case of the bimodular
materials (Leguillon and Sanchez-Palencia, 1982; Bisegna and Luci-
ano, 1998; Greco, 2009).
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